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Abstract
Does expertise in strategic behavior obtained in the �eld transfer

to the abstract setting of the laboratory? Palacios-Huerta and Volij
(2008) argue that the behavior of professional soccer players in mixed-
strategy games conforms closely to minimax play while the behavior
of students (who are presumably novices in strategic situations re-
quiring unpredictability) does not. We reexamine their data, showing
that, in fact, the play of professionals is inconsistent with the mini-
max hypothesis in several important respects: (i) professionals follow
non-stationary mixtures, with card frequencies that are negatively cor-
related between the �rst and the second half of the experiment; (ii)
professionals tend to switch between halves from underplaying a card
relative to its equilibrium frequency to overplaying it (and vice-versa),
and (iii) the distribution of card frequencies across professionals is far
from the distribution implied by minimax. In each of these respects
the behavior of students conforms more closely to the minimax hy-
pothesis.

�I�ve bene�ted from many discussions over the years with Mark Walker about mixed-
strategy play, and my thoughts on this topic have been in�uenced by those discussions.
I�m grateful to Diego Moreno, Matt Van Essen, and Mark Walker for helpful comments
and to Matt for outstanding research assistance.

yDepartment of Economics, Eller College of Business & Public Administration, Uni-
versity of Arizona, Tucson, AZ 85721 (jwooders@eller.arizona.edu).
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1 Introduction

Several recent papers have established that the behavior on the �eld of sports
professionals in strategic situations requiring unpredictability is consistent
with the minimax hypothesis and its generalization to the theory of mixed-
strategy Nash equilibrium. (See Walker-Wooders (2001) and Hsu-Huang-
Tang (2007) for tennis, and Chiapppori, Levitt, and Groseclose (2002) and
Palacios-Huerta (2003) for soccer). This raises an important question: Does
expertise in strategic behavior obtained in a familiar setting, e.g., the tennis
court or the soccer �eld, transfer to an unfamiliar one? If it does, then a key
implication is that the nature of the subject pool is a critical ingredient of
whether results obtained in the laboratory are useful for predicting behavior
in the �eld.
In an ingenious experiment, Palacios-Huerta and Volij (2008) recruited

professional soccer players and students to play two mixed-strategy games
in the lab, and they obtained extraordinary results. The data shows, so
they argue, that the play of professionals conforms remarkably closely to the
behavior predicted by the theory whereas the play of student subjects does
not. This suggests that the expertise in mixed-strategy play developed (and
demonstrated) by professionals on the �eld does transfer from the �eld to
the abstract setting of the laboratory.
The present paper re-examines the Palacios-Huerta and Volij (henceforth

PH-V) data and argues that the behavior of soccer professionals is inconsis-
tent with the minimax hypothesis in several important respects: (i) profes-
sional follow non-stationary mixtures, with card frequencies that are nega-
tively correlated between the �rst and the second half of the experiment; (ii)
they tend to switch between halves from underplaying a card relative to its
equilibrium frequency to overplaying it (and vice-versa), and (iii) the distrib-
ution of card frequencies across players is far from the distribution implied by
minimax. In each of these respects the behavior of students conforms more
closely to the minimax hypothesis than does the behavior of professionals.
Perhaps paradoxically, this re-examination is motivated by the fact that

actual play is too close to the theoretically expected play for soccer profession-
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als. To illustrate this idea, consider the behavior of the soccer professionals
in the PH-V data when playing the O�Neill game. In this game, to be de-
scribed shortly, the minimax hypothesis calls for each player to choose cards
(1, 2, 3, or Joker) according to an iid mixture which assigns probability .4 to
the Joker card, and probability .2 to each of the non-Joker cards. In PH-V�s
experiment 40 professionals, in 20 pairs, played the O�Neill game 200 times
and so 80 Jokers are expected for each player. However, the probability that
a player chooses almost exactly 80 Jokers, say between 79 and 81 Jokers, is
only 0:171 and so we would expect only 6:85 players for whom actual play
was this close to expected play. Surprisingly, in the PH-V data 16 profession-
als choose between 79 and 81 Jokers. Such an outcome is extremely unlikely
under minimax play.1 The professionals�empirical card frequencies exhibit
the same tendency to be too close to the theoretically expected frequencies
for each of the three non-Joker cards as well.
PH-V suggest that professionals do not literally follow the iid minimax

mixture, but rather they �. . . try to �match� some probabilities they have,
consciously or unconsciously, in mind.�In other words, professionals choose
cards as though a law of small numbers applies, keeping their empirical card
choices close to the expected frequencies.
To investigate this hypothesis we partition the data into two halves, con-

sisting of the �rst and last 100 rounds, respectively. If professionals indeed
try to match the equilibrium frequencies, then play would be expected to
conform closely to equilibrium in each half. Moreover, the striking di¤erence
found between professionals and students in the overall data should also hold
in each half. If, perhaps, the adjustment by professionals to equilibrium play
is time consuming, then we would at least expect that play conforms closely
to equilibrium for the last 100 rounds.
We �nd no evidence that professionals match minimax frequencies when

either half of the data is considered in isolation. Even though tests based on
only half the data have less power, the hypothesis that professionals choose
each card individually (or all four cards jointly) according to its minimax

1The probability that 16 or more players choose between 79 and 81 Jokers is only
0.00053, i.e., about 1 in 1900.
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frequency is rejected at a high rate in each half of the data. Indeed, in each
half of the data these hypotheses are rejected at similar rates for professional
and students, and at too high a rate to be consistent with the minimax
hypothesis.
Considering all 200 rounds, PH-V show that the joint hypothesis that all

40 professionals choose their cards in the O�Neill game according to the min-
imax model is not rejected (the p-value is :988) when the Pearson goodness
of �t test is applied to their empirical card frequencies. In other words, if a
computer were programmed to choose cards according to the true minimax
frequencies, the odds of generating data in which the empirical card frequen-
cies were this close (or closer) to the theoretically expected frequencies is
only 1:2%. The same hypothesis is rejected at the 1% level for students
(p-value 0:006). How is such a striking di¤erence between professionals and
students possible when the card choices of each exhibit a similar conformity
to equilibrium in each half of the data? The answer is found by seeing that
the behavior of professionals and students does di¤er in important ways.
The Minimax Hypothesis, applied to the repeated O�Neill game, requires

that each player choose cards according to the same iid mixture at each
round. An implication is that the frequency with which a card is chosen in
the �rst half is uncorrelated with the frequency it�s chosen in the second half.
This hypothesis is rejected for professionals, for each of the four cards in the
O�Neill game, in favor of negative correlation. For students, in contrast, this
hypothesis is only rejected for the Joker card (for which there is a positive
correlation between the �rst and second half frequencies). Thus, with re-
spect to whether the �rst and second half card frequencies are uncorrelated,
the behavior of students conforms more closely to the theory than does the
behavior of professionals.
A second and related implication is that if a subject happens by chance

to play a card with, say, less than its equilibrium frequency in the �rst half
(i.e., he �underplays� the card), this has no bearing on the likelihood he
will underplay it in the second half. We show that professionals vary their
play systematically over the two halves of the experiment. Professionals who
underplay the Joker card relative to its equilibrium frequency in the �rst
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100 rounds, tend to overplay it in the last 100 rounds (and vice versa). As
a result, the frequency with which professionals choose the Joker card over
all 200 plays is closer to the equilibrium frequency than it is in either half
alone. For each of the non-Joker cards, professionals also exhibit the same
tendency to switch between underplaying and overplaying it. Students, in
conformity with the theory, exhibit no systematic tendency to switch.
Considering either half of the data alone, the play of both groups is similar

in the degree to which it conforms to equilibrium. The essential di¤erence
between professionals and students is how their play changes between the �rst
half and second half. For students we observe no change, while the tendency
of professionals to change their play across halves has a powerful e¤ect �it
causes their overall card frequencies to be excessively closely clustered around
the expected card frequencies. Applying the Kolmogorov-Smirnov goodness
of �t test to the overall card choices of professionals, one can reject minimax
play for each card individually and for all four cards jointly. The same test
applied to the card choices of students yields a rejection only for the Joker
card.
In Section 2 we describe the PH-V experiment. In section 3 we compare

the behavior of professionals and students in the �rst and last 100 rounds,
showing that the behavior of each conforms equally well to the theory in each
half. In Section 4 we show that the empirical card frequencies of professionals
are negatively correlated between halves, professionals switch between under-
playing and overplaying a card relative to its equilibrium frequency, and the
distribution of card frequencies is inconsistent with minimax play. Section 5
considers the data for PH-V�s �Penalty Kick�game and concludes.

