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Abstract: The level-k model is often implementethvan assumption that individuals employ a
fixed depth of reasoning across different gamesstlidy the validity of this assumption, we have
subjects make choices in a series of games designiééntify inconsistent depth of reasoning
without relying on the results of an econometriadelo Most subjects’ choices amet consistent
with them having a fixed depth of reasoning eveextiemely closely related games. Econometric
analysis verifies that this result is quite robastl illustrates the nature of the inconsistenclge T
likelihood of inconsistency increases with cogratability, suggesting that it is not solely due to
confusion. Higher optimization premiums are catedl with greater depth of reasoning, but do
not reduce the likelihood of inconsistency per ¥ée argue that depth of reasoning, like many
other varieties of individual choice, is subjecstochastic choice.



“A foolish consistency is the hobgoblin of little nmds ...”
Ralph Waldo Emerson, 1841

1. Introduction: Since the path-breaking work of Nagel (1995), well established that limited
depth of reasoning accounts for important featofesxperimental data missed by models based
on full rationality. The level-k model, with itatuitive and tractable structure, has emergedes th
most commonly used model of limited depth of reasph The model is based on a hierarchy of
levels. Level-0 individuals make decisions in ahian that is not based on strategic
considerations. Level-1 individuals best respopds§ibly with noise) to the distribution of
choices by level-0 individuals, level-2 individuddsst respond to the distribution of choices by
level-1 individuals, etc. Many papers have attexdpb identify the distribution of levels (e.g.
Stahl and Wilson, 1995; Costa-Gomes, Crawford,Bnodeta, 2001; Costa-Gomes and Crawford,
2006) or used level-k models to explain behavioainariety of settings (e.g. Crawford and
Irriberri, 2007; Arad and Rubinstein, 2012; Ostlifgang, Chou, and Camerer, 20%1).

Several recent papers have pointed out flaws énleliel-k approach. The results of
Georganas, Healy, and Weber (2015) are particudgaignane for the work reported below. They
econometrically estimate each subject’s level (ldvdevel 2, etc.) for two classes of games,
undercutting games and guessing games. Only 2&dhpécts have the same estimated level for
both classes. They find positive evidence for ®iast levels within the class of undercutting
games but not within the class of the guessing garmbe results within classes of games are less
convincing than the results between classes ddattolimitations. One potential explanation for
the observed lack of consistency is that deptle@a$oning can reflect beliefs abothers’limited
depth of reasoning rather than limits to one’s odepth of reasoning (Agranov, Potamites,
Schotter, and Tergiman, 2012). To the extent dthi&rent classes of games trigger different

beliefs about others’ depth of reasoning, changesvels across classes of games will occur.

L Other models that incorporate limited depth oboadng include Cognitive Hierarchies (Camerer, ditd Chong,
2004), Noisy Introspection (Goeree and Holt, 20@4) sophisticated EWA (Camerer, Ho, and Chong2R00

2 The literature on level-k models is far too lafgeus to list all of the papers that have used #gproach. For a
recent summary of the literature, see Crawford t&@omes, and Irriberri (2013).

3 Costa-Gomes and Wiezsacker (2008) and Ivanovl.evid Niederle (2010) demonstrate that subjebtsices are
not consistent with best-responding to beliefsrgreaves Heap, Rojo Arjona, and Sugden (2014) shatevel-0
behavior responds to the strategic features of gamhen it should not.

4 Estimated types for within-class comparisons asel on a single observation and generated usiagsignment
rule. See their fn. 24 for discussion of this essu



Another possibility is that stochastic choice cesahe appearance of inconsistency. If subjects
are only capable of noisy optimization, their estied levels based on observed choices can be
inconsistent even though the same depth of reagaimsed throughodt.

Our goal is to show that inconsistent depth of veag) is a pervasive phenomenon that
cannot easily be explained away. We use an expatahdesign that does not solely rely on
econometric estimation to identify inconsistency @novide strong evidence that inconsistency
is common both betweeaand withinclasses of games. The latter point is particylanportant,
since there is no obvious reason why beliefs abthérs’ levels should vary much between such
closely related games. Fitting structural econoimenodels, we show that the inconsistencies
cannot be explained by stochastic choice and drvastato a wide variety of different model
specifications. Although the level-k model with s@ient depth of reasoning does poorly in
predicting individual behaviors, we show that iedavell at predicting aggregate behaviors out of
sample. The level-k model remains a valuable foolunderstanding aggregate behaviors, but
must be used carefully given the pervasive incoeiscy in depth of reasoning. Depth of
reasoning, like many other varieties of individahbice, appears to be inherently stochastic.

Going into detail, subjects in our experiments enakseries of choices in 2-player games
drawn from five oft-studied classes of games. Edabs consists of four games that systematically
vary the two players’ payoffs. The first three skes (imperfect price competition, minimum effort,
and traveler's dilemma) yield strong prediction®abhow an individual who uses a consistent
depth of reasoning (i.e. consistently being levdeel-1, level-2, etc.) responds to changessn hi
own and his rival’'s payoffs. Namely, a level-0 widual does not respond to changes in either
player’s payoffs; a level-1 individual respondst@nges in his own payoff but not to changes in
his rival’'s payoffs; and a level-2 individuals resypls to changes in his rival’s payoffs but not in
his own payoffs. Higher levels display the samerakting patterfi. If subject’s levels are
consistent within a class of gamesge should observe a predictable pattern of cmandecisions

between different games of the same class.

5 See also Kline (2017). This paper is primarilyoerned with the econometrics of estimating modélstrategic
reasoning with heterogeneous types, but includestimation exercise using guessing game data@osta-Gomes
and Crawford (2006). Level-k types are a subsehefdecision rules considered by the model. Tdtenation

exercise finds that the most common type withingbpulation uses multiple decision rules, primatiifferent levels
of “unanchored reasoning” which is closely relatedrationalizability. The distinction between anobd and
unanchored reasoning is not crucial for our nomeatetric analysis of consistency.

5 Specifically, level-3 types only respond to changetheir own payoffs, level-4 types only respdadhanges in
their rival’s payoffs, etc.



We find little evidence of consistent levelghin classes of gamgeand even less evidence
between classes of games subject is defined as “strongly consistentthwevel-1 within a class
of games if his responses to changes irohis payoffs are consistent with being level-1 and his
responses to changes in higal’'s payoffs arenot consistent with being level-2. A subject is
defined as “strongly consistent” with level-2 in@malogous manner. Only about 20% of subjects
are strongly consistent with either level-1 or leXdor a given class of games. Virtually no
subjects are strongly consistent with saenelevel for the first three classes of games.

The fourth class of games, Arad and RubinsteiiZ2011 — 20” game, is included to
make a simple point. Individual behavior is nohgigtent with subjects possessing a fixed depth
of reasoning, buaggregatebehavior is in line with predictions by the leveirodel. The 11-20
game was designed to give a specific pattern otceldhat are consistent with the level-k model
rather than Nash equilibrium. Our 11-20 data dlosesembles Arad and Rubinstein’s data, and
is consistent with predicted pattern from the ldvehodel.

The fifth and final class of games, all-pay aucticieatures a large number of dominated
strategies. This class of games was always playé¢ide end of the experiment (when subjects
were tired and presumably most likely to make ramabrors) to test whether subject’s choices
were consistent with a minimal level of rationalitgubjects rarely played dominated strategies in
the all-pay auctions. It is unlikely that the pasiwe inconsistency observed in the first three
classes of games can be attributed to confusianbatrary mistakes.

A strength of our approach is that we do not wyan econometric fitting exercise to
identify inconsistency. However, the observed imsistencies could reflect stochastic choice (i.e.
noisy best responses) rather than a lack of cemsidepth of reasoning. We address this issue by
fitting several structural econometric models. ®aseline model allows for three “consistent”
types (level-0, level-1, and level-2) and two “inscstent” types that mix across the three levels.
A “pure-mixing” type randomly draws a level of reasng (0, 1, or 2) for each game with the
mixing probabilities fit from the data. A “semi-niing” type is identical to a “pure-mixing” type,
except that, rather than drawing a new level cd@aag for every game, a semi-mixing type draws
a new level for every class of game but uses theedavel within a classSubjects are assumed
to use a noisy best response to their beliefswallp for stochastic choice. The baseline model
assigns 89% of the population to the two mixingespwith 43% classified as the pure-mixing
type and 46% as the semi-mixing type. The strattmodel identifies more consistency than our



non-econometric approach, but it remains true thatvast majority of subjects display an
inconsistent depth of reasoning. This findingoBust across a wide variety of alternative model
specifications.

Three additional results from the econometric eiserare worth noting. First, we show
that behavior is sensitive to cognitive ability mgasured by scores on a Raven’s Progressive
Matrix (RPM) test. This is not due to a changehie likelihood of being an inconsistent type.
Rather, the probability of choosing a higher legebject to mixingis an increasing function of
the RPM score. Our result mirrors that of GildaRrowse (2016). Making the reasonable
assumption that subject confusion is a decreasincfibn of cognitive ability, this result provides
additional evidence that the pervasive inconsisteme observe cannot be attributed to subject
confusion.

Second, we find that behavior is sensitive to th@nuzation premium (the increased
payoff from using a greater depth of reasoninghsesient with the work of Alaoui and Penta
(2016). Subject to mixingthe probability of choosing higher levels is masing in the
optimization premium. This does not change ourckimion that most subjects do not use a
consistent depth of reasoning, but indicates tlzaterent pattern underlies their inconsistency.

