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ABSTRACT.  What are the behavioral effects of allowing for risk mitigation in situations 
where the probabilities are unknown to the agent? Virtually all naturally occurring 
environments of risk management involve subjective probabilities, and allow decision 
makers to mitigate risk as well as make choices over risky alternatives. To examine this 
environment we design a laboratory experiment in which incomplete information about 
probabilities is generated in a naturalistic way from the perspective of decision makers, but 
where the experimenter has complete information. Specifically, we use virtual simulations of 
property that is at risk of destruction from simulated wild fires. We find that subjective 
beliefs are significantly affected by the presence of self protection opportunities, leading to 
over investment in mitigation. These findings have direct implications for the normative 
evaluation of risk management policies when risk perception is subjective. 
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 Most interesting choices in risky environments allow individuals to undertake self-

protection actions that alter the risk that they face. In the business world this is one 

component of what is called risk management. Using the formal metaphor of economics, 

individuals choose the probabilities that apply to each outcome in a risky prospect, rather 

than just choosing between risky prospects with given probabilities. Consider the case of the 

risk that a wild fire, caused by a lightning strike, burns down your house. The likelihood of a 

lightning strike is exogenous, thus a homeowner cannot affect this event. However, this 

likelihood does not translate directly into an exogenous probability of damage to the house, 

since the homeowner can take various actions to mitigate that risk, such as removing dead 

wood and debris in the surrounding landscape.  

 Importantly, in almost all cases of voluntary risk management the risk is not precisely 

known. In such circumstances, an important determinant of the willingness to undertake risk 

mitigation is the subjectively perceived probability of damage. Experiments using virtual 

reality provide an ideal study environment in which the probability can be known to the 

researcher but unknown to the decision maker. It is also an environment that incorporates 

many natural cues about the risk and is a unique aspect of this study. We observe how this 

perception is influenced by the way that the experimenter elicits the subjective probabilities.  

Following Ehrlich and Becker (1972), EB, we distinguish between risk mitigation actions 

that affect the probability of damage, referred to as self-protection, and actions that affect 

the monetary consequences of damage if it occurs, referred to as self-insurance. These 

actions form the analytical core of the discipline of “risk management,” and apply to 

individuals, enterprises, and public agencies.1  

                                                 
1 In a review of the evolution of insurance economics since 1973, Loubergé (2000; p. 7) notes that Ehrlich and 
Becker (1972) “… were the first to propose a rigorous analysis of risk prevention. They coined the terms self-
protection and self-insurance to designate the two mechanisms and studied their relationship to ‘market 
insurance.’ For this reason, this paper may be seen as the first theoretical paper on risk management.” 
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We compare two methods of eliciting the subjective beliefs: one is a betting 

mechanism over given but unknown probabilities, in our case a betting instrument, and one 

where the subject has the option to mitigate the risk through self protection, i.e. change the 

unknown probabilities by expressing a willingness to pay. In the risk mitigation treatment we 

give subjects the costly option of managing the forest using prescribed burns, thereby 

decreasing, but not eliminating, the amount of wild fire fuel and the risk of high cost fires. 

This choice is discrete: either implement a certain level of prescribed burn or not.  This is a 

natural choice structure when using prescribed burn as the fire management tool since there 

is not a choice of how much of the fuel to burn, but only the choice to burn it all or not. 

The subject owns a virtual house in the virtual forest, and we model salient incentives by 

giving the house a monetary value that will be paid out to the subject at the end of the 

experiment if the house has not burned. We ask the question: “Are beliefs elicited over 

exogenously given risk the same as beliefs inferred from self protection?” If not, then one 

cannot use beliefs elicited over exogenously given risk to predict self protecion choices.   

 Controlling for risk attitudes, we find that our subjects drastically overestimate loss 

probabilities. However, in the treatments with exogenous risk they underestimate the 

reduction in the loss probability that results from the prescribed burn. On the other hand, 

when placing the same subjects in situations with voluntary self-protection opportunities, 

they in fact over- rather than underestimate the reduction in the loss probability resulting 

from the prescribed burn. Thus, if we want to predict how much would be voluntarily 

invested in risk mitigation based on the elicited subjective probabilities, the manner in which 

we elicit these probabilities matter in important ways. Thus, deviations from optimality 

under self-insurance, where probabilities are exogenous, would not be the same as deviations 

under self-protection. The finding that subjects overestimate the risk reduction that results 

from their mitigating investment resembles experimental findings of over confidence in 
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market entry experiments.3 In these experiments subjects overestimate their ability to make 

profits post entry, and entry decisions are therefore suboptimal.  