2 The PH-V Experiment

PH-V recruited professional soccer players and college students to play two
zero-sum games, a �Penalty Kick�game which they introduce, and the well-
known O�Neill game (O�Neill 1987). The Penalty Kick game is a stylized
representation of a penalty kick in soccer where the kicker (Row) chooses
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whether to kick left (A) or right (B), and the goalie (Column) simultaneously
chooses whether to cover left (A) or right (B). The O�Neill game is a zero-sum
game with a unique asymmetric mixed-strategy Nash equilibrium.

A B
A .60 .95
B .90 .70

Penalty Kick Game

Red Brown Purple Green
Red 0 1 1 0
Brown 1 0 1 0
Purple 1 1 0 0
Green 0 0 0 1

The O�Neill Game

In both games of the PH-V experiment the payo¤numbers are the probability
that the row player wins 1 Euro.
Eighty professional soccer players were recruited, 40 of whom were kickers

and 40 of whom were goalies. For the Penalty Kick game, 40 professionals
in 20 �xed pairs, with a kicker in the row role and a goalie in the column
row played 150 rounds. For the O�Neill game, another 40 professionals were
paired in the same fashion but played 200 rather than 150 rounds. A total
of 160 college students participated, half with soccer experience and half
without. To sharpen the contrast, we focus on the 80 students without
soccer experience. Like the professionals, 20 �xed pairs of students played
150 rounds of the Penalty Kick game and 20 �xed pairs played 200 rounds
of the O�Neill game. In both games the subjects played 15 practice rounds.
Subjects were not told the number of rounds to be played.
The PH-V experiment improves on O�Neill�s (1987) original study in sev-

eral respects. First, the stakes are much higher �in O�Neill (1987) subjects
played for 5 cents per game. Second, in order to avoid the Ace bias noted
in Brown and Rosenthal (1990), PH-V follow Shachat (2002) in labeling the
strategies Red, Brown, Purple, and Green, rather than Ace, Two, Three,
and Joker.2 For expositional convenience, we follow PH-V and use O�Neill�s

2See Brown and Rosenthal (1990) for a re-examination of O�Neill�s experiment and see
O�Neill (1991) for a response.
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original labelling with 1 for Ace, 2 for Two, 3 for Three, and J for Joker.3

An innovation of O�Neill�s pioneering study was that the stage game had
only two outcomes, i.e., each player either won or lost, and hence the mini-
max (and Nash equilibrium) mixture did not depend on the players�attitude
toward risk. The supergame consisting of the repeated play of the stage game
clearly has more than two outcomes and hence one might wonder whether the
players�risk attitudes once again become important. Wooders and Shachat
(2001) shows if that the stage game has two outcomes, is strictly competitive
(i.e., if one player wins then the other loses), and has a unique Nash equi-
librium, then the unique Nash equilibrium of the supergame calls for Nash
play at each stage provided the players�preferences over supergame outcomes
satisfy a weak monotonicity condition.4 The unique Nash equilibrium of the
200-time repeated O�Neill game, for example, is for each player to choose
the Joker card at each stage with probability .4 and choose each of the non-
Joker cards with probability .2, independently of the history of play up to
that point.

3 Comparing Professionals and Students

PH-V argue that the behavior of professionals in the O�Neill game conforms
closely with theory, both at the level of an individual player and in aggregate,
while the behavior of students is far from equilibrium. Considering all 200
rounds, they �nd that the null hypothesis that a subject chooses the Joker
card with probability .4 is rejected at the 5% level for 4 professionals, but the
same null is rejected for 9 students. For the non-Joker cards, the minimax

3Other important experimental studies of mixed strategy play include Rapoport and
Boebel (1992), Mookherjee and Sopher (1994), Ochs (1994), Rosenthal, Shachat, and
Walker (2003), and Shachat (2002). See Camerer (2003) for an in-depth survey.

4The monotonicity condition is easily illustrated in the twice-repeated O�Neill game,
which has four outcomes: A player can win twice (WW), he can win and then lose (WL),
or lose and then win (LW), or lose twice (LL). Monotonicity requires WW � WL � LL
and WW � LW � LL. Monotonicity allows players to be risk averse, preferring the
outcome WL to a 50-50 lottery on WW and LL, and allows players to be impatient,
preferring WL to LW.
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binomial model is rejected at the 5% level in 4 instances for professionals,
while it is rejected in 14 instances for students.5 Applying the Pearson Good-
ness of �t test to each subject�s choice of all four cards, the null hypothesis
that the subject choose all four cards according to the equilibrium mixture is
rejected at the 5% level for only 2 professionals, while it is rejected for 7 stu-
dents. The joint hypothesis that all 40 players choose their cards according
to the equilibrium mixture is not rejected for professionals (p-value 0:988),
while it is rejected at the 1% level for students (p-value 0:006).6

As noted earlier, a striking feature of the PH-V data is that the actual
play of professionals is �too close� to expected play to be consistent with
the players following the minimax iid mixture. There were 16 professionals
who chose between 79 and 81 Jokers, whereas we would expect only 6.85
under minimax play. The probability that 16 or more (of 40) subjects play
within one card of the expected number of Jokers is only 0.00053. For the
non-Joker cards 1, 2, and 3, there were, respectively, 21, 16, and 18 profes-
sionals who chose within one card of the expected number. The probability
that 16 or more subjects play within one of the expected number of 2 cards
is only 0.004642 (only 8.35 such players are expected), and the analogous
probabilities for the 1 and 3 cards are much lower. Under minimax play it is
extremely unlikely that for any one of the cards there would be so many play-
ers for whom actual play is in such close correspondence with expected play.
The close correspondence of actual to expected play is especially striking
given that it holds for all four cards.
PH-V propose that �The excessive closeness of the observed frequencies

to the hypothesized ones suggests that subjects do not randomize, but rather
try to �match�some probabilities they have, consciously or unconsciously, in
mind.� If professionals were matching frequencies, then one might expect
to �nd serial correlation their choices but, employing a runs test, PH-V
do not reject randomness. In this section we examine whether the PH-V
data is consistent with professionals choosing cards to �match�the minimax
frequencies.

5These results are reported in Table X and XIV, respectively, in PH-V.
6See Table 3 of the present paper for these p-values.
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An important aspect of PH-V�s experimental design was that subjects
were not told the number of hands they would play. To see the signi�cance
of this feature, consider a repeated matching pennies game in which the
subjects are told they will play 200 times. A subject aiming to match the
minimax frequencies could do so by producing 100 Heads over the 200 rounds.
The subject, however, might not match the minimax frequencies over any
particular sequence of rounds �he might choose substantially more than 50
Heads over the �rst 100 rounds, say. If the number of rounds is not known,
then a subject aiming to match the minimax frequencies would need to choose
faces so that roughly half of his choices were Heads at any given point in the
experiment. In the O�Neill game, analogously, if a subject is matching the
minimax frequencies then we should �nd over any long interval of play that
roughly 40% of the cards are Jokers and that the frequencies of the other
cards are close to their minimax frequencies as well.7

Here we partition the data into the �rst 100 rounds (i.e., the �rst half of
the experiment) and the last 100 rounds. If professionals are indeed matching
frequencies, then the close conformity found over the whole experiment of
their empirical card frequencies to the expected frequencies should also be
found when each half of the data is considered in isolation. The hypothesis
that professionals choose an individual card (e.g., the Joker card) according
to the minimax binomial model should be rejected at the same (or perhaps
even a lower) rate in each half of the data than it was in the data overall.8

Similarly, the striking overall di¤erence between professionals and students
in the degree to which their play conforms to minimax should also be found
when each half of the data is considered in isolation.