Finally, we find that not accounting for inconsistelepth of reasoning cause problems
when attempting to estimate the distribution otle\i.e. level-0, level-1, level-2, etc.). A tgpl
approach has subjects play a large number of gautiesut feedback and then fits an econometric
model to estimate the distribution of levalssuming that individuals use a consistent depth of
reasoning across all gamedf subjects danot use a consistent depth of reasoning, estimation
methods that assume consistency will confound rgixietween levels with noisy optimization.
A comparison of our baseline model with a modet thdy includes the three consistent types
confirms this intuition — forcing consistency casigemodest shift in the realized distribution of
levels (i.e. the distribution of levesdter mixing has occurred) toward higher levels andrgda
increase in the estimated amount of noise in stddjelkoices.

The assumption that individuals use a consistepthdof reasoning iaot an essential
component of the level-k model. For many applaradi it is sufficient that the model can predict
the aggregatedistribution of choices. We examine the predetability of the model by fitting
our baseline model to four classes of games amddineulating data for the fifth class. The model

does well at predicting aggregate behavior in thie €lass. This reflects a basic feature of the



level-k model: the ability to predict out of sampédies on thalistribution of levels being stable
across classes of games, not on individuals haviognsistent depth of reasoning. The differing
classes of games we study are sufficiently sintilat the distribution of levels changes little.

Our primary contribution is demonstrating the psiva presence of inconsistent depth of
reasoning. The inconsistency occurs even betweepn alosely related games and cannot be
attributed to details of the model’'s specificatisnbject confusion, or arbitrary choices.

The method we use for identifying inconsistencgeslso an important contribution of our
paper. We make heavy use of econometric modedingtify and extend the main finding, but
our experimental design makes it possible to idgmmiconsistencies without relying solely on
econometrics. We view the two approaches as congries — we are more confident about the
pervasiveness of inconsistent depth of reasonimguse this finding is corroborated by both
approaches.

The level-k model remains a valuable tool whetiramot individuals employ a consistent
depth of reasoning — our prediction exercise shma#e this point clear. Features of how mixing
occurs, such as the correlation between cognitbhityaand the likelihood of mixing or the
correlation between optimization premiums and tleegivt on higher levels, suggest a coherent
reasoning process underlies the use of inconsidepth of reasoning. Economists have become
comfortable with stochastic choice in individuabde (e.g. Agranov and Ortoleva, 2017), and
choosing one’s depth of reasoning for a game iplgiranother example of individual choice.
Rather than viewing inconsistent depth of reasomag flaw in the level-k model, we hope
theorists and experimenters become comfortable witithastic choice between different
heuristics for thinking about games and devote #féarts to further exploration of what heuristics

are being used and how individuals choose betwesn from game to game.

2. Experimental Design and ProceduresSubjects make choices in five classes of 2-player
games, with four games in each class, yieldingtal tf 20 games. Each experimental subject
made 20 decisions, one for each game, without BediX his section introduces the five classes
of games, discusses predictions for these gamdgjestribes the experimental procedures.

2.1. The Classes of Gamds:all 20 games, two players simultaneously chaxt®ns from the

discrete seX ={110,120,130,...,200}. Letx; € X andx, € X denote the actions chosen by



Players 1 and 2 respectively. Within each cl@ss,{1,2,3,4,5}, the players’ payoff&{ andn$
are functions of the actions and %, conditioned on two payoff parametesg,anda,. In each
class of games§ € {1,2,3,4,5}, a game: ¢ (a,, a,) is defined by the payoff parametersanda,.
In our experimental design the payoff parameters te&ke on either a high or a low values,
specifically 20 or 80. Within each cla6s= {1,2,3,4,5} we consider four games, generated by
systematically varying the values of the payoffgmaeters:G¢(20,20), G¢(20,80),G¢(80,20)
andG¢(80,80). Each class includes two symmetric games and symanetric games.
Subject to relabeling, the payoff functions arenittwal for the two players: Ifix= a, % =
b, a1 = ¢, andaz = d, thenr(a,b|c,d) = n5(b,ald,c). Given that the payoff functions are
basically identical for the two roles, Player 1 d&ldyer 2, there is usually no need to distinguish
between roles. We therefore use the following timrtavhich refers to a “generic” player in either
role: z%, xi and «; refers to a player's own payoff function, own action, and own payoff
parameter respectively, and notationx; and «; refers to his rival's action and payoff
parameter respectively. The payoff functions for all five classes are camstied such that a
player's payoff is a function of, x, anda;, but nota;. In other words, changing; changes a
player’'sown payoffs, but not hisival's payoffs, holding both players’ actions fixed. Tieeyoff
parameters are common knowledge. Given that pdwoittions are identical for both roles,
subject to relabeling, all subjects face the samne decisions in each class regardless of role.
All five classes are based on games previouslyieduith the experimental literature. A

brief introduction for each class follows.

Class 1: Imperfect Price Competition (Capra et2fl02): The two players simultaneously choose
prices. A player’s payoff equals his price if hémits the lower of the two prices. His payoff is
a proportion of his rival’s price if he submits thigher price, with the proportion equaldg/100.

In case of a tie, the player is paid his expectgobff based on a 50/50 chance of being considered

the low price. The resulting payoff function is givby (1).

Xi lf Xi < Xj
100 + «; )

) n'(xxla) ={"200 & SHTY
a; ,

10lej if x; > x;



If i< 83, a player’s best response to their rival's chaices choosingy; — 10 if x; > 110 and
choosing 110 if;; = 110. For all values ofr; anda, used in our experiment, the unique Nash

equilibrium is for both players to choose 110.

Class 2: Minimum Coordination Game (Goeree and H05): The two players simultaneously
choose effort levels. Each player earns the miniratithe two effort levels minus a proportion of

her chosen effort level, with the proportion eqioali/100. The payoff function is given by (2).

a;

(2) nZ(xi,ijal-) = min{xi,xj-} ~ 100

Xi
If ; < 100, a player’s best responsextois choosingy;. Hence, all symmetric pairgi(= x2) are

Nash equilibria of the game for all valuesagfanda, used in our experiment.

Class 3: Travelers’ Dilemma (Capra et al, 199%je two players simultaneously choose claims.
Each player earns the minimum of the two claimsamddditional quantity, equal &g, is added
(subtracted) if hers is (not) the minimum claimchse of a tie, there is no additional quantity to

be paid/received. The payoff function is given By, (

X; + a; lf X; < Xj
3) M (xpxle) =4« ifx=x
x]- —Q; lf X > x]-

Whena; > 10, a player’s best responsexpis choosingy; — 10 if x; > 110 and choosing 110
if x; = 110. Hence, mutual choice of 110 is the unique Nasiilierium of the game for all values

of a; anda, used in our experiment.

Class 4: The “11-20” Game (Arad and Rubinstein, 2DThe two players simultaneously choose
numbers. Each player receives her chosen numbgrapladditional quantity, equal &g, if her

chosen number is exactly 10 below her rival’s chasember. The payoff function is given by (4).



xi+al- lfxl+10=x]
X; otherwise

4) m*(x;, xla;) = {
Whena; > 10, a player’s best responsextois choosingr; — 10 if a; > 210 — x; and choosing

200 otherwise. This game has no pure strategy Basitibrium.

Class 5: All-pay Auction (Gneezy and Smorodin€dd6): The two players simultaneously choose
bids. Each player gets 110 minus her bid and tbe bidder receives an amount, equakoln
case of a tie, each player wins with probabilite dralf and is paid the expected payoff. The
payoff function is shown in (5).

110 — x; + l'fxl->xj

5 a; .
(5) T (xi;le(ll') = 110 _xl‘ +? lf xi = xj
110—xl‘ ifxi <x]

Fora; = 80, the best responsexo< 180 isx; + 10 and 110 otherwisé.Fora; = 20, a player is
indifferent between choosing 110 and 12@;i= 110 and is indifferent between choosing 110,
120, and 130 if; = 120. Otherwise, choosing 110 is a strict besponse. The gan& (20,20)

has four weak Nash equilibria, two symmetric etpuidi with mutual choice of 110 or 120 and two
asymmetric equilibria where one player choosesdriDthe other chooses 120. Given that 110
weakly dominates 120, the equilibrium where botypls choose 110 is the most plausible. For
either asymmetric game, the game has a unique Waslk equilibrium where the player with the
low value ofa chooses 110 and the player with the high value ohooses 120. The game

G>(80,80) has no pure strategy Nash equilibrium.

2.2 Theoretical PredictionsA central feature of the level-k model is that induals who use
level-0 reasoning are non-strategic. They may falbbw a uniform distribution as is often

assumed, but their distribution of actions canmotdiionalized as a best response to some beliefs

" Forx = 180, Player i is indifferent between choosing 48d 110.
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about their rivals’ behavior. This implies thaettistribution of play for level-0 individuals is
invariant to changes in the payoff parametes all five classes of games, a player’'s payoH i
function of their own payoff parameter but not of their rival’'s payoff function parametey.
Together, the preceding observations imply that ékpected payoff function for a level-1

individual takes on the following form whepé€x) is the pdf of actions for his rival.

©) EncCrla) =) n(xxla)p(s)

xj—l
This expected payoff function is a functionegfbut note;. Observation 1 follows.
Observation 1: A level-1 individual will react thh@nges in their own payoff parameter) (but
not to changes in their rival’'s payoff parametey)(

A level-2 individual best responds to the choiceadével-1 individual. For simplicity,
assume that level-1 individuals best respaittiout noiseto level-0 individuals. For Classes 1 —
3, aplayer’s best response function does not akpedn for the range ofi used in our experiment.
Since the choices of a level-1 individual only r@sgs to his own payoff parameter, it follows that
a level-2 individual’s choices respond to changehaer rival’'s payoff parametés;), but not to
changes in her own payoff parametay.