 We agree with Shogren and Crocker (1994, p. 4) that “…recognition of the 

frequently endogenous nature of risk raises questions about the assessment-management 

bifurcation now common in scientific policy discussions about environmental risks to 

human health and property.”  Self-protection makes loss probabilities endogenous, so that 

policies based on actuarial probabilities derived from natural sciences can lead to suboptimal 

recommendations.  We add to their insights the observation that agents do not perfectly 

estimate the loss probabilities, and that these estimates may be influenced by psychological 

values that depend on the extent to which individuals perceive their control over the risk. 

This possibility was hinted at by Shogren and Crocker (1994, p. 1) when referring to how a 

psychological inability to cope with risk may cause decision makers to misperceive it 

systematically. 

 Shogren (1990) observes choices under both self-protection and self-insurance in an 

experiment where subjects face risky options with known probabilities. The risky options are 

designed so as to completely eliminate the possibility of a loss. The self-protection and the 

self-insurance schemes differ in both expected value and variance. The valuations observed, 

while supporting the claim that the two schemes are not seen as symmetric by the agents, are 

therefore not designed to answer our question. Shogren (1990) asks whether valuations of 

risk mitigation options when probabilities are known are higher for the self-protection 

option than the self-insurance option when the former has both a larger expected gain and a 

larger reduction in risk. Shogren does not address our question of whether elicitation 

methods resembling self-insurance and self-protection affect the inferred probabilities, when 

the latter are unknown to the subject. We further contribute to the understanding of risk 

                                                 
3 See Camerer and Cavallo (1999) 
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mitigation decisions by estimating structural models of choice that allow us to separate 

preference effects from perception effects on valuations.  

 In a related experiment Bruner (2009) observes how choices between a certain 

amount and a risky lottery change as probabilities are varied and as outcomes are varied. 

Using a design where subjects choose between a certain and a risky option, and where 

probabilities are known he reports no significant differences in the estimated constant 

relative risk aversion (CRRA) coefficient across these formats.  

 In the next section we briefly review the theory of self-protection and self-insurance 

of EB. We then describe our experimental design, our econometric strategy, and then give a 

detailed account of our estimation results.  

 

I. Theory 

Suppose there are two states of nature: for example, your house burns or it does not. 

We review here the expected utility theory of risk mitigation from EB. Let the probability of 

damage be p . Then the expected utility of an individual is given by: 

EU= )()(]1[ lxpUxUp   

where x is initial wealth, l is the loss experienced, and no mitigation is possible. 

EB distinguished between two forms of mitigation – self-insurance and self-

protection. Self-insurance investment consists of expenditures made to reduce the value of the 

loss caused by the occurrence of the house burning. Define the loss function as L = L(l, c) 

where c  is self-insurance investment; )(cL  is assumed to be negatively sloped, implying that 

loss decreases as self-insurance increases. The agent’s problem now is to choose c to 

maximize: 

 EU = )),(()()1( cclLxpUcxUp   

For self-insurance investment to be positive 1)(  cL  must hold.  
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Self-protection is investment made to reduce the probability of incurring any damages 

when the bad outcome occurs.  Let P = P (p, d ) be the effective risk function that takes into 

account the ability of the individual to change the risk faced, and where p is the exogenous 

risk of damage occurring, d is the expenditure on self-protection, and 0)(  dP . In the 

absence of market or self-insurance the agent’s problem is then to choose self-protection 

investment d to maximize: 

EU =  )(),()()],(1[ dlxUdpPdxUdpP   

where l  is the dollar damage caused. Self-protection is the only available mitigation 

alternative in our experiments. 

 In this model the probability of damage, conditional on the bad outcome occurring, 

is itself a function of the investment made by the individual to reduce risk. Allowing for self-

protection makes risk endogenous, since here the risk P is affected by the mitigation activity 

undertaken by the individual. Note that  an individual has the same utility function, whether or 

not risk can be mitigated, although the level of utility may of course differ in the two cases. 

This implies that if the utility function, the exogenous underlying probability, and the risk 

mitigation function are known, it is possible to predict the optimal level of mitigation. 

Further, recognizing that the perceived probability of the risk may not be equal to 

the actual, objective probability since the latter is not known to the agent, the theory is 

amended with a function that maps p to the experiences and information that agents use to 

form their beliefs. Thus p could be modeled as 

 ),,( Iepf  

where is the perceived, subjective probability, a function of the actual objective probability

p , experiences e, and information I. In our virtual reality simulations we allow subjects to 

gain experience so that, for any given objective probability p , the perceived probability

may change. In addition, experiences and information may not affect all subjective 
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probabilities equally, and may not affect them the same way under different choice 

conditions.  We would then have the risk mitigation function Π = Π (π, d ).  