A Randomized Binomial Test
We will be interested in testing whether the choice frequency of each

individual card is consistent with minimax play. To do so it is useful to in-

7It would be very di¢ cult to match the minimax frequencies, while at the same time
remaining unpredictable to ones opponent, even if a subject knew the frequencies and that
200 rounds would be played.

8Since each half of the data has only 100 plays, all else equal our tests will have lower
power and hence we would expect fewer rejections of the null hypothesis.
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troduce a randomized binomial test. Under the null hypothesis of minimax
play, the number of Joker cards chosen after 200 rounds is distributed Bino-
mial B(n; p), with cdf denoted by F (nJ ;n; p), where n = 200, p = :4, and nJ
is the number of Jokers. If niJ is the number of Jokers chosen by subject i, we
form the random test statistic ti where ti � U [0; F (0; 200; :4)] if niJ = 0 and
ti � U [F (niJ�1; 200; :4); F (niJ ; 200; :4)] otherwise. Under the null hypothesis
of minimax play, prior to the realization of niJ the statistic t

i is distributed
U [0; 1].9 For each ti, the associated p-value is pi = minf2ti; 2(1� ti)g, which
is also distributed U [0; 1].10 We reject the null hypothesis at signi�cance
level � if pi � �. This procedure generalizes in the obvious way to yield a
randomized test for each of the non-Joker cards.
For nearly all realizations of niJ , this randomized binomial test and a

deterministic decision rule of the same (approximate) size in which the null
is rejected if there are either too many or too few Jokers leads to the same
decision. Using the randomized test, if � = :05 and niJ = 66 then ti �
U [0:0173; 0:0247], and pi � U [0:0346; 0:0494], and the null is rejected for
every realization of pi. If niJ = 67 then ti � U [:0247; :0346], and pi � U [

0:0494; 0:0692], and the null is rejected with probability :030369. In contrast,
if we follow the deterministic rule of rejecting the null if there are fewer than
67 or more than 93 Jokers (a test of size :05105), we reject the null if niJ = 66
but do not reject it if niJ = 67. Only when n

i
J = 67 or n

i
J = 94 will the two

9Let z 2 [0; 1] be arbitrary. We show that Pr[ti � z] = z. To simplify notation, write
F (nJ) for F (nJ ; 200; :4). Let k = 0 if z � F (0) and let k 2 f1; : : : ; 200g be such that
F (k � 1) < z � F (k) otherwise. Observe that if niJ < k then Pr[ti � zjniJ ] = 1; if niJ = k
then Pr[ti � zjniJ ] =

z�F (k�1)
F (k)�F (k�1) ; if n

i
J > k then Pr[t

i � zjniJ ] = 0. Hence

Pr[ti � z] =
k�1X
j=0

Pr[niJ = j] +
z � F (k � 1)

F (k)� F (k � 1) Pr[n
i
J = k]

= F (k � 1) + z � F (k � 1)
F (k)� F (k � 1) [F (k)� F (k � 1)]

= z:

10To see this, note that Pr[pi � z] = Pr[minf2ti; 2(1 � ti)g � z] = Pr[minfti; 1 � tig �
z
2 ] = Pr[t

i � z
2 ] + Pr[t

i � 1� z
2 ] = z since t

i is distributed U [0; 1].
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decision rules lead to di¤erent decisions with positive probability.
A randomized binomial test has nonetheless two advantages over a deter-

ministic decision rule. First, even with a �nite sample, the randomized test
is symmetric and of exactly size �.11 More important, under the null that
each player chooses Joker with probability .4, then each pi is drawn from
the same continuous distribution (viz. the U [0; 1] distribution) and hence we
can apply the Kolmogorov-Smirnov (KS) goodness of �t test to determine
whether the empirical cdf of the 40 values of pi di¤ers from the theoretical
one.

The O�Neill Game �First half
Tables 1 and 2 show the card choice frequencies of professionals and stu-

dents, respectively, in �rst and last 100 rounds of the O�Neill game. We begin
by focusing on play in the �rst half, which is reported on the left hand side
of these tables. The null hypothesis that a player chooses Joker according to
the minimax binomial model in each of the �rst 100 rounds is rejected at the
5% level for 7 professionals and 6 students (in each case only 2 rejections are
expected under minimax play). For the 1, 2, and 3 cards, the null hypothesis
that each of these cards is chosen according to the minimax binomial model
is rejected at the 5% level in 6 instances for professionals and 4 instances for
students. Under the null, a total of 6 rejections, two rejections per non-Joker
card, are expected at the 5% level.
Next we consider the joint hypothesis that all 20 professionals in a given

role choose a given card according to the minimax binomial model.12 Since
there are two roles and four cards, 8 di¤erent null hypotheses are considered.

11PH-V reject the null that the Joker card is chosen according to the minimax binomial
model at the 5% signi�cance level if a player chooses fewer than 68 or more than 93 Jokers.
The test is not symmetric since the probabilities of these two events, 3:4594 � 10�2 and
2:4716� 10�2, respectively, are unequal. Moreover, the size of the test is :06 rather than
:05. The test would have been closer to the correct size if the rule had been to reject the
null whenever there were fewer than 67 Jokers.
12Let niJ denote the number of Joker cards, say, played by professional i in the �rst

100 rounds. Under the null niJ � B(100; :4) for each i, and hence the joint null is thatP20
i=1 n

i
J � B(2000; :4). We report the realized random p-values.
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This null is rejected at the 5% level for column players choosing the Joker
card (p-value 0.00017), the 1 card (p-value 0.030), the 2 card (p-value 0.020),
and for row players choosing the 3 card (p-value 0.014). Pooling the choices
of the two roles, the joint null that all 40 professionals choose a given card
according to the minimax binomial model is rejected only for the 2 card. For
students, in contrast, the same hypotheses are not rejected for any for the
four cards, in either role, or when the choices of the two roles are pooled.
Pearson goodness of �t tests of the null hypothesis that a player chooses

all four cards in the �rst 100 rounds according to the minimax multinomial
model are reported in Table 3. (The table reports the p-values for these
tests.) Let ni1; n

i
2; n

i
3 and n

i
J denote the number of times in the �rst 100

rounds that subject i chose the 1, 2, 3, and Joker cards, respectively, and
let pi1; p

i
2; p

i
3 and p

i
J denote the true (but unknown) probability with which

subject i chooses each card. Under the null hypothesis that player i chose
cards according to the minimax mixture, i.e., pi1 = p

i
2 = p

i
3 = :2 and p

i
J = :4,

the statistic

Qi =
X

s2f1;2;3;Jg

(nis � 100pis)2
100pis

;

is asymptotically distributed chi-square with three degrees of freedom.
For the �rst 100 plays this null is rejected at the 5% level for 3 profession-

als and 3 students. The joint null hypothesis that all 20 players in a given
role choose all four cards according to the minimax multinomial model is
rejected at the 5% level for the row role, for both professionals and students.
The analogous null is not rejected for the column role or when the roles are
combined, for either professionals or students.
These results show that during the �rst 100 plays there is little di¤erence

between professionals and students in terms of the number of 5% rejections
of either the binomial minimax model for single cards, or the multinomial
minimax model for all four cards jointly. For both groups we obtain more
than the expected number of rejections of the minimax binomial model for the
Joker card. If anything, aggregate play is closer to equilibrium for students
�the joint null hypothesis that all the students in a given role choose a given
card according to the minimax binomial model is not rejected for any of the

11



cards, for either the column or the row role (or when the roles are pooled),
while the same null is often rejected for professionals.