Observation 2: For Classes 1 — 3, a level-2 playél react to changes in her rival’'s payd;)
parameter but not to changes in her own payoff peir(a).

For Classes 1 — 3, level-3 individuals will respda changes imi, but not to changes in
0j. This follows from Observation 2. A level-3 indiual best responds to a level-2 individual.
A level-2 individual only responds to changes in tieal’s payoffs, which are own payoffs from
the point of view of the level 3 individual. Simil logic dictates that level-4 individuals will
respond to changes i but not to changes m, level-5 individuals will respond to changesxin
but not to changes i, and so forth.

Observations 1 and 2, along with their extensidevel-3 and higher, imply that data from
Classes 1 — 3 can be used to detect consistenogwritelying solely on econometric analysis. |If
subjects have consistent depth of reasoning thiautghe experiment, the following prediction
applies to all subjects who are level-1 or high&iven that we expect few level-0 individuals,

Prediction 1 should apply to the vast majority abjects.



Prediction 1: Subjects should only respond to clesnigp their own payoff parameter or should
respond only to changes in their rival’s payoff gaweter. They should not respond to changes in
both payoff parameters.

The values of 20 and 80 for the payoff parameterschosen to generate large responses
to changing the payoff parameters. To give a sehfiee likely magnitude of responses, level-k
predictions for the different classes of gamesdisplayed in Table 1. The values of the payoff
parameter of Player 1 are given by the rows andethaf Player 2 by the columns. These
predictions are from the point of view of a Plagelassuming that choices of level-0 individuals
are distributed uniformly while choices for levelahd level-2 individuals are best responses
without noise. Predictions with more than one namfe.g. all cells for Class 2) reflect
indifference between two actions. For Classes3l a level-1 (level-2) subject is predicted to
respond strongly to a change in their own (rivapayoff parameter and not respond at all to a

change in their rival’s (own) payoff parameter.

[Insert Table 1]

Classes 4 and 5 are less useful than Classeddr d@&ecting consistency, but are included
in the experimental design for other reasons. ®asien 2 does not hold for Classes 4 arfd 5,
and in Table 1 we see that the predicted shiftoalgweakly consistent with Observations 1 and
2. In practice we predict no shifts in responsehitanging payoff parameters for Classes 4 and 5.

Class 4 (11 — 20 games) is useful for two reasdisst, the game with high symmetric
payoff parameter& (80,80) closely resembles the original Arad and Rubinst&rsion in that
higher levels choose smaller numbers in an ordexgd(up to level 8). We use data from this
game to confirm that our subjects’ behavior loaksilar on aggregate¢o what has been observed
for a canonical game in the level-k literature.eTailure of our subjects to exhibit consistentttiep
of reasoning is not due to behavior that is whatigonsistent with the basic patterns of play

predicted by level-k models and observed in earéisearch.

8 1t is trivial to construct examples for Classeantl 5 where a level-2 individual responds to charigener own
payoff parameter. For Class 4, suppose all levielddviduals choose 160. Fix = 80, implying that a level-2
individual best responds to a choice of 1500, K 20, the best response is 2000;l£ 80, the best response is 140.
For Class 5, suppose all level-0 individuals chab&@. Fixoe; = 80, implying that a level-2 individual best respls

to a choice of 150. ki = 20, the best response is 1100; i 80, the best response is 160.
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Second, when subjects have a low payoff parameterd0), choices smaller than 180 are
strictly dominated by the choice of 200. Clasthb,all-pay auction, serves a similar purpose since
choices greater than 130 were strictly dominatedife 20. Experimental subjects had already
taken 12 choices in 12 different environments wihety reached Classes 4 and 5. If they behaved
randomly due boredom, fatigue, or lack of salieticis, should be reflected in frequent play of the
dominated strategies in Classes 4 and 5. Rare giayjominated strategies suggests that
inconsistency cannot not be attributed to thessesiu
Prediction 2: Subjects will not use dominated &gges in Classes 4 and 5.

2.3 Experimental Proceduresill sessions were run at LINEEX at the UniversafyvValencia in
2014 and 2015. The subjects were undergraduatiergil with no previous exposure to
experiments with any of the five classes of games.

At the beginning of the experiment, experimentdljscts were randomly allocated to one
of two possible roles, Player 1 or Player 2. Ratese kept constant along the whole duration of
the experiment. Table 2 summarizes the sessiohsvédra conducted.

[Insert Table 2 here]

The experiments were run using paper and pendier Axperimental subjects were seated
and types were allocated, subjects were givenitialiget of general instructions (see Appendix
A). We read all instructions aloud as well proaglisubjects with printed copies. The general
instructions emphasize how to read the payoff o@dtibut also explained how role assignment
would be done, how pairings would work, and howrpagt would be made.

Following the general instructions, experimentdljsats faced the five classes of games
sequentially. The order of Classes 1 — 3 wasedtatross sessions, but Classes 4 and 5 were
always the last two classes. This was done tease any possible effects of fatigue or boredom
in Classes 4 or 5. A separate packet was handefbioaach class. Each packet had a set of
instructions along with copies of the payoff magador the four games. The payoff tables show
the payoffs for both roles, maintaining common kfexlge of payoffs.

The packet instructions included a brief recapitataof the general instructions for the

experiment and a detailed explanation of the garmamgb played with an emphasis on

® Some use of dominated strategies is expectedewvesk framework due to level-0 individuals.
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understanding the payoffs. The packet instructistnessed that the four games being played
within a class weraotthe same. For instructions after the first ctaZfsgames, it was also stressed
that the games being played changed from paclpetdket. Beyond going through the mechanics
of reading the payoff table, the packet instructigave a brief intuitive explanation of the struetu

of games in the class. For example, the instraostfor the minimum game stated, “... the two
participants receive the smaller number [of the tlvosen], minus a percentage (20% or 80%) of
the number they have chosen.”

Experimental subjects were asked to make decisioall four games of a given class at
the same time, and they could fill the decisionestmit for the four games in any order they
wished. Once decisions for a given class were duaggers were collected and the packets for the
next class were handed out, so subjects could mditagk (nor forward) to a different class of
games. At no point did subjects receive feedbackibothers’ choices or outcomes of the games.
Each payoff matrix was printed on a single shegtagfer. Using paper and pencil rather than
computerizing the experiment was intended to mb&e easy as possible for subjects to compare

payoff tables within a class or go back to theringtons.

[Insert Figure 1 here]

After all twenty games had been played, subjectd @ 15 item version of Raven’s
progressive matrices (RPM) test as a measure ofittagability. This was computerized, using
z-tree (Fischbacher, 2007), rather than run by hdfach item showed subjects a 3x3 matrix of
geometric figures (see Figure 1 for an exampleheyTwere asked to deduce what figure was
needed to complete the sequence from a menu of gogisibilities. Subjects were given thirty
seconds to complete each question and were paidedu®ds for each item completed correctly.
The median score was 12 out of 15 items. The R&&Wis a well-known instrument for testing
reasoning ability. Gill and Prowse (2016) showoaitive relationship between RPM test scores
and depth of reasoning in a level-k motfeWe administered the abbreviated RPM test to study
whether there is a relationship between cognithityaand consistency.

10 Gill and Prowse use a sixty-question version efRPM test taken before the games. We use a skdrtersion
administered after the games. This reflects tffilertig goals of the two papers — we are primanilierested in
consistency and wanted to eliminate any possildiit the RPM test could affect behavior in the gam

12



At the end of the experiment, subjects in the Rldyeole were randomly matched with
subjects in the Player 2 role. They were paiddaseheir choices for one randomly chosen game
out of the twenty. We paid on one randomly chogame to avoid any possibility of hedging.
The payoff tables were denominated in ECU, wittoaversion rate of 10 ECU = 1 euro. The
average duration of a session was around 90 mimungshe average payoff was about 18 — 20

euros, including a 5 euro show-up fee.

3. Experimental Results: This section begins by confirming that our daaconsistent with
previous experiments studying these five classemofes and with the level-k model predictions
at theaggregatdevel. We then show that the individual dataaigély consistent with Prediction
2, but not Prediction 1. The latter implies thabjects do not employ a consistent depth of
reasoning, a finding that we confirm with formabaometric analysis in Section 4.

3.1 Aggregate resultsTable 3 displays the average choices for all twgatnes, sorted by class.
The layout parallels Table 1, with the values stibjects’ own payoff parametei) given by the
rows and those of his rivad;j by the columns. See Appendix B for a more detbilreakdown

of subjects’ choices by class of game and payofipaters within class.