 Our main hypothesis is that Πd > Pd  the perceived damage probability under self-

protection is greater than it is in the absence of self-protection. 

 

II. Experimental Design 

The experimental design is built on a naturalistic presentation of the risk of damages, 

where Virtual Reality (VR) simulations are used to mimic natural risk, but where no precise, 

numeric information of probabilities is given to subjects. This methodology provides a 

methodologically important intermediate environment between field experiments and lab 

experiments. The natural cues of field experiments are mimicked through simulated 

naturalistic cues in the VR environment, while still allowing the rigorous controls of a lab 

experiment. Our VR simulation is of wild fires in the Ashley National Forest in Utah, where 

the subject is the owner of a log cabin that gives him a monetary payout if it does not burn. 

The design includes a number of tasks that allow identification of the factors that 

theoretically influence decisions, including risk attitudes and probability perceptions. These 

tasks include two betting tasks, three willingness to pay (WTP) tasks, a standard lottery task 

in the gain domain, and a standard lottery task in the loss domain. 

Each of the 7 tasks involves a series of binary choices.4 Every subject participates in 

all tasks, and one task is randomly selected at the end of the experiment to determine the 

subjects’ earnings, following common experimental practice.5  This has the advantage of 

                                                 
4 Subjects were given 11 tasks, but only 7 are analyzed here. The additional 4 tasks were given after these 7. 
5 A simple procedure is used to ensure that the random nature of this process is credible, using the following 
instructions: “The box in front of you has 11 envelopes and 11 cards numbered 1 through 11. Please put one 
card into each envelope and close the envelopes. I will now shuffle these envelopes.  The envelopes have now 
been carefully shuffled and I ask that you pick one of them. The number on the card in the envelope you 
selected determines which task you will be paid for. But you will not know which one until the end of the 
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avoiding any “wealth or portfolio effect” that may arise if subjects are paid for multiple 

decisions made at the same time. 

The betting tasks and the WTP tasks use VR simulations of wild fires, and are used 

to elicit subjective probabilities with and without self-protection. These tasks constitute the 

core of the experiment, where subjects do not know the exact probabilities over events. 

Instead each outcome is generated by running simulations with a set of parameters that 

determine the intensity, speed and direction of spread of a wild fire. These parameters are 

stochastic with known, discrete distributions. The effects that various combinations of these 

factors have on the wild fire are not known to the subjects, but they are given some limited 

exposure to that relationship before making their choices. This mimics the limited 

information conditions that are common in field decision situations. 

A considerable amount of time in the experiment is spent on the instructions for the 

VR tasks, including an extensive explanation of the betting mechanism. We control for order 

effects by varying whether subjects experience the VR betting task first, followed by the VR 

WTP task, or vice versa. Following the VR tasks, subjects are also given a series of lottery tasks 

with known probabilities, intended to elicit risk attitudes.  

The next section describes in detail the VR tasks used to elicit subjective beliefs. We 

explain both the betting mechanism and the WTP task. We then explain 6 lottery tasks with 

known probabilities. These vary in terms of the use of gain and loss frames, and in terms of 

the choices being made over monetary outcomes or over probabilities.  

 

 

 

                                                                                                                                                 
experiment when you will be allowed to open the envelope.” All experiments were conducted with one subject 
at a time. 
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The Virtual Reality Simulations 

Subjects are told that the VR simulations are based on the Ashley National Forest in 

Utah, and that they have a virtual property in this area in the form of a log cabin. The path 

of the simulated fire spread is generated using FARSITE, a fire behavior simulation model 

developed by Finney (1998) and widely used by fire management professionals. The 

rendering software that performs the visual simulation of the forest and the fire is from 

Fiore, Harrison, Hughes and Rutström (2009), FHHR.  The simulated area is subject to wild 

fire, and in the WTP task they must make a decision whether to pay for a prescribed burn or 

not, which would reduce the risk that their property would burn. The prescribed burn option 

is discrete: either the entire forest is prescribed burn and all excess fuel removed or not.  

There is no option to do partial burns. There are no VR simulations of the prescribed burn 

itself. The prescribed burn only matters as the cause for the high or low fuel loads that 

generate the high vs. low risk scenarios.  