The O�Neill Game �Second half
Perhaps professionals have learned to play equilibrium by the second half

of the experiment, while students have not. To assess this possibility, we
apply the same statistical tests to the last 100 rounds. (Play in the second
half is given on Tables 1 and 2 under the �Second Half�heading.) The null
hypothesis that players choose the Joker card according to the minimax bi-
nomial model is rejected at the 5% level for 7 professionals and 5 students.
For the non-Joker cards, the minimax binomial model is rejected in 3 in-
stances for professionals and in 6 instances for students. This is similar to
the number of rejections we saw in the �rst half (6 for professionals and 4
for students). We now see slightly more rejections for students, although the
number of rejections does not exceed the number expected under the null.
Next we consider the joint null hypothesis that all the players in a given

role choose a given card according to the minimax binomial model. We
obtain 4 rejections (of 8 possible) at the 5% level for professionals �we reject
for column playing the 1, 2, and Joker cards and for row playing the Joker
card. We obtain only 2 rejections for students �column playing the 3 card
and the Joker card. However, pooling the choices of both roles, we obtain
no rejections for professionals while we obtain two rejections (for the 1 card
and the Joker card) for students.
Table 3 shows that the null hypothesis that all four cards are chosen

according to the minimax multinomial model is rejected for 3 professionals
and for 4 students (2 rejections are expected). For both professionals and
students, the joint null hypothesis that all players in a given role choose cards
according to the minimax multinomial model is not rejected at the 5% level
for either the column role, the row role, or when the roles are combined.13

These results show that in the last 100 rounds the behavior of profes-
sionals and students, at the individual level, is very similar in terms of the

13The p-value for students in the Row role is .051 and hence only just barely does the
null fail to be rejected.
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number of 5% rejections of the minimax binomial model for individual cards
and the minimax multinomial model for all four cards. For both groups
there are more rejections than expected of the minimax binomial model for
the Joker card.
The table below summarizes the results for the joint tests of the minimax

binomial and multinomial models, for the �rst and second half of the data.
A rejection at the 5% signi�cance level is indicated by a ���mark, where
the column headings �R,��C,�and �P�stand for row, column, and Pooled,
respectively.

Professionals Students
1st Half 2nd Half 1st Half 2nd Half

Card R C P R C P R C P R C P
1 � � �
2 � �
3 � � �
J � � � � �

1-2-3-J � �

Table 4: 5% Rejections of the Joint Minimax Binomial/Multinomial Model

In both halves, and especially for professionals in the �rst half, these joint
tests are rejected more frequently than we would expect under the theory.

KS Tests on the First and Last 100 Plays
An alternative test of the joint hypothesis that all the professionals choose

a given card according to its minimax probability is based on the empirical
distribution of the 40 values of pi obtained from applying the randomized
binomial test to each professional�s play. Under the null hypothesis that
professional i chooses the Joker card, say, according to the minimax binomial
model, then the p-value pi obtained from the randomized binomial test is
distributed U [0; 1]. The Kolmogorov-Smirnov (KS) test allows us to test
whether the empirical distribution of the pi�s is generated according to the
theory �i.e., the uniform distribution whose cdf is given by the 45� line.
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Formally, the KS test is as follows: The hypothesized cdf for the p-
values is the uniform distribution, F (x) = x for x 2 [0; 1]. The randomized
binomial test for a given card yields 40 p-values, one for each player. The
empirical distribution of these p-values, denoted F̂ (x), is given by F̂ (x) =
1
40

P40
i=1 I[0;x](p

i), where I[0;x](pi) = 1 if pi � x and I[0;x](pi) = 0 otherwise.
Under the null hypothesis, the test statistic K =

p
40 supx2[0;1] jF̂ (x) � xj

has a known distribution (see p. 509 of Mood, Boes, and Graybill (1974)).
In addition to its visual appeal, the KS joint test has several advantages

over joint tests based on the binomial distribution (for a single card) or the
Pearson goodness of �t test (for all four cards jointly) used above. First, the
minimax hypothesis generates a prediction about the distribution of card fre-
quencies across players, and the KS test can be applied to determine whether
the empirical distribution of card frequencies matches the predicted one. The
Pearson joint test, in contrast, focuses on only one aspect of the distribution
�its mean. To illustrate this point, suppose that every subject in the PH-
V experiment chose exactly 80 Joker cards after 200 plays. The joint null
hypothesis that each player chose the Joker card according to the minimax
binomial model would not be rejected by the Pearson joint test, even though
such an outcome is clearly inconsistent with each of the players following an
iid mixture with probability .4 on the Joker card. The same joint null would,
however, be rejected by the KS test since the empirical distribution of the
p-values (i.e., the cdf which assigns all probability to p-values of 1) is not
close to the uniform distribution.
Second, the KS test is not sensitive to outliers since the empirical cdf

of p-values is little changed by the addition or removal of single p-value. In
contrast, since the Pearson joint test is based on the sum of the test statistics
of the individual players, the value of the statistic is sensitive to outliers. For
example, the minimax multinomial model is rejected for students on the basis
of the overall data (p-value of 0.006), but if we exclude the row player in pair
10 the p-value becomes .07 and the null is no longer rejected. The Binomial
joint test is based on the total number of times a given card is played, and
so it is also sensitive to the e¤ects of outliers.
The top panel of Figure 1 shows the empirical cdf of the p�s for the
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randomized binomial test applied to the Joker choices of professionals and
students, for the �rst 100 rounds. The bottom panel shows the empirical cdf
of p-values (40 for professionals and 40 for students) obtained by applying
the Pearson goodness of �t test to the choices of all four cards jointly. Figure
2 shows the empirical cdf of the p�s when the randomized binomial test is
applied to each of the non-Joker cards, for both professionals and students.
Table 5 reports the results of the KS test applied to each of the four

cards individually, as well as all four cards jointly. For professionals, we
cannot reject the joint null hypothesis that cards are chosen according to
the minimax binomial model for any of the cards (or all cards jointly). For
students, minimax play is rejected for the Joker card and for the 2 card. For
the Joker card there are too many small p-values; we have F̂ (:21) = :475,
i.e., 47.5% of the p-values (19 of the 40 values) are less than or equal to .21,
whereas only 8.4 such values are expected. The KS test shows that this is a
statistically signi�cant di¤erence. For the 2 card there are too many large
p-values; we have F̂ (:68) = :43, i.e., 57% of the p-values (23 of 40 values)
are greater than or equal to .68. In particular, actual play was too close to
expected play, with 22 students choosing the card either 39, 40, or 41 times.

Professionals Students
KS p-value KS p-value

J 1.153 0.140321 J 1.690 0.006625
1 1.279 0.075907 1 1.165 1.164581
2 0.891 0.404775 2 1.623 0.010276
3 0.832 0.493269 3 0.852 0.462152

1-2-3-J 1.012 0.256921 1-2-3-J 0.734 0.654362

Table 5: First Half �KS tests of conformity to U [0; 1]

In contrast to the binomial and multinomial joint tests presented earlier, the
KS test identi�es a dimension in which the play of professionals is closer to
equilibrium than the play of students in the �rst 100 rounds.
Figures 3 and 4 show the same cdf �s for professionals and students for the

last 100 rounds. A visual comparison shows a remarkably similarity between
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the cdf �s of the two groups for all four cards, both individually and jointly.
And, with the exception of the Joker card, the empirical cdf �s closely follow
the theoretical cdf. Table 6 shows that the joint null that each professional
chooses the Joker card according to the minimax binomial model just fails
to be rejected at the 5% signi�cance level. The analogous joint null is not
rejected for professionals or students for any other of the four cards. The
joint null that all four cards are chosen according to the minimax multinomial
model is also not rejected for either professionals or students.