[Insert Table 3 here]

Our aggregate data has the same basic pattermewasyus studies using the same classes
of games. We drew the Imperfect Price Competitiameg from Caprat al. (2002). They study
symmetric versions of the game, comparing behawithr high and low payoff parameters. Even
though changing the payoff parameter does not tatfiecNash equilibrium, Capet al. find that
higher values of the payoff parameter lead to higheices (prices). Comparing the top left and
bottom right corners for Class 1 in Table 3, theagattern is observed as the distribution of
choices shifts to the right with the higher valdie:o

Goeree and Holt (2005) use the minimum effort géomaake a similar point. They study
symmetric versions of the game, comparing behawitin high and low payoff parameters.
Changing the payoff parameter does not affect éh@fsNash equilibrium, but Goeree and Holt
find that higher values of the payoff parametes{splead to lower choices (efforts). Comparing
the top left and bottom right corners for Class1Z'able 3, the same pattern is observed as the

distribution of choices shifts to the left with thiggher value of:.
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The story is similar for Class 3, the Travelerdseima. Capra&t al (1999) study how
choices (claims) depend on the reward parametgynmmetric versions of the game. They find
that higher values of the payoff parameter lealdweer choices. The same pattern is seen in our
data if the top left and bottom right corners aoenpared for Class 2 in Table 3. Whens

increased for the symmetric game, the distributibchoices shifts to the left.
[Insert Figure 2 here]

In the “11-20” game, as introduced by Arad and Rstain’s (2012), subjects chose
integers in the interval [11,20] with a reward 6f ZArad and Rubinstein find that more than 80%
of chosen numbers were 17 or larger, meaning tk¢ramental subjects are at most level-3.
Figure 2 displays the distribution of choices (sdaby a factor of 10) from Arad and Rubinstein
(2012), together with our symmetric 11-20 game$kigh and low rewards. Our 11-20 game
with high rewards is the most similar to Arad andbRstein’s, albeit with a lower reward (80 vs
200, scaled). The data from our game with higharel& is shifted to the right relative to Arad and
Rubinstein’s data, reflecting the lower reward, tike them we see fewer choices of 200
(equivalent to their 20) than 190 or 180 and rdreice of numbers consistent with more than
level-3 reasoning — only 3% of our observationssanaller than 170.

None of the preceding speaks to the issue of demsig. Rather, the point is simply that
there is nothing inherently unusual about our d&abjects respond Eggregateto changes in
the payoff parameters in exactly the way we wouigeet from earlier experiments. In the 11 —
20 game, a game “that naturally triggers leveldsoming,” (Arad and Rubinstein, p. 3562), our
data has the same basic features as Arad and Raibiaglata.

A different concern with our data is that a largection of subjects might be confused or
inattentive and making choices randomly. If thsswhe case, the problem should be especially
severe for Classes 4 and 5 which were always play#te end of the experiment. In the 11 — 20
game witho; = 20, it is strictly dominated to choose a nuniiow 180. We find that 92% of the
choices are undominated strategies. For CladsebAll-pay Auction, choices greater than 130
were strictly dominated far, = 20. 98% of the choices are undomindfelven at the end of the
experiment, most subjects’ choices are consistéht avbasic level of rationality. This implies

11 Choices other than 110 were strictly dominatedtierlow payoff parameteri(= 20). 87% of choices were 110
with the low payoff parameter, giving even strongepport to our conclusion that subjects displayédsic level of
rational choice even at the end of the experiment.
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that subjects were paying attention and respontitige payoffs in the games rather than making

random decisions.

Result 1: Our data is similar to what has been obse for these classes of games in previous

experiments. We see little evidence of purely@andhoice, consistent with Prediction 2.
Comparing Tables 1 and 3, the average changespomee to shifts in own (rival’s) payoff

parameters are in the directions predicted forlié\eevel-2) individuals. Table 3 displays a stgon

pattern that subjects respond more strongly onageecto changes to their own payoffs than

changes to their rivals’ payoffs (the change igéarn vertical comparisons than in horizontal

comparisons). On average, subjects play morddieal-1 than level-2 individuals, but this does

not address the issue of consistency. In line thighpredictions shown in Table 1, the responses

to changes in the payoff parameters are far strdiog€lasses 1 — 3 than Classes 4 — 5.

Result 2: On aggregate, subjects respond strottgbhanges in their own payoff parametei) (

in Classes 1 — 3 and weakly to changes in theal’swpayoff parametersf). These patterns of

play are consistent with a level-k model with mlekel-1 than level-2 (or higher) individuals.

3.2 Individual Level Data and Consistencihis subsection examines reactions to changasmn
and rival's payoff parameters at timglividual level, checking whether individuals’ choices are in
line with Prediction 1 which would imply that subje employ a consistent depth of reasoning.
Recall thata; denotes a subject'swn payoff parameter and; denotes theirival’'s payoff
parameter. Within each class of games, there avgtgsible shifts imi holding ¢; fixed: from

(a; = 20; a; = 20) to (a; = 80; a; = 20) and from &; = 80; a; = 80) to (o; = 20; a; = 80).
There are also two shifts i holdingai fixed: from (@; = 20; a; = 20) to (a; = 20; a; = 80)
and from ¢; = 80; a; = 80) to (a; = 80; a; = 20).

Definition 1: A subject’s reaction to a change loéit own payoff parameten] is “consistent”
with level-1 if their choice moves strictly in tipeedicted direction for a level-1 individual.
Likewise, a subject’s reaction to a change of thisial’'s payoff parameterdf) is “consistent”

with level-2 if their choice moves strictly in theedicted direction for a level-2 individu®.

2 Table 1 assumes a uniform distribution over astitor level-0 individuals, but for Classes 1 — & &pecific
distribution assumed doesn’t matter for directigmadictions as long as LO is not deterministiar Elasses 4 and
5, we can make a directional predictidbra shift occursbut typically expect no response to changing tagoff
parameters as per the predictions reported in Tabkeor these two classes, having no change jponss to a change
in your own (rival’s) payoff parameter was coungsdbeing consistent with level-1 (level-2).
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We now get to the central issue of the paper. (Hasses 1 — 3, having a consistent depth
of reasoning (level-1 or level-2) implies a specipattern of reactions to changing payoff
parameters. A level-1 individual should only resgpd@o changes in their own payoff parameter
and level-2 individuals should only respond to demin their rival’s payoff parameter. Within
each class of games, a subject has two chancescanisistent with level-1 and two chances to be
consistent with level-2. For each subject, we cat@ghe number of reactions consistent with
level-1 and with level-2 within each class of games
Definition 2: A subject is “weakly consistent” willbvel-1 within a class of games if his two
reactions to changes in his own payoff parameter @nsistent with level-1. He is defined as
“weakly consistent” with level-2 if his two reactis to changes in his rival's payoff parameter
are consistent with level-2.

Weak consistency with a specific level only regsiineovement in the predicted direction
without any restrictions on the magnitude of tharade and also allows for changes which are
consistent with a different level.

Definition 3: A subject is “strongly consistent” thilevel-1 within a class of games if he is weakly
consistent with level-1 and neither of his two teats to changes in his rival’'s payoff parameter

are consistent with level-2. A subject is “strongbnsistent” with level-2 within a class of games

if he is weakly consistent with level-2 and neitbienis two reactions to changes in his own payoff
parameter are consistent with level-1.

In other words, a subject is strongly consistenhwavel-1, for example, if he responds in
the predicted direction for a level-1 individuallioth changes in his own payoff parametgy (
anddoes not respond ttherchange in his rival’'s payoff parametey) (in the predicted direction
for a level-2 individual. Compared with weak ca@tency, strong consistency restricts how an
individual classified as a level-1 (level-2) carspend to changes in his rival’'s (own) payoff
parameter. This restriction is weaker than whatttieory calls for, namely no response to his

rival’s (own) payoff parametéer

13 Directionally, the predicted shifts for a leveh the same as for a level-1, the predicted dhifta level-4 are the
same as for a level-2, etc. This implies thatlgest who is a consistent level-3 will be classifas strongly consistent
with level-1, a subject who is consistent level#l e classified as strongly consistent with leeletc. This is not
a major issue since our focus is identifying whetjects have a consistent depth of reasonirtgwhat specific
depth of reasoning they are using. Also, a subjéct switches from being a level-1 and a levele3,éxample, is
classified as being strongly consistent with beirigvel-1. This biases our approach in favor difig consistency.
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Table 4 displays the percentage of subjects cladsifs weakly/strongly consistent with
level-1 and level-2 within a class of games, brodlewn by Classes 1 — 3. The final row gives
the percentage of subjects classified as weakbylgty consistentvith the same levédor all three
classes. This is the highest possible level obistancy, requiring consistenagrossclasses of

games as well agithin classes.
[Insert Table 4 here]

Within any given class of games, a bit more thdhtha subjects are weakly consistent
with level-1. This drops to only about a fifth thie subjects if we look at those who are strongly
consistent with level-1. It is striking how litttese percentages vary across the three classes of
games. Less than a quarter of subjects are weakkistent with level-1 for all three classes and
only one individual out of 224 subjects is strongbnsistent with level-1 for all three classes.
Consistency with level-2 is even rarer. For ang olass of games, we see less than a fifth of the
subjects are weakly consistent with level-2 andoglnmone are strongly consistent with level-2.
Once again these percentages are similar for r@letblasses of games. Only a single subject is
weakly consistent with level-2 across all threessés of games and none is strongly consistent
with level-2 across all three classes.

To check whether subjects are consisteithin classes but inconsistelnétweernclasses,
we calculate how many subjects are weakly/strooghgsistent with some level for all three classes
without requiring that they be consistevith the same levédbr all three classes. For example, a
subject could be consistent with level-1 for Classand 2 and consistent with level-2 for Class
3. This slightly improves matters, with 30.4% obgects weakly consistent with either level-1 or
level-2 in all three classes. Only a single sufigstrongly consistent with either level-1 ordév
2 in all three classes.

Classes 1 — 3 are designed to provide a direckdioeconsistency that does not rely on
an econometric test. We see little evidence thiajests are consistently level-1 or level-2. This
is notdue to a lack of reaction in to changing the papaffameters. As Table 3 makes clear, on

aggregate Classes 1 — 3 yield large changes iexjbected directions in response to shifts in the
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payoff parameters. The problem is that individugthavior isnot in line with a consistent depth
of reasoning?