Subjects receive 3 pieces of information about the risk to their property.  First, they 

are told that the background uncertainties are generated by (a) temperature and humidity, (b) 

fuel moisture, (c) wind speed, (d) duration of the fire, and (e) the location of the ignition 

point. They are also told that these uncertainties are binary for all but the last, which is 

ternary; hence there are 48 background scenarios. They are also told what the specific values 

are for these conditions (e.g., low wind speed is 1 mph, and high wind speed is 5 mph). Thus 

subjects could use this information, their own sense of how these factors play into wild fire 

severity, and their experiences and inferences from the VR experience, explained below, to 

form some probability judgments about the risk to their property. The objective is to 

provide information in a natural manner, akin to what would be experienced in the actual 

policy-relevant setting, even if that information does not directly “tell” the subject the 

probabilities. 
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Second, the subject is shown some histograms displaying the distribution of acreage 

in Ashley National Forest that is burnt across the 48 scenarios. Figure 1 shows the 

histograms presented to subjects. The vertical axis is deliberately scaled in terms of natural 

frequencies defined over the 48 possible outcomes, and the scaling of the axes of the two 

histograms is identical to aid comparability. The qualitative effect of the enhanced prescribed 

burn policy is clear: to reduce the risk of severe wild fires. Of course, the information here is 

about the risk of the entire area burning, and not the risk of their personal property burning, 

and that is pointed out in the instructions. 

Third, subjects are allowed to experience several of these scenarios in a VR 

environment that renders the landscape and fire as naturally as possible. Figure 2 illustrates 

the type of graphical rendering provided, although static images such as these do not do 

justice to the VR “presence” that was provided. Some initial training in navigating in the 

environment is provided, which for this software is essentially the same as in any so-called 

“first person shooter” video game.6 The mouse is used to change perspective and certain 

keys are designated for forward, backward, and sideward movements, as well as up and 

down. The subject is then presented with the 4 practice scenarios and is then free to explore 

the environment, the path of the fire, and the fate of their property during each of these. 

Apart from the ability to move across space, subjects also have the option of moving back or 

forth in time within each fire scenario.7 

With this approach, subjects are able to form their own beliefs about the probability 

of damage. Contrary to decisions involving actual lottery tickets in most laboratory 

experiments, this risk management environment has outcomes and probability distributions 

                                                 
6 For student subjects this interface is second nature. 
7 This points to another feature of the VR environment in settings where current action, or inaction, can lead to 
latent effects well into the future. The VR simulation interface can be used by subjects to “fast forward” and 
better comprehend those effects. 
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that are not completely known to the agent. We therefore expect the choices to be affected 

by individual differences not just in risk perceptions but also in risk preferences. We are 

particularly interested in the perception of risk that subjects form in this VR experiment, 

since this drives decisions on risk mitigation. Hence the instructions are designed to convey 

information about this risk as accurately as possible without explicitly giving numeric 

probabilities.  

The instructions start with a brief introduction about the threats of wild fires and of 

prescribed burning as a fire management tool that can reduce the frequency and severity of 

fires. The idea of VR computer simulations is introduced, followed by instructions that 

explain the first experimental task, which is either the betting task or the WTP choice task. 

We vary the order of these 2 tasks across subjects. This is followed by a discussion of how 

the 5 background factors in the simulation affect the risk of damages to their property. We 

use dice to select background factors for each simulation, so that the likelihood of these 

selections is known, even though the effects they have on the risk to property are not. 

Subjects are made familiar with the idea that fires and fire damages are stochastic, and can be 

described through frequency distributions. They are shown the frequency distributions of 

the forest acreage burnt under all possible combinations of background factors as generated 

by the simulation program. They are not, however, shown frequency distributions of damage 

to their own property. The subjects then experience 4 dynamic VR simulations of specific 

wild fires, 2 for each of the cases with and without previous prescribed burns, rendered from 

the information supplied by FARSITE simulations that vary weather and fuel conditions. 

We selected these simulations to represent the most benign and the most intensive 

combination of factors for fire spread, and the subjects are told this. They are allowed to 

experience these simulations in any way they like. They may move around the landscape 

however they want, and they may move back and forth in time freely.  
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After having had the opportunity to form beliefs about the likelihood of the property 

burning in a fire, subjects are presented with the choice tasks. When all choice tasks are 

completed, one is selected randomly for payment. If the selected task involves a VR 

simulation, then as part of determining earnings a final simulation is run, using randomly 

selected background factors. These random selections are performed using dice. Whether or 

not the property burns in this final simulation impacts the earnings in the task. 

We first describe the betting and WTP tasks where payments depend on outcomes 

of the VR simulations. Thereafter we describe the tasks that do not use VR simulations, but 

instead use objective probabilities implemented using dice.  

 

The Betting Tasks 

The objective of the betting task is to directly recover the subject’s belief that event 

A will occur instead of event B. Event A is when the property burns and event B is when it 

does not, so the two events are mutually exclusive. Assume that the subject is risk neutral 

and has no stake in whether A or B occurs other than the bets being made on the event. 