Professionals Students
KS p-value KS p-value

J 1.335 0.056760 J 1.090 0.185479
1 0.553 0.920282 1 1.124 0.159444
2 0.707 0.699818 2 0.633 0.817785
3 0.689 0.729337 3 0.680 0.743792

1-2-3-J 0.964 0.311085 1-2-3-J 0.930 0.353073

Table 6: Second Half �KS tests of conformity to U [0; 1]

The empirical cdf s in Figures 1 through 4 show that professionals are
not, as PH-V suggest, choosing cards to �match�the minimax frequencies in
either the �rst or the second half of the experiment. If they were frequency
matching, the cdf �s would be characterized by too many large p-values, i.e.,
the empirical cdf F̂ (x) would lie far below the theoretical cdf F (x). In fact, a
visual inspection reveals that the empirical and theoretical cdf �s are generally
close, for both the �rst and second half, and for all four cards individually
and jointly.

4 Resolving the Puzzle

We have seen that the empirical card frequencies of professionals and students
exhibit a similar conformity to equilibrium, both in the �rst 100 rounds and
in the last 100 rounds. Yet, PH-V have shown that when the binomial or
multinomial Pearson goodness of �t tests are applied to the overall O�Neill
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data, the behavior of professionals appears to conform closely to equilibrium
while the behavior of students does not. How is this possible? Moreover, if
professionals are not matching frequencies, then why are their empirical card
frequencies too close to the theoretically expected frequencies?
In fact, the behavior of professionals and students does di¤er in important

ways. Moreover, it di¤ers in a way that explains both why there is a dramatic
di¤erence between students and professionals in the data overall and why the
empirical card frequencies of professionals are �too close� to the expected
frequencies.
In the equilibrium of the repeated O�Neill game, each player chooses cards

according the same iid mixture at each stage. An implication is that the em-
pirical frequency with which a player chooses the Joker card, say, in the
�rst half is uncorrelated with the frequency with which he chooses it in the
second half. The top panel of Figure 5 shows these frequencies for profes-
sionals, with each point (x; y) representing the �rst- and second-half Joker
frequencies, x and y, respectively, of a professional. A point where x < :4

and y > :4 falls in the upper-left quadrant and corresponds to a player who
underplayed Joker in the �rst half, but overplayed Joker in the second half.
A point on a line with slope �1 that passes though (:4; :4) corresponds to a
player whose choice frequencies di¤er from minimax in each half, but which
matches the minimax frequency overall.
Figure 6 plots the same frequencies for the non-Joker cards, where the

four quadrants are now de�ned relative to the .2 equilibrium mixture. For
convenience, each �gure also shows the linear regression line.
Table 7 below reports, for each card, the value of the Spearman rank

correlation coe¢ cient R between the frequency the card is played at the �rst
half and the frequency it is played in the last half.14 Under the null hypothesis
that the �rst and second half frequencies are independent, the distribution
of R is known and hence R can be used to obtain a non-parametric test of

14The calculation of the Spearman R corrects for ties in ranks, and is computed using the
webpage http://faculty.vassar.edu/lowry/corr_rank.html, authored by Richard Lowry.
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the null of independence. (See Gibbons and Chakraborti pp. 422-431.)

Professionals Students
R t p-value R t p-value

J -0.3195 -2.08 0.04432 J 0.3159 2.05 0.04731
1 -0.5804 -4.39 0.00009 1 0.2882 1.86 0.07064
2 -0.3688 -2.45 0.01900 2 -0.0160 -0.10 0.92087
3 -0.3463 -2.28 0.02831 3 -0.0427 -0.26 0.79627

Table 7: Spearman Rank Correlation Coe¢ cients

The choice frequencies of professionals are negatively correlated between
halves for each of the four cards, with the null hypothesis of no correlation
rejected for each card at the 5% (or smaller) signi�cance level. For students,
the same null hypothesis is not rejected for any of the non-Joker cards. For
the Joker card, however, the null hypothesis of no correlation is rejected
at the 5% signi�cance level, with the �rst-half and second-half frequencies
positively correlated.
A second implication of the minimax hypothesis is that if a subject plays

a card with, say, a frequency below its equilibrium frequency in the �rst half
(i.e., he underplays it), this has no bearing on the likelihood he will underplay
the card in the second half. In other words, a player�s choice frequencies are
equally likely to fall in each one of the four quadrants. It is immediately
visually apparent from Figures 5 and 6 that professionals who underplay a
card in the �rst half relative to its equilibrium frequency tend to overplay it
in the second half, and vice versa.
Table 8 shows the number of frequencies falling into each of the four

quadrants. There were 14 professionals who underplayed Joker in the �rst
half but overplayed it in the second half; there were 11 who switched from
overplaying to underplaying Joker. (Entries where the players �switch�are
shown in bold.) Hence 25 players switched from underplaying to overplaying
Joker (or vice versa). Ignoring the four players whose choices frequencies fall
on the boundary (i.e., which satisfy x = :4 or y = :4), we would expect only 18
of the remaining 36 players to make such a switch. The null hypothesis that
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the Joker frequencies are uniformly distributed over the four quadrants just
fails to be rejected at the 10% level for professionals (p-value 0.1116) using
the Pearson goodness of �t test.15 The same null hypothesis is decisively
rejected for each of the non-Joker cards, with p-values for the 1, 2, and 3
card of 0:0008, 0:0002, and 0:0272, respectively.16

1st Half/ Under/ Under/ Over/ Over/
2nd Half Over Under Over Under Total Q p-value
J 14 6 5 11 36 6.0000 0.1116
1 9 2 4 17 32 16.7500 0.0008
2 7 3 2 17 29 19.4138 0.0002
3 16 5 5 11 37 9.1622 0.0272

46 16 16 56 134

Table 8: Professionals, Counts by Quadrant

As shown in Table 9, the distribution of the �rst and second half choice
frequencies of students is, in contrast, far more consistent with minimax
play. The null hypothesis that the frequencies are uniformly distributed over
quadrants is not rejected for any of the non-Joker cards. The null is rejected
for the Joker card since students tend to underplay Joker in the second half,

15One can reject the null hypothesis that it is equally like that a player switches as not;
the probability of 25 or more switches in 36 trials is only 0.014 under the null.
16Although each test is meaningful on its own, the tests are not independent. A sub-

ject who switches from underplaying to overplaying Joker must necessarily switch from
overplaying to underplaying at least one of the non-Joker cards.
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irrespective of whether they under or overplayed it in the �rst half.

1st Half/ Under/ Under/ Over/ Over/
2nd Half Over Under Over Under Total Q p-value
J 3 16 7 10 36 10.0000 0.0186
1 11 8 9 6 34 1.5294 0.6755
2 11 5 10 5 31 3.9677 0.2650
3 11 9 6 5 31 2.9355 0.4017

36 32 38 26 132

Table 9: Students, Counts by Quadrant

Switching and the Consequences for Overall Play
When a subject overplays a card (relative to its equilibrium frequency) in

the �rst half, but underplays it in the second half, then the overall frequency
with which the card is played will tend to be closer to equilibrium than in
either half alone. Moreover, the sample variance will tend to be too small
relative to the sample variance under equilibrium play. Consider, for example,
the 200-time repeated matching pennies game. Under equilibrium play, the
expected number of heads is 100 and the variance is 50. If, instead, a subject
chooses H with probability :5+  in the �rst 100 plays, with 0 �  � :5, but
chooses H with probability :5� in the last 100 plays, the expected number
of heads remains 100, but the variance is reduced to 50(1�42). Thus, given
a collection of subjects whose play varies in this fashion, there will tend to
be too many subjects with approximately 100 heads after 200 plays. Under
the null hypothesis of a fair coin, applying the Binomial test there will tend
to be too many subjects with large p-values.17