Table 5 provides an additional illustration of taek of consistency. It displays the
distribution of experimental subjects along two divsions of consistency. The rows give the
number of reactions to changing a subjeotis payoff parameterds) that are consistent with
level-1 across Classes 1 — 3. The columns giwbgest’'s number of reactions to changing their
rival's payoff parameteraf) that are consistent with level-2 across Classes31 A subject has
two opportunities to be consistent with level-1 &wd opportunities to be consistent with level-2
in each class, so these numbers range between® axdubject who falls in the lower left corner,
(row 6, column 0), waalwaysclassified as responding to a changeiim a manner consistent
with level-1 andcheverclassified as responding to a change;iim a manner consistent with level-
2. A subject who falls in the upper right cornéfgw 0, column 6), wasever classified as
responding to a change w in a manner consistent with level-1 aablvays classified as
responding to a change @ in a manner consistent with level-2. We repoe percentage of

experimental subjects falling into each cell.
[Insert Table 5 here]

If subjects used a consistent depth of reasoniragaall three classes, we should observe
the distribution concentrating in two regions: battleft for level-1 and upper-right for level-2.
Table 5 shows little data in these regions, with blulk of the observations concentrated in the
lower center of the table. A rectangle (highlighte yellow) with subjects who have 3 — 6 shifts
consistent with level-1 and 2 — 4 shifts consistgith level-2 contains slightly more than two-
thirds of the subjects. The data does not suglgassubjects select strategies randomly, given the
strong aggregate patterns, nor does it suggessthgects use a consistent depth of reasoning.
Instead, subjects appear to mix between levels.

Result 3: Only about a fifth of subjects are stigrconsistent with a specific level within classes
of games for Classes 1 — 3. Virtually no subjecesconsistent with a specific level across all

three classes of games.

¥ We learn little from analyzing consistency for €las 4 and 5 since, as predicted, there is kiipanse to shifts in
the payoff parameters. For the sake of complete@®8%6 and 93% (68% and 72%) are classified aslweaksistent

with level-1 (level-2) in Classes 4 and 5 respedtiv These figures drop to 4% and 2% (2% and 186)xfrong

consistency with level 1 (level-2). The high fregay of weak consistency is due to the large foactif subjects
who do not change their action when the payoff petars shift.
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4. Econometric Models: The previous section provides descriptive evideghaémost subjects’
choices are not in line with a consistent depthealsoning. However, the descriptive approach
relies upon deterministic model predictions, igngrnoise in subjects’ decision making. This
leaves us with a natural question: can the lackookistency be explained by noise in subjects’
decisions?

To address this question, we formulate and estimatede variety of structural models.
Fitting these models has multiple purposes. Fitst, models incorporate noise into subjects’
decision-making processes, making possible tongdjgish between inconsistency and stochastic
choice. Second, we consider a large number ohatee models, including a number of variations
suggested by the literature, and show that ouristmey results are robust across different model
specifications. Third, we examine the effectsutijscts’ cognitive ability and the payoff premium
for greater depth of reasoning. Finally, we destiate the ability of the model to predict out of
sample and discuss what this implies for the imeggtion of our results.

This section provides a summary of how the modebisstructed and the main results of
various fitting exercises. A full description difet technical details and additional results for

models beyond those discussed in this section edaund in Appendix C.

4.1 Baseline ModelThe econometric models described in this sectierfiaite mixture models,
meaning we estimate the distribution of “typesg(eonsistent level-0, consistent level-1, etc.) in
the population but do not attempt to identify tgpet of any specific individual. In addition to
“consistent” types who use a fixed depth of reasgpracross all games, the models include
“inconsistent” types who randomize (“mix”) acrosffetent depths of reasoning. Ciritically, all
types optimize with noise. The probability thataamion is chosen is an increasing function of its
expected payoff based on a subject’s beliefs, baicdons are chosen with positive probability.
The econometric exercise asks whether the dataiis hkely to have been generated by a model
where all subjects use a fixed depth of reasonirgroodel where some subjects are inconsistent.
In the former case, the inconsistency documentegkertion 3 may be explained solely by noise
in the optimization process while in the latterecéigeflects inconsistent depth of reasoning.

An alternative approach is to estimate a fixed kleptreasoning (level-0, level-1, etc.) for
each individual subject for each class of gamessubjject is identified as using an inconsistent
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depth of reasoning if hisstimateddepth of reasoning varies between classes of gahh@sever,
this alternative approach can erroneously idergtifyubject as an inconsistent typ¢here is a
mistake in estimating his depth of reasoning fog ohthe classed.o get a sense of how severe
this problem can be, consider a population whdreuddjects have a fixed depth of reasoning (i.e.
no inconsistency) split equally between level-1 &nl-2. Suppose an econometric model is
used to identify each subject’s depth of reasofomgach of the five classes of games. Imagine
that identification is correct with 90% probabiliiyr each class, which is quite good. We would
conclude that 41% of the subjects use an incomsigiepth of reasoning when in reality there is
no inconsistency?

The baseline model allows for five types of sulgect

» Level-0: Subjects make choices consistent wittkadfiprobability distribution gacross
actions, wherepo(x) is the probability that a level-0 type chooses arctix €
{110,120, ...,200} Distributionpg is predetermined, and does not change acrossatiffe
games either within or between classes. The kligtdn across actions is uniform in the
baseline modelp(x)= 1/10 for allx € {110,120, ...,200}). The effect of using a different
distribution of actions for level-O types is cowaran Section 4.3, our discussion of
alternative specifications.

* Level-1: Subjects make choices based on beliefathather individuals are level-0 types.
A level-1 type’s expected payoffs depend on levlp@s’ choice probabilitig®, the class
of games being playe€(€ {1,2,3,4,5}), and his own payoff parametes)( The resulting
probability that a level-1 type chooses actidn classC with own payoff parametet; is
P1(X|ai).

* Level-2: Subjects make choices based on belietsathather individuals are level-1 types.
A level-2 type’s expected payoffs depend on levelgks’ choice probabilities: ©(x|e;),t°
the class of games being playeddq€1,2,3,4,5}), and her own payoff parametes)( The

5 Assuming that errors in identification are indegemt across classes of games, the probabilityahatdividual's
depth of reasoning is correctly identified in alef classes is %= .59. This yields the 41% figure in the text.

16 Note that the level-1 types’ choice probabilitsee conditionedn her rival's payoff paramete, rather than her
own payoff parametety;, since, from the point of view of a level-2 typlke behavior of a level-1 type depends on
her rival's payoff parameter.
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resulting probability that a level-1 type choosesica x in classC with own payoff
parametet; and rival payoff parametes is p2°(X|ai, o).

Pure-Mixing Type (TypeM): Subjects randomize (“mix” ) across differenteés: Pure-
mixing types act as a level-1 type with probabifity a level-2 with probability,, and a
level-0 with probabilityl — 8, — 6,. Both 6, andf, are parameters estimated from the
data. Critically, a pure-mixing type is assumed to dramew level for every gamdn
other words, a pure-mixing type’s choices reflearty independent draws of one of the
basic types (level-0, level-1, or level-2).

Semi-Mixing Type (TypeS) This type is identical to a pure-mixing type withe important
exception. Rather than drawing a new level for every gamegraignixing type draws a
new level for every class, but uses the same fevealll games within a classA pure-
mixing type does not exhibit a consistent deptheatoning either within a class of games
or between classes of games. A semi-mixing typmisistent within a class of games,
but is generally not consistent between classesemi-mixing type’s choices reflect five
independent draws, one per class, of one of the bgses (level-0, level-1, or level-2).
For simplicity, we constrain the mixing weighis and 8, to be the same for pure and

semi-mixing types/’

We incorporate noise into subjects’ decision makirigxcept for level-0 types, whose

choices are uniformly distributed over actionsygbes use a logit rule. Defiribrf(xml-, a]-) as

a subject’s expected payoff from actioa {110,120, ...,200} given his level € {1,2} and the game

as defined by the class,&{1,2,3,4,5} and his own and rival's payoff parametetsando;). His

probability of choosing actior, plc(x|0(i, a]-), is given by Equation 7. The parametegiving

the sensitivity of subjects to differences in expdcpayoffs, governs the amount of noise in

subjects’ decisions. It = 0, subjects’ choices are uniformly distributedeiothe ten available

options. As\ increases, choices become more sensitive to eliftes in expected payoffs. As

— o0, the distribution of choices converges to deterstiim expected payoff maximization. For

the baseline model, the valuejois assumed to be the same for all types.

17 See Appendix C for a variant of the baseline mditk allows for different mixing weights. Thisdhittle impacts
on the results.
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elEn:lC(x|al-,aj)

(7) pf (xlag, @) =

C
AETy (k|aj,a ;)
Ykef110,120,..,200} € L v

Parametersv,, w,, wy, and wg assign weights (probabilities) in the mixture mottel
level-1, level-2, pure-mixing, and semi-mixing tgpespectively. A subject's chance of being a
level-0 type equalsvy =1 —w; —w, — wy, — ws.

For each subject, we observe a sequence of 20eshaoe for each game played. We
construct the likelihood of observing each 20-tupldirst calculating the likelihood for each type,
based on the choice probabilities described abawd,then usingvy, w;, w,, wy, and wg to
calculate a weighted average of the likelihoodsteNhat the unit of observation is a subject’s 20-
tuple, not each individual choice in a game bylgext. Our 224 subjects yield 224 independent
observations, not 20 x 224 = 4480 independent vasens. Observing the sequence of choices
allows us to separately identify the weights of fuge-mixing type and the semi-mixing type.
Although they have the same choice distributiomete for any specific game, they face different
distributions over @equencef actions for a class of games. We estimatartbdel parameters
using a maximum likelihood approach.