Figures 7 and 8 show the empirical cdf of p-values for each card alone
and for all four cards jointly. For professionals, except for the Joker card, the
17There will as well tend to be too few rejections of the null hypothesis. Suppose our

decision rule is to reject the null if there are 86 or fewer or 113 of more heads after 200
plays. A simple calculation shows that if the null is true, it is rejected with probability
0.056. If, instead, subjects choose H with probability .8 in the �rst 100 plays and choose
H with probability .2 in the last 100 plays, then the null is rejected with probability 0.017.
In other words, against this alternative, the null is rejected with probability less than .056.
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empirical cdf of p-values lies far below the theoretical cdf, which indicates
the presence of too many large p-values. In fact, the empirical cdf �s of the
p-values is closer to the 45 degree line for students than professionals for each
of the four cards, with the exception of the Joker card where the distances
are virtually the same.
Table 10 shows the results of applying the KS test to the distribution

of p-values obtained when the randomized binomial test is applied to each
card individually and the Pearson goodness of �t test is applied all four cards
jointly. The KS test for the Joker card yields the same results for professional
and students �in each case the null that all subjects choose Joker according
to the minimax mixture is rejected. For professionals, the maximal distance
between the empirical cdf and the uniform cdf is at an �x�value of .833
where the value of the cdf is .6. In other words, 40% of professionals have
p-values above .833 whereas we would expect 16.7% to have such p-values.
Since the maximum distance occurs where the empirical cdf lies below the cdf
of the uniform distribution, the rejection is a result of there being too many
high p-values. For students, in contrast, the maximal di¤erence between the
two cdf s is where x = 0:365 and the empirical cdf lies above the uniform,
with too many low p-values.

Professionals Students
KS p-value KS p-value

J 1.477 0.025429 J 1.484 0.024464
1 2.332 0.000038 1 1.239 0.092692
2 1.917 0.001285 2 1.160 0.135789
3 1.693 0.006456 3 1.071 0.201243

1-2-3-J 2.434 0.000014 1-2-3-J 1.292 0.071098

Table 10: Overall �KS tests of conformity to U [0; 1]

For each non-Joker card, the KS test resoundingly rejects the joint null
hypothesis that professionals play the card according to the minimax bino-
mial model. In each case, the null is rejected as a result of the empirical
cdf having too many large p-values. The result for the 1 card is especially
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dramatic, with 82% of the p-values above .544. (Recall that the negative cor-
relation between �rst and second half play was greatest for the 1 card.) In
contrast, the null that a card is chosen according to its equilibrium mixture
is not rejected for any one of non-Joker cards for students. The hypothesis
that all four cards are jointly chosen according to the equilibrium mixture
is rejected for professionals (p-value of 0.000014), but it is not rejected for
students at the 5% signi�cance level.
In this section we have shown that the behavior of professional conforms

less closely to minimax than does the behavior of students in several respects.
First, the frequency with which professionals play a card in the �rst half
is negatively (and statistically signi�cantly) correlated with the frequency
it is played in the second half. Second, professionals tend to switch from
underplaying a card in the �rst half to overplaying it in the second half (or
vice versa). Third, for each card, and for all cards jointly, we can reject that
the distribution of p-values for professionals is uniform, as predicted by the
theory. The behavior of students, in contrast conforms with equilibrium in
all three respects, with the exception of the Joker card.
We conclude this section by noting that when subjects following non-

stationary mixtures, an additional consequence will be reduction in the num-
ber of runs. Consider again the matching pennies game. If n1 Heads and n2
Tails are played in n1 + n2 rounds, then the expected number of runs under
the null hypothesis of randomness is

2n1n2
n1 + n2

+ 1:

If, for example, n1 = 70 and n2 = 30 in the �rst 100 rounds, but the number
of Heads and Tails is reversed in the last 100 rounds, then 43 runs are ex-
pected in each half and 86 runs are expected overall. If, instead, 100 Heads
and 100 Tails are randomly distributed over 200 rounds, then 101 runs are
expected. Hence when subjects follow non-stationary mixtures, this will in-
troduce a bias towards too few runs (i.e., towards positive serial correlation)
and away from the negative serial correlation commonly found in laboratory
experiments with student subjects.
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5 Discussion

The Penalty Kick Game
The di¤erences between professionals and students found in the O�Neill

game are exhibited in the Penalty Kick game as well. Table 11 reports the
value of the Spearman rank correlation coe¢ cient between the �rst (i.e., 75
of 150 plays) and second half frequencies of Right.18

Professionals Students
R t p-value R t p-value

Row -0.4153 -1.94 0.06821 Row -0.0982 -0.41 0.68053
Column -0.4354 -2.05 0.05522 Column -0.2155 -0.94 0.36153

Table 11: Spearman Rank Correlation Coe¢ cients

Since there are only 20 professionals in each role, this test has lower power for
the Penalty Kick game than for the O�Neill game where (since the equilibrium
mixture was the same for both roles) we could pool the data for all 40 row and
column players. Nonetheless, for professionals the null of no correlation is
rejected at the 10% level, and just fails to be rejected at the 5% level, while
students exhibit no correlation between their �rst and second half choice
frequencies for either role.
Table 12 provides weak evidence that professionals in the column role

tend to switch from underplaying Right to overplaying it (and vice-versa),
with 14 of the 20 column players switching.19 Since professionals in the row
role tend to overplay Right in both halves, the null that the frequencies are
uniform is rejected. The same null is rejected for students in the row role;
they tend to underplay Right in both halves.

18In the Penalty Kick game each player has only two actions (L and R) and hence the
correlation coe¢ cient is the same whether we consider the Left frequencies or the Right
frequencies.
19Under the null, the probability of 14 or more switch is 0.0577, hence one just fails to

reject at the 10% level the null that professionals in the column role are equally likely to
switch as not.

23



1st Half/ Under/ Under/ Over/ Over/
2nd Half Over Under Over Under Total Q p-value

Pro. Row 1 1 12 6 20 16.40 0.0009
Column 6 3 3 8 20 3.60 0.3080

Student Row 6 12 2 0 20 16.80 0.0008
Column 5 9 1 5 20 6.40 0.0937

Table 12: Counts by Quadrant

Table 13 shows the results of applying the KS test to the distributions
of p-values obtained when the randomized binomial test is applied to the
Left-Right choices (over all 150 rounds) in the Penalty Kick game. For pro-
fessionals, minimax play is rejected for both the row and the column roles.
For the row role, the null is rejected as there are too many small p-values (14
of the p-values are 0.39 or smaller). For the column role there are too many
large p-values (17 of the 20 p-values are 0.4872 or higher).

Professionals Students
KS p-value KS p-value

Row 1.403 0.039058 Row 2.732 0.000001
Column 1.508 0.021187 Column 2.509 0.000007

Table 13: Overall �KS tests of conformity to U [0; 1]

Minimax play is resoundingly rejected by the KS test for students, with too
many small p-values for both the row and the column role.20

20In contrast to the O�Neill game, in the Penalty kick game the behavior of professionals
conforms more closely to equilibrium at the individual level than does the behavior of
students even when each half of the data is considered in isolation. In the �rst half, the
minimax binomial model is rejected at the 5% level for 3 professionals and 9 students.
In the second half, minimax play is rejected for 3 professionals and 6 students. As in
the O�Neill game, minimax play at the individual level is rejected more frequently for
professionals in each half of the data than it is in the data overall, which provides further
evidence that professionals follow di¤erent mixtures in each half.
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Conclusion
We have shown that the behavior of professionals departs from the min-

imax hypothesis in a number of respects in both the O�Neill game and the
Penalty Kick game �there is negative correlation between the �rst and sec-
ond half choice frequencies of each action. In addition, in the O�Neill game
there is a striking tendency for professionals to switch from underplaying a
card relative to its equilibrium frequency to overplaying it (and vice-versa).
Negative correlation and switching cause the empirical choice frequencies
to be too close to the theoretical frequencies for each of the four cards in
the O�Neill game and for the column player in the Penalty kick game. Ap-
plying the KS test to the distribution of p-values (for the overall data) for
professionals, we strongly reject the minimax binomial model for each card
individually and the minimax multinomial model for all cards jointly in the
O�Neill game. The KS test also rejects minimax play for both the row and
the column player in the Penalty Kick game.
Students, however, exhibit no correlation between their �rst-half and

second-half choice frequencies in either game (except for the Joker card in
the O�Neill game), nor do they exhibit any tendency to switch between under
and overplaying a card. The KS test does not reject minimax play in the
O�Neill game, although it is does in the Penalty Kick game. Hence, with
respect to (i) correlation between halves, (ii) the likelihood of �switching�
between halves, and (iii) the empirical distribution of p-values, the behav-
ior of students conforms more closely to theory than does the behavior of
professionals, especially for the O�Neill game.
Considering the overall data (200 rounds in O�Neill and 150 rounds in the

Penalty Kick game) the empirical choices frequencies are closer to the the-
oretical predictions for professionals than students, but the di¤erence seems
to be a result of the fact that professionals do not follow the same iid mix-
ture as the theory says they should. If in the PH-V experiment the O�Neill
game had ended after 100 rounds instead of 200, their experiment would have
found no signi�cant di¤erence between professionals and students in terms
of the conformity of the their empirical mixtures to the minimax mixture.
Nor have professionals learned to play minimax in the last 100 plays while
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students have not �as we have shown, the behavior of students and profes-
sionals conforms equally well to minimax when the second half of the O�Neill
game data is considered alone.
Why do professional follow non-stationary mixtures, switching from over-

playing a card to underplaying it (or vice-versa)? Perhaps professionals ini-
tially play a non-minimax mixture with the goal of inducing their rival to
play a non-minimax mixture and then subsequently exploiting their rival�s
deviation. For example, a row player might overplay the Joker card in an
attempt to get his rival to overplay non-Joker cards and then exploit his rival
by switching to overplaying non-Joker cards.21 Such behavior is, of course,
inconsistent with the minimax hypothesis; moreover, it is unclear why, ex-
cept by chance, it would lead to choice frequencies over all 200 rounds that
are close to the minimax frequencies.
Alternatively, perhaps there was some �aw in the conduct of the exper-

iment. To a professional who has overplayed Joker in the �rst half of the
experiment, the experimenter might have inadvertently provided a cue to
play Joker less frequently in the second half. In a mixed-strategy equilib-
rium, a player is indi¤erent between alternative actions and hence even a
small cue or intimation might have a signi�cant in�uence on choices. (The
cue need not even be consciously noticed by the subject or the experimenter.)
This might explain the negative correlation and tendency to switch that we
have documented for professionals.
Since there is no obvious theoretical justi�cation why professionals (but

not students) would follow non-stationary mixtures, e¤orts to replicate the
PH-V results seem especially important. Our results suggest that it may be
useful to focus on the whether professionals follow non-stationary mixtures
in the analysis of replication studies. Although not an exact replication,
Levitt, List, and Reiley (2007) �nd no evidence that the behavior of American
Major League Soccer players conforms more closely to minimax than does
the behavior of students in the O�Neill game. Van Essen and Wooders (2007)
�nd di¤erences in the behavior of experienced and novice poker players in

21I�m grateful to Mark Walker for suggesting this possibility.

26



a mixed-strategy poker game, but even experienced players generally do not
play in conformity with minimax.

References

[1] Brown, D. and R. Rosenthal (1990): �Testing the Minimax Hypothesis:
A Reexamination of O�Neill�s Experiment,�Econometrica 58, pp. 1065-
1081.

[2] Camerer, C. (2003): Behavioral Game Theory, Experiments in Strategic
Interaction, Princeton University Press, Princeton.

[3] Chiappori, P., S. Levitt, and T. Groseclose (2002): �Testing Mixed
Strategy Equilibria When Players are Heterogeneous: The Case of
Penalty Kicks in Soccer,� American Economic Review 92, pp. 1138-
1151.

[4] Hsu, S., Huang, C. and C. Tang (2007): �Minimax Play at Wimbledon:
Comment,�American Economic Review 97, pp. 517-523.

[5] Gibbons, J. and S. Chakraborti (2003): Nonparametric Statistical In-
ference, New York: Marcel Dekker.

[6] Levitt, S., List, J., and D. Reiley (2007): �What Happens in the Field
Stays in the Field: Professionals Do Not Play Minimax in Laboratory
Experiments,�University of Arizona working paper 07-11.

[7] Mood, A., Graybill, F., and D. Boes (1974). Introduction to the Theory
of Statistics, New York: McGraw Hill.

[8] Mookherjee, D. and B. Sopher (1994): �Learning behavior in an ex-
perimental matching pennies game,�Games and Economic Behavior 7,
62-91.

[9] Ochs, J. (1994): �Games with a Unique Mixed Strategy Equilibria: An
Experimental Study,�Games and Economic Behavior 10, 202-217.

27



[10] O�Neill, B. (1987), �Nonmetric Test of the Minimax Theory of Two-
Person Zero-Sum Games,�Proceedings of the National Academy of Sci-
ences 84, 2106-2109.

[11] O�Neill, B. (1991). �Comments on Brown and Rosenthal�s Reexamina-
tion,�Econometrica 59, 503-507.

[12] Palacios-Huerta, I. (2003): �Professionals Play Minimax,� Review of
Economic Studies 70, pp. 395-415.

[13] Palacios-Huerta, I. and O. Volij (2008): �Experientia Docent: Profes-
sionals Play Minimax in Laboratory Experiments,�Econometrica 76,
pp. 71-115.

[14] Rapoport, A. and R. Boebel (1992): �Mixed Strategies in Strictly Com-
petitive Games: A Further Test of the Minimax Hypothesis,�Games
and Economic Behavior 4, 261-283.

[15] Rosenthal, R., J. Shachat, and M. Walker (2003): �Hide and seek in
Arizona,�International Journal of Game Theory 32, pp. 273-293.

[16] Shachat, J. (2002): �Mixed Strategy Play and the Minimax Hypothesis,�
Journal of Economic Theory 104, pp. 189-226.

[17] Walker, M. and J. Wooders (2001): �Minimax Play at Wimbledon,�
American Economic Review 91, pp. 1521-1538.

[18] Van Essen, M. and J. Wooders (2007): �Blind Stealing: Experience and
Expertise in a Mixed Strategy Poker Experiment,�working paper.

[19] Wooders, J. and J. Shachat (2001): �On The Irrelevance of Risk At-
titudes in Repeated Two-Outcome Games,�Games and Economic Be-
havior 34, pp. 342-363.