4.2 Estimation Results, Baseline Mod€&hble 6 presents estimation results for the basetiodel
described above as well as two restricted versairtte baseline model. Standard errors are
reported in parentheses below the parameter estgm#t addition to reporting the log-likelihood
as a measure of goodness of fit, we also reportAtkeke information criterion (AIC) and
Bayesian information criterion (BIC). These measilire goodness of fit with a penalty for the
number of parameters, with BIC imposing a largerghty than AIC. Lower AIC/BIC indicates
better fit after accounting for the number of paetens.

[Insert Table 6 here]

Model 1 is the baseline model. Looking at the rssof the baseline model, the vast
majority of the population is identified as belomgito one of the two “inconsistent” types that
randomize over levelsvy + ws= 0.893). This resembles our descriptive analymisthe formal
econometric model picks up a much higher rate osisdency within classes of games. After
accounting for stochastic choice, almost half ef shibjects are estimated to be consistent within

classes but mixing their depth of reasoning acctassses (i.e. semi-mixing types).
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Model 2 does not include either of the inconsistgpes (wv = ws = 0). Comparing
Models 1 and 2 allows us to see how the estimadeults are affected by imposing consistency
(i.e. subjects have a fixed depth of reasoningafbgames). Allowing for the two inconsistent
types improves the fit even after accounting fa fbur additional parameters in Model 1. The
estimated distribution of levels is similar for Mad 1 and 2. Model 2, which does not allow for
inconsistency, estimates 73.5% of the populatienlevel-1 types and 12.1% are level-2 types,
while Model 1 implies that 59.7% of the populatigays as a level-1 and 13.7% plays as a level-
2 in any given gam& Model 2 puts more weight on level-1 but the difece is not dramatic.
The major difference between the two models areetamated values df, the parameter
governing the amount of noise in decision makifge value of. is more than halved in Model
2 as compared to Model 1, implying much more naissubjects’ decisions. Model 1 has no
mechanism to directly account for subjects’ incetesit depth of reasoning, so it attributes the
effects of inconsistency to noise.

Model 3 only includes the two mixing typeso(= w1 = w2 = 0). Note thatvs = 1 — vy
and therefore is not reported for Model 3. Givea tirstory of the literature, it is natural to think
of the level-k model with only consistent types @#b2) as the default, but it is equally plausible
to think of a model with only inconsistent typesdqdél 3) as the default. Comparing Models 1
and 3 lets us see if allowing for consistent typgsroves the fit. The log-likelihood is improved
by adding consistent types but it is not clear thet is worth the cost of adding three parameters
to the model given that the BIC is larger for Modethan Model 3. The implied probability of
playing as a level-1 or level-2 is barely affechsdinclusion of consistent typé$and the noise
parameteh is almost identical for Models 1 and 3. To a sisipg extent, adding consistent types

to the model has minimal effect on its explanajmower.

4.3 Estimation Results, Alternative Specificatidable 7 examines three plausible alternative
specifications to the baseline model, all of whielve a basis in the existing literature. More than

goodness of fit, we are interested in whether @dtive specifications change our main qualitative

8 The probability of playing as a level-1 in anygivgame for Model 1 is given by the probabilitpefng a consistent
level-1 type (w) plus the probability of being an inconsistenteypultiplied by the probability of playing as a ébv
1 conditional on being an inconsistent typa{+ ws)-01). The probability of playing as a level-2 typagisen by an
analogous calculation.

19 The implied probability of being a level-1 is 5%7n Model 1 vs. 59.8% in Model 3. For level-2esk figures are
13.7% and 13.5%.
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conclusions: the vast majority of subjects are ngxypes with a large proportion of both pure
and semi-mixing types. Our general approach toifyiod the baseline model is to add one
feature at a time rather than fitting a kitcherksimodel that adds every possible feature. Thss let
us see the effect of added features in isolationtd the danger of overfitting the data througk us

of a huge number of parameters, and reduces thputational demands of fitting the models.
[Insert Table 7 here]

The first column of Table 7 repeats the baseliod@h(Model 1) as a point of comparison.
Model 4 (“Non-Uniform Level 0”) uses an alternatispecification for the choice probabilities of
level-0 types. A reasonable interpretation of l€véypes is that their choices are driven by non-
strategic considerations. The most common wayetifying the choice probabilities of level-0
types is to assume a uniform distribution overadias in the baseline model, but the level-k
model does not require this restrictddnModel 4 allows for the possibility that level-Gag puts
extra weight on other natural non-strategic corsémthow to play the games.

All the games we consider have a “cooperative” choidefined as the choice that
maximizes a player’s payoffsibject to both players making identical choicésr example, the
cooperative choice is 200 in the imperfect pricepetition games. The cooperative choiceds
consistent with a Nash equilibrium for most of thaesses and is ofterot efficient (in the sense
of maximizing total payoffs across the two playdos)the asymmetric gamés.All of the games
also have a “safe” choice, defined as the maxirhoiae. In the minimum coordination game, for
example, choice of 110 maximizes the minimum pasglyoff. Model 4 lets level-0 types put
extra weight on the cooperative and safe choicesasal non-strategic optio$.The parameter
Ycoop dives the added weight that level-0 types puthendooperative choice and the parameter
Ysafe dives the added weight on the safe choice. Whbhability 1 —ycoop— ysate, IEVEI-0 types

choose using a uniform distribution. The resultslicate that level-0 types significantly

20 This is a central point of Arad and Rubinsteimslgsis of the 11-20 game.

2IFor instance, it is easily confirmed that the coafiee choice, mutual choice of 200, is neitherasiNequilibrium
nor surplus maximizing for the asymmetric imperf@gte competition games.

22 The cooperative choice is 200 in Classes 1 — 4140dn Class 5. The safe choice is 110 in Cksse, 3 and 5
and 200 in Class 4. In practice, putting extraghtion the cooperative and safe choices amountstting extra
weight on the tails of the distribution. We couwld this by directly fitting a distribution (i.e. discretized beta
distribution) over the actions, but this runs iptoblems that using safe and cooperative choiceisiav Specifically,
if we mechanically put more weight on the two téiisnplies more weight on choice of 110 in the-120 games and
choice of 200 in the all-pay auctions. Both ofsthehoices are strictly dominated and virtuallyereshosen, causing
the model to put artificially little weight on thails.

24



overweight the safe choice, but not the cooperath@ce. Relaxing the uniform distribution
assumption improves the model’s fit but has litthgact on the model’s main qualitative feature
as the percentages of pure and semi-mixing typebtée changed from the baseline model.
Model 5 implements a variant of the cognitive hiehy (CH) model of Camerer, Ho, and
Chong (2004). In a standard level-k model, a kwilpe assumes that the rest of the population
consists of individuals who are one level lower(k). Therefore, a level-2 type assumes that all
other individuals are level-1 types. In our vensad CH model, level 2 types take into account
that both level-1 types and level-0 types existl ase Bayes rule to generate beliefs about the

wi+(Wpy+ws)0,

This is

likelihood of being matched with a level-1 type; =

(1-wy—wpy-ws)+(Wpy+ws)(1-62)
slightly different from Camerer et al's model as are using rational expectations to generate
beliefs rather than applying a Poisson distributidbhe CH model yields a slightly better fit to the
data. The overall fraction of inconsistent types ibit higher than in the baseline model and the
distribution is shifted toward the semi-mixing typ&he overall interpretation changes little:
almost all subjects have an inconsistent depteadganing and both pure-mixing and semi-mixing
types are common.

To keep the baseline model simple, we only allofeedhree depths of reasoning: level-
0, level-1, and level-2. There is ample evidenickigher depth of reasoning from other papers
(e.g. Kneeland, 2015). Allowing for higher depthreasoning should have little effect on our
descriptive analysis of consistency. As noted ipgly, the pattern of shifts in response to
changing payoff parameters should be the sameléwe& 3 as a level-1, the same for a level-4 as
alevel-2, etc. However, adding higher level typlesuld improve our ability to fit the data. Model
6 tests this conjecture by adding level-3 typesio parameters are added to the baseline model:
ws is the weight of consistent level-3 types @ads the probability the two mixing types put on
playing as a level-3 type. Adding level-3 typeshiie model improves the fit, as expected. The
model detects no consistent level-3 types in thgufaion, but the weight inconsistent types put
on level-3 is both statistically and economicalbngficant. The fraction of inconsistent typeaa
+ ws) increases slightly relatively to the baseline elptdut the distribution between pure-mixing
and semi-mixing types is almost unchanged.

In summary, all of the alternative models find thatigh frequency of inconsistent types
is a robust feature of our empirical setting. ApgigrC includes results on additional alternative

specifications, including models that vary the mgprobabilities (i.ef1 andé-.) between the two
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inconsistent types, models that vary the mixingophnlities between different classes of games,
models with fewer inconsistent types, and modetk wiore inconsistent types. Our main finding

is robust as inconsistent types are predominaall specifications.

4.4 Determinants of the Distribution of Typedhe models shown in Table 8 examine the
determinants of subjects’ types. The first colunmee again repeats the baseline model (Model

1) as a point of comparison.
[Insert Table 8 here]

We have presented ample evidence that most sabjsg an inconsistent depth of
reasoning, but this inconsistency needs not int@y the depth of reasoning is arbitrary. Thinking
more deeply about a game presumably requires g#iad subjects should be more willing to
expend effort when the potential reward is largéfe therefore expect a shift to higher levels
when the benefits of a greater depth of reasomegnareased. Alaoui and Penta (2016) present
a formal model that captures this intuition as \@slexperimental evidence that depth of reasoning
is sensitive to incentives. Model 7 modifies tlasdline model to see if the distribution over lsvel
used by inconsistent types responds to incentivesason more deeply about the games.

To capture the effects of incentives, we first aldte the expected payoff for each level of
reasoning (level-0, level-1, and level-2) in eadmg. Specifically, the model generates a
distribution over own actions as a function of tfeme being played and a subject’'s depth of
reasoning (level-0, level-1, or level-2).The population’s observed distribution of choisessed
to generate a distribution over their rival's anso Combining these, we calculate expected
payoffs for each level. This is done by game farepmixing types and by class for semi-mixing
types. We then calculate the payoff premium fandpex level-1 (expected payoff for level-1
minus the expected payoff for level-0) and the figg@emium for being a level-2 (expected payoff
for level-2 minus the expected payoff for level-Qonditional on being an inconsistent type, the
mixing weight of each possible depth of reasonga@ ilinear function of the payoff premium.
Abusing notationg; = 6; + u, - (Em; — Emy) whered; and y,; are parameters estimated from
the data. Likewised, = 0, + u, ' (Em, — Emy).%*

23 This distribution is a function df, but not the other estimated parameters.
24 To make sure thdt, + 8, is between 0 and 1, we use a logit transformattdiollows that the mixing weights are
notlinear in payoff premiums. For more details ofdéts 7 - 9 and logit transformations, see Appe@lix
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Comparing Model 7 and Model 1, the fit is improvsdallowing the distribution of levels
to depend on the payoff premiums. The estimategifandy. are both positive, indicating that
greater payoff premiums are associated with grelpeth of reasoning. This does not imply that
mixing disappears if the model accounts for theoffagremiums. The distribution over levels
generated by the fitted model puts substantial meig multiple levels in all classes and all games.
The weights on the various levels change as the@attion premium varies, but never approaches
either 0% or 100%> The likelihood of being either inconsistent tyipdittle changed. In line
with the results of Alaoui and Penta, there issie@yatic relationship between depth of reasoning
and incentives. Inconsistent depth of reasonireg dwt imply arbitrary depth of reasoning.

Models 8 and 9 examine the relationship betweejests reasoning ability, as measured
by their scores on the Raven’s Progressive Mat(R&¥) test, and their depth of reasoning. We
expected a positive relationship based on thetsestilGill and Prowse (2016). The two models
examine this issue in slightly different ways. Mb8 allows the mixing probabilitie® andd>)
for the inconsistent types to vary with the RPMrsco Model 9 lets the weight on the two
inconsistent typesyg andw,) vary with the RPM score, but does not allow theing probabilities
(61 andé-) to depend on the subject’'s RPM score.

In Model 8,61 andé: are linear functions of the subject’'s RPM scorébuging notation,
probability of an inconsistent type being levelsl8y = 8; + ;- RPM where 8, and u, are
parameters estimated from the data. Likewise, ghiiby of being level-2 is9, = 8, + u, -
RPM 2% Comparing Model 8 and Model 1, the fit is imprdusy allowing the mixing probabilities
to depend on the RPM score. The estimatesgifandu2 are both positive, indicating that greater
reasoning ability is associated with greater deptieasoning (albeit not significantly in the case
of u2). Once again, this indicates that subjects’ kwélreasoning, while inconsistent, vary in a
sensible and systematic fashion. The probabifityeing either inconsistent type changes little.

Model 9 makes the weight on being an inconsigig a linear function of the subject’s
RPM score. Abusing notatioww + ws= @+ [ RPM wheregandp are parameters fit from the
data. Subject to being a mixing ty@s, is the probability of being a pure-mixing type hig
implies thatwu = &), - (@ + - RPM). Subject tonot being a mixing typeg: andJ. are the

25 To give a sense of how the weight on levels vasigls as the optimization premiums change, the iegpiveight
on level-1 (averaging across games) is 44%, 44%, &%, and 59% for Classes 1 — 5 respectively.
26 As in Model 7, we use a logit transformation okimg probabilities in Model 8.

27



probabilities of being a consistent level-1 andele¥ type respectively. Letting the weight on
being a mixing type vary with the RPM score doesimprove the model’s ability to fit the data
relative to the baseline model after penalizingrttuelel for using more parameters: both the AIC
and BIC arenhigherin the modified model. Looking at the parametimeates, the estimate fpr
is small and does not approach statistical sigmifte. Going from the ¥percentile RPM= 9)
to the 9¢' percentile RPM = 13) implies a decrease in the probability ofngeain inconsistent
type from 94% to 87%’ The likelihood of having an inconsistent depthrefisoning is
unresponsive to RPM scores. Taken together, M@&lah&l 9 indicate that cognitive ability affects
the depth of reasoning used by inconsistent typaisdoes not affect the probability of being an
inconsistent type.

To summarize, almost all of our subjects are isedant, using different depths of
reasoning in different games, but this inconsistesnot pure noise. The distribution over depths

of reasoning varies in a sensible way in respongecentives and subjects’ reasoning ability.

4.4 Out-of-Sample PredictioWe have demonstrated that inconsistent depth creag is a

robust feature of the level-k model. This raise®lwvious question: What are the implications of
this finding? Our discussion of Model 2 on Tabladiressed the effects of failing to account for
inconsistency on estimates of the distribution deeels. This subsection considers the model's

ability to predict out of sample.
[Insert Table 9 here]

To do this, we fit Model 1 (the baseline model) &nddel 2 (the level-k model without
inconsistency) from Table 6 to data from Classes®and then use the estimated parameters to
predict choices in Class 1 (imperfect price contjuet).2® Specifically, after fitting the models to
Classes 2 — 5, we use the implied distribution whesices to generate a predicted mean and
standard deviation for each game. These are exporiTable 9 as well as the mean and standard
deviation for the observed data. Model 1 fits dlaga better than Model 2, but both models do a

27 Analogous to Model 7 and 8, a logit transformatidiype weights is used in Model 9. It followsatthe type
weights are not linear in RPM scores.

28 The choice of Class 1 as the predicted class vimsaay, but the qualitative conclusions do nopelied on which
class we try to predict.
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credible job of predicting data for Class 1. Botbdels have some differences from the observed
data, but allowing for inconsistency does not miegiuilly reduce these differences.

The ability of Model 2 to predict out of sample alibnot be surprising. Model 1 fits the
data better than Model 2, because it accountsnfiividuals changing their depth of reasoning.
This enables Model 1 to better capture the patérchanges between gamaisthe individual
level However, the prediction exercise reported inl@&bis not concerned with the pattern of
changes between gamasthe individual level It doesn’t matter if the same subjects remaia at
specific level across the different games. All thnatters is the fraction of subjects at any paldicu
level for a specific game. Both models predictlwekause the distribution across levels is fairly
stable across our five classes of g&he.

This leads to a more general point. The level-klehthat doesotallow for inconsistency
will generally work fine if all we care about isethdistribution over depths of reasoning for a
specific game. For example, consider the Crawémd Irriberri (2007) application of a level-k
model to the winner’s curse. The predictions eirtinodel are driven by the presence of players
with different depths of reasoning. Consistenapss games does not matter in their model. We
should not change our interpretation of their mamteéxperimental work just because we know
that subjects’ types are not consistent across game

To summarize, inconsistent depth of reasoningmapr feature of our experimental data.
This inconsistency is important both because anmis us about the nature of subjects’ decision
making processes and also affects our ability tonese parameters for a level-k model. It does
notimply that applications of level-k model are neszegy flawed, or that level-k models cannot
predict out of sample. These exercises only ram difficulty if they are impacted directly by
inconsistency or if the inconsistency implies nalydhat subjects change their depths of reasoning
but also that the distribution over levels charga®ss games (or classes of games).

5. Conclusions: The primary purpose of this paper is to exploretiveor not subjects employ
a consistent depth of reasoning when playing gar8abjects play a series of games where
consistency implies a specific pattern of respotsaehanges in payoff parameters. We observe

little evidence of consistency. This is true wiegttve use descriptive analysis that does not rely

29 This implies that if we studied classes of gambene the distribution of levels varied more betwekasses, the
ability of the model to predict out of sample woblkel diminished.
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on any specific econometric model or take an ec@atomapproach that accounts for noise in
subjects’ decision making. The lack of consisteisayuite robust to a wide variety of alternative
model specifications. Many subjects are consisigtitin classes of games and only vary their
depth of reasoning between classes of games, latgafraction of the population also vary their
depth of reasoning within classes of games. TEhmarticularly damaging to the assumption that
subjects use a consistent depth of reasoning, @mitot easily be explained away as subjects
thinking differently (or expecting others to thidkferently) about different types of games.

The robust inconsistency we observe implies neitina subjects’ depth of reasoning is
purely random nor that level-k models are not usé&ols. Depth of reasoning responds
systematically to changes in incentives and thenitivg ability of subjects. Even without
accounting for inconsistency, a level-k model doeB at predicting out of sample for our dataset.
Accounting for the inconsistency is obviously imjamt, especially when estimating parameters
for a level-k model, but for applications that fecan the aggregate distribution of behavior,
inconsistency at thiadividual level does not play a central role.