28



Pair Player 1 2 3 J

1 C 23 23 24 30 ** 16 14 18 52 **
R 19 28 * 24 29 ** 19 17 34 ** 30 ** ** **

2 C 20 22 23 35 20 19 27 * 34 * *
R 23 22 22 33 18 21 27 34 *

3 C 25 21 23 31 * 14 14 18 54 **
R 25 25 14 36 17 14 26 43

4 C 18 20 21 41 11 ** 17 24 48 **
R 19 19 18 44 24 22 18 36

5 C 22 21 16 41 18 18 26 38
R 20 17 28 ** 35 16 22 13 * 49 *

6 C 27 * 18 17 38 14 19 24 43
R 21 20 16 43 21 21 21 37

7 C 23 21 19 37 18 17 22 43
R 20 24 13 * 43 23 19 13 * 45 **

8 C 26 15 24 35 19 15 17 49 * *
R 22 23 19 36 17 20 20 43

9 C 20 16 20 44 21 20 21 38
R 22 21 21 36 15 18 22 45

10 C 21 25 16 38 18 14 27 * 41
R 14 17 7 ** 62 ** 21 19 27 33 **

11 C 27 * 22 23 28 ** 23 18 18 41 *
R 21 21 12 ** 46 20 17 22 41

12 C 17 23 20 40 22 17 21 40
R 16 18 23 43 24 22 16 38

13 C 21 23 17 39 18 20 21 41
R 17 21 18 44 26 16 21 37

14 C 20 31 ** 22 27 ** 21 27 * 17 35 ** **
R 17 12 ** 18 53 ** 20 25 23 32

15 C 21 23 24 32 * 21 14 16 49 *
R 19 19 13 * 49 * 24 21 21 34

16 C 23 20 16 41 16 13 * 19 52 ** *
R 17 19 14 50 ** 24 20 25 31 *

17 C 22 27 18 33 23 16 23 38
R 16 28 * 21 35 25 18 17 40

18 C 20 29 ** 19 32 * 21 20 23 36 *
R 25 16 17 42 17 23 19 41

19 C 21 21 18 40 13 * 20 17 50 **
R 19 20 18 43 22 24 29 ** 25 ** *

20 C 22 21 21 36 15 20 15 50 **
R 21 19 21 39 18 23 19 40

C 439 ** 442 ** 401 718 ** 362 ** 352 ** 414 872 **
R 393 409 357 ** 841 * 411 402 433 * 754 **

Overall 832 851 ** 758 * 1559 773 754 * 847 * 1626

Notes: ** and * denote rejection of minimax binomial model for a given card at the 5% and 10% level, respectively.

Table 1: Professionals Playing O'Neill

First Half Second Half Overall

1 2 3 2J 1 3 J



Pair Player 1 2 3 J

1 C 16 19 23 42 12 ** 22 29 ** 37 ** **
R 19 28 ** 22 31 * 26 26 17 31 * ** **

2 C 15 19 17 49 * 22 22 25 31 *
R 19 16 14 * 51 ** 22 20 18 40

3 C 20 21 20 39 26 17 25 32 *
R 16 24 21 39 24 17 22 37

4 C 17 18 20 45 18 18 25 39
R 13 * 16 15 56 ** 16 27 * 16 41 * **

5 C 17 20 17 46 22 15 22 41
R 11 ** 19 22 48 16 19 25 40 **

6 C 25 24 21 30 ** 18 22 25 35 **
R 16 19 27 * 38 21 24 20 35

7 C 20 12 ** 19 49 * 20 18 14 48 * **
R 21 20 22 37 25 17 21 37

8 C 20 20 15 45 17 25 22 36
R 22 21 17 40 17 24 16 43

9 C 15 22 19 44 25 21 20 34
R 14 19 24 43 16 24 16 44 *

10 C 27 * 15 25 33 23 22 17 38 *
R 33 ** 27 * 20 20 ** 23 25 20 32 * ** ** **

11 C 15 28 * 21 36 30 ** 24 20 26 ** ** **
R 19 14 19 48 20 21 17 42

12 C 20 19 13 * 48 23 25 22 30 **
R 25 21 17 37 31 ** 21 19 29 ** ** **

13 C 16 18 17 49 * 24 22 25 29 **
R 17 26 18 39 18 13 * 21 48 *

14 C 19 19 16 46 20 20 25 35
R 18 20 23 39 16 26 29 ** 29 ** ** *

15 C 17 21 17 45 22 20 23 35
R 14 19 17 50 ** 14 23 23 40 **

16 C 23 21 17 39 22 22 15 41
R 21 22 22 35 28 * 17 16 39

17 C 19 21 18 42 23 20 22 35
R 22 14 20 44 17 18 20 45

18 C 25 21 17 37 18 20 19 43
R 26 21 20 33 27 * 21 17 35 ** *

19 C 28 * 25 19 28 ** 23 23 20 34 * **
R 25 19 24 32 * 35 ** 18 14 33 ** **

20 C 24 21 17 38 19 18 24 39
R 24 16 14 46 15 25 19 41

C 398 404 368 * 830 427 416 439 ** 718 ** *
R 395 401 398 806 427 426 386 761 *

Overall 793 805 766 1636 854 ** 842 * 825 1479 ** *

Notes: ** and * denote rejection of minimax binomial model for a given card at the 5% and 10% level, respectively.

Table 2: Students Playing O'Neill

First Half Second Half Overall

1 2 3 2J 1 3 J



Pair Player

1 C 0.241 0.094 * 0.940 0.706 0.053 * 0.065 *
R 0.070 * 0.005 ** 0.002 ** 0.140 0.108 0.022 **

2 C 0.735 0.334 0.257 0.287 0.299 0.950
R 0.557 0.308 0.223 0.129 0.940 0.316

3 C 0.287 0.034 ** 0.804 0.995 0.165 0.451
R 0.195 0.233 0.987 0.643 0.643 0.930

4 C 0.965 0.075 * 0.180 0.735 0.643 0.604
R 0.873 0.659 0.885 0.012 ** 0.253 0.031 **

5 C 0.783 0.513 0.987 0.615 0.643 0.732
R 0.233 0.140 0.885 0.117 0.552 0.096 *

6 C 0.362 0.411 0.962 0.204 0.517 0.184
R 0.783 0.945 0.950 0.334 0.688 0.515

7 C 0.855 0.783 0.985 0.153 0.308 0.062 *
R 0.324 0.311 0.105 0.924 0.578 0.615

8 C 0.215 0.287 0.341 0.599 0.513 0.780
R 0.777 0.879 0.962 0.873 0.517 0.575

9 C 0.753 0.978 0.919 0.593 0.532 0.960
R 0.873 0.517 0.922 0.411 0.423 0.342

10 C 0.532 0.215 0.962 0.103 0.753 0.280
R 0.000 ** 0.287 0.192 0.000 ** 0.348 0.000 **

11 C 0.082 * 0.831 0.257 0.179 0.013 ** 0.040 **
R 0.241 0.879 0.651 0.321 0.896 0.513

12 C 0.825 0.873 0.997 0.251 0.221 0.729
R 0.643 0.593 0.998 0.578 0.027 ** 0.025 **

13 C 0.807 0.965 0.950 0.324 0.153 0.985
R 0.777 0.411 0.922 0.480 0.231 0.732

14 C 0.015 ** 0.311 0.007 ** 0.615 0.599 0.993
R 0.044 ** 0.348 0.852 0.879 0.022 ** 0.066 *

15 C 0.407 0.197 0.953 0.665 0.735 0.997
R 0.206 0.615 0.744 0.187 0.440 0.175

16 C 0.735 0.075 * 0.263 0.807 0.643 0.484
R 0.187 0.253 0.993 0.783 0.215 0.457

17 C 0.253 0.615 0.596 0.940 0.735 0.971
R 0.197 0.593 0.720 0.494 0.735 0.451

18 C 0.127 0.825 0.267 0.578 0.924 0.885
R 0.457 0.807 0.888 0.380 0.311 0.096 *

19 C 0.960 0.145 0.423 0.044 ** 0.615 0.034 **
R 0.924 0.014 ** 0.327 0.296 0.002 ** 0.004 **

20 C 0.873 0.172 0.777 0.706 0.783 0.943
R 0.982 0.873 0.987 0.231 0.462 0.596

C 0.606 0.173 0.913 0.59 0.43 0.72
R 0.041 ** 0.242 0.962 0.02 ** 0.05 * 0.00 **

Overall 0.140 0.131 0.988 0.08 * 0.10 0.006 **

Notes: ** and * denote rejection of minimax multinomial model for a given card at the 5% and 10% level, respectively.

First 100 Last 100 Overall

Professionals Students

First 100 Last 100 Overall

Table 3: Pearson Goodness of Fit, All Cards



Figure 1: KS test on First Half for Joker Choices and All Card Choices
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Figure 2: KS test on First Half for non-Joker Cards
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Figure 3: KS test on Second Half for Joker Choices and All Card Choices
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Figure 4: KS test on Second Half for non-Joker Cards
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Figure 5: Joker Frequencies By Half
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Figure 6: non-Joker  Frequencies By Half
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Figure 7: KS test on Overall Play for Joker Cards and All Cards Jointly
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Figure 8: KS test on Overall Play for non-Joker Cards
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