Ultimately, we argue that inconsistency is impottaot only because it affects the
estimation of level-k model parameters, but alstabse it tells us something about the nature of
subjects’ decision-making processes. Experimerdacs theorists have accepted the idea of
stochastic choice in individual decision makingg(eAgranov and Ortoleva, 2017). Depth of
reasoning is just another individual choice. #tts big step to say that random choice models
are just as applicable here as elsewhere.
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Figure 1: SAMPLE QUESTION FROM RPM TEST

e

L ]
[ ]

4

Time remaining 30

E | E L ] L
.
- L]
: ’ Question 11. From the lower part, identify the

. element that is missing from the pattern of
’i‘. shapes in the upper part. You have 30
seconds to answer; if not, this question will be

counted as answered incorrectly.
|

3 4 2

NEe) ;




Figure 2: DISTRIBUTION OF CHOICES IN THE “11-20” GAME
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Table 1: LEVEL-K PREDICTIONS

CrAss 1: IMPERFECT PRICE COMPETITION

20

80

20

L1: 110, L2: 110

L1: 110, L2: 160

80

L1: 170 , L2: 110

L1: 170 , L2: 160

CLAss 2: MINIMUM COORDINATION GAME

20

80

20

L1: 180-190, L2: 180-190

L1: 180-190, L2: 120-130

80

L1: 120-130, L2: 180-190

L1: 120-130, L2: 120-130

CLASS 3: TRAVELER'S DILEMMA

20

80

20

L1: 160-170, L2: 150-160

L1: 160-170 , L2: 110

80

L1: 110 , L2: 150-160

L1: 110, L2: 110

CLass 4: 11-20 GAME

20

80

20

L1: 200, L2: 190

L1: 200, L2: 190

30

L1: 200, L2: 190

L1: 200, L2: 190

CLASS 5: ALL-PAY AUCTION

20

30

20

L1: 110 , L2: 110-120

L1: 110, L2: 110-120

80

L1: 110, L2: 120

L1: 110, L2: 120

Table 2: SUMMARY OF SESSIONS

SESSION # OF SUBJECTS

PLAYER 1 PLAYER 2 ORDER OF CLASSES

1 50 25 25 1/2/3/4/5
2 50 25 25 1/2/3/4/5
3 60 30 30 2/3/1/4/5
4 64 32 32 3/1/2/4/5
TOTAL 224 112 112




Table 3: AVERAGE CHOICE

CLAss 1: IMPERFECT PRICE COMPETITION

20 80
20 131.0 133.3
80 157.2 164.1

CrAss 2: MINIMUM COORDINATION GAME

20 80
20 178.1 164.0
80 141.7 135.1
CrLASsS 3: TRAVELER'S DILEMMA

20 80
20 167.7 157.2
80 134.2 129.5

Crass 4: 11-20 GAME

20 80
20 193.6 189.3
80 185.8 184.9

CLASS 5: ALL-PAY AUCTION

20 80
20 112.6 112.9
80 121.5 126.3

Table 4: WEAKLY AND STRONGLY CONSISTENT LEVEL-1 AND LEVEL-2

CLASS LEVEL 1 LEVEL 2
STRONG WEAK STRONG WEAK
1 22.32% 56.70% 1.34% 17.86%
2 16.07% 58.93% 0.89% 19.20%
3 20.54% 53.13% 3.57% 16.52%
AVERAGE 19.64% 56.25% 1.93% 17.86%
CLAsses 1 -3  0.45% 23.66% 0% 0.45%




Table 5: CONSISTENT SHIFTS ACROSS CLASSES 1 - 3

SHIFTS CONSISTENT WITH LEVEL-2

0 1 2 3 4 5 6 TOTAL
3.60% 0.40% 0.00% 0.00% 0.00% 0.00% 0.00%  4.00%
0.40% 3.10% 0.00% 0.40% 0.40% 0.00% 0.00%  4.50%
0.00% 1.30% 2.70% 1.30% 0.40% 0.00% 0.00% 5.80%
0.90% 1.30%  6.30% 2.20% 1.30% 0.90% 0.00% 12.90%
0.00% 3.60% 6.30% 5.40% 4.90% 1.30% 0.00% 21.40%
0.00% 4.00% 6.70% 9.40% 5.80% 1.30% 0.40% 27.70%

6 0.40% 2.70%  6.70% 8.90% 3.60% 1.30% 0.00% 23.70%
ToTaL 5.40% 16.50% 28.60% 27.70% 16.50% 4.90% 0.40% 100.00%

SHIFTS CONSISTENT
WITH LEVEL-1
Uk W N = O

Table 6: ESTIMATION RESULTS OF THE BASELINE MODELS

MODEL 1 MODEL 2 MODEL 3
BASELINE CONSISTENT TYPES ONLY MIXING TYPES ONLY
wy 0.097*** 0.735*** 0
(0.036) (0.039) FIXED
Wo 0.000 0.121** 0
- (0.034) FIXED
whr 0.431*** 0 0.434**
(0.065) FIXED (0.016)
Wy 0.462*** 0
(0.017) FIXED
01 0.560*** 0.598***
(0.065) (0.019)
0y 0.153*** 0.135***
(0.023) (0.016)
A 0.175** 0.076** 0.172%*
(0.010) (0.002) (0.010)
Loc LIKELIHOOD —8,201.187 —8,308.313 —8,206.992
AIC 16,416.375 16, 622.626 16,421.984
BIC 16, 440.256 16,632.861 16, 435.631

NoTEs: Standard errors are given in parentheses. Three (***), two (**), and one (*) stars indicate
statistical significance at the 1%, 5%, and 10% respectively.



Table 7: COMPARISON BETWEEN BASELINE AND VARIANT MODELS

MoDEL 1 MODEL 4 MODEL 5 MODEL 6
NON-UNIFORM COGNITIVE MODEL WITH
BASELINE LEVEL O HIERARCHY LEVEL 3
wy 0.097* 0.075* 0.079** 0.062**
(0.036) (0.041) (0.035) (0.027)
Wo 0.000 0.000 0.000 0.000
Was 0.431** 0.447** 0.283*** 0.478"*
(0.065) (0.075) (0.062) (0.048)
Wy 0.462*** 0.463*** 0.632*** 0.459**
(0.017) (0.068) (0.025) (0.050)
01 0.560*** 0.595*** 0.470"* 0.476"*
(0.065) (0.021) (0.068) (0.022)
0, 0.153*** 0.117** 0.217** 0.108***
(0.023) (0.015) (0.034) (0.016)
A 0.175% 0.183*** 0.165** 0.195"**
(0.010) (0.015) (0.008) (0.010)
Vsafe 0.105%**
(0.011)
Yeoop 0.000
03 0.000
05 0.222%*
(0.024)
LoG LIKELIHOOD —8,201.187  —8,097.555 —8,192.194 —8,117.500
AIC 16,416.375 16,213.109 16, 398.388 16, 253.000
BIC 16, 440.256 16,243.814 16, 422.270 16, 283.704

NoTES: Standard errors are given in parentheses. Three (***), two (**), and one (*) stars indicate
statistical significance at the 1%, 5%, and 10% respectively.



Table 8 COMPARISON BETWEEN BASELINE AND VARIANT MODELS

MoDEL 1 MOoODEL 7 MODEL 8 MODEL 9
RAVEN PREDICT RAVEN PREDICT
BASELINE Exp. PAYOFF Mix. PRrOB. Mix. TYPE
w1 0.097*** 0.035 0.084**
(0.036) (0.032) (0.035)
Wy 0.000 0.000 0.000
Wy 0.431% 0.439** 0.459**
(0.065) (0.047) (0.066)
Wg 0.462%** 0.509"** 0.453"**
(0.017) (0.051) (0.066)
0, 0.560*** 0.555***
(0.065) (0.023)
0y 0.153*** 0.152%**
(0.023) (0.017)
A 0.175% 0.178"* 0.179"* 0.173"**
(0.010) (0.008) (0.011) (0.010)
e —0.693*  —1.023~*
(0.162) (0.507)
0y —2.340%** —1.797*
(0.300) (0.768)
41 0.064** 0.144**
(0.007) (0.043)
[bo 0.201* 0.098
(0.021) (0.065)
. S 0961
(0.079)
0o 0.000
Om 0.469***
(0.070)
) 4.605*
(2.600)
15} —0.211
(0.208)
LoG LIKELIHOOD —8,201.187 —8,112.769 —8,195.756 —8,200.671
AIC 16,416.375 16, 243.537 16,409.511 16,417.341
BIC 16, 440.256 16, 274.242 16,440.216 16,444.635

NoTES: Standard errors are given in parentheses. Three (***), two (**), and one (*) stars indicate

statistical significance at the 1%, 5%, and 10% respectively.



Table 9: COMPARISON OF DATA DISTRIBUTIONS TO MODEL DISTRIBUTIONS IN CLASS 1

DaTA CONSISTENT TYPES ONLY BASELINE MODEL

MEAN S.D. MEAN S.D. MEAN S.D.

LL 131.03 26.91 131.33 21.02 129.50 23.11
HH 164.06 28.86 163.00 24.42 164.67 22.48
LH 133.35 25.81 133.22 20.69 133.21 22.33
HL 157.23 30.01 161.63 25.27 161.27 25.31
DataA CONSISTENT TYPES ONLY BASELINE MODEL

MEAN S.D. MEAN S.D. MEAN S.D.

LL-HL -26.21 36.31 -30.29 33.05 -31.76 34.56
LH-HH -30.71 33.19 -29.78 32.75 -31.46 33.27
LL-LH -2.32 28.38 -1.89 27.17 -3.71 28.31
HL-HH -6.83 30.06 -1.38 34.97 -3.41 33.34

NoTES: The parameters used for each model are estimated using data of Classes 2, 3, 4 and 5, but not
including data from Class 1.