There are 9 bookies, each willing to take a bet at stated odds. Table 1 shows odds for the 

two events in the form that they are naturally stated in the field: what is the amount that the 

subject would get for a $5 bet if the indicated event occurred? Each row in Table 1 

corresponds to a different bookie with different odds. 

In our design the subject is simply asked to decide how they want to bet with each of 

the 9 bookies, understanding that only one of these bookies may be the one selected for 

payment at the end of the experiment. Their “switch point,” over the 9 bookies, is then used 

to infer their subjective belief. The basic experimental design and estimation strategy are 
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borrowed from FHHR and Andersen, Fountain, Harrison and Rutström (2010).8 Consider a 

subject that has a personal belief that A will occur with probability 0.75, and assume that the 

subject has to place a bet with each bookie, knowing that only one of these bookies will 

actually be played out. The (risk neutral) subject would rationally bet on A for every bookie 

offering odds that corresponded to a lower probability than 0.75 of A winning, and then 

switch over to bet on B for every bookie offering odds that corresponded to a higher 

probability than 0.75 of A winning. These bets are shown in Table 1, and imply gross 

earnings of $50 or $0 with the first bookie, $25.00 or $0 with the second bookie, and so on. 

The expected gross earnings from each bookie can then be calculated using the subjective 

belief of 0.75 that the subject holds. Hence the expected gross earnings from the first bookie 

are (0.75 × $50) + (0.25 × $0) = $37.50, and so on for the other bookies. A risk neutral 

subject with the subjective probability 0.75 would bet on event A for the first 7 bookies and 

then switch to event B. 

Each subject faces two betting tasks in our experiment. The first task is for the event 

that the house burns when the fuel load is high (or a prescribed burn is not used); and the 

second task is for the event that the house burns when fuel level is low (or a prescribed burn 

is used). Thus, the objective probability in the first task is higher than in the second. The 

subject is given a fictional $5 stake to bet with in each of the 2 betting tasks, and a bet has to 

be placed for each of the 9 bookies.  The stakes are fictional in that the subject cannot 

choose not to bet.  Furthermore, the $5 for one bookie is not transferable to other bookies, 

and one of the bets will be selected at random to be actually played out.  

                                                 
8 Familiar scoring rule procedures are formally identical, since each probability report implicitly generates a 
bookie willing to bet at certain odds. Thus when the subject makes a report in a Quadratic Scoring Rule, for 
example, the subject is in effect choosing to place a bet on the event occurring with payoffs given by odds that 
are defined by the scoring rule. By making one report instead of another, the subject is then choosing one bet 
over another, or equivalently, in our design, one bookie over another. 
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If a betting task is selected to be played out, then a final simulation would be run to 

determine the earnings. This simulation would either have a high or a low fuel load, 

depending on which betting task is selected. All other background factors are randomly 

selected. In the betting tasks the subjects cannot affect the probabilities that the house will 

burn. These tasks therefore do not offer self-protection options. 

 

The WTP Tasks  

The design of the WTP choice task offers subjects self-protection options. Earnings 

to subjects depend on an initial endowment of money, the monetary value of their property, 

and whether or not the property burns. The subjects have the option to use some or all of 

their initial money endowment to pay for a prescribed burn. Recall that the amount of 

prescribed burn, or the amount of removed fuel, is given so the choice is either to prescribe 

burn all of the forest or none. After having viewed the 4 simulations from which they form 

their subjective beliefs, subjects are shown a list of prices that can be charged for a 

prescribed burn. Table 2 shows this list for one of the three WTP tasks. In this task the 

property is worth $8 if it survives the fire, and the initial money endowment is $20. The first 

row shows the case where self-protection is free: the price of prescribed burn is $0. For each 

row below that the cost of a prescribed burn increases by $2 until a maximum price of $8 is 

reached. On each row the subject will choose either Yes, for agreeing to pay the price and 

have a prescribed burn done, or No, for preferring to keep the money and not having a 

prescribed burn. Only one row could potentially be selected for payment. 

There are three such WTP tasks that differ by how much the house is worth and the 

level of the initial endowment. In addition to the task with a house valued at $8 and an initial 

endowment of $20, there is a task where the house is valued at $28 with an initial 

endowment of $60, and a task where the house is valued at $38 with an initial endowment of 
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$80. Using these multiple tasks allows us to identify both the probability of the high risk case 

and the probability of the low risk case. The choice data generated in these 3 tasks can be 

analyzed as data from a series of pairwise options, but using subjective probabilities since the 

objective probabilities are not known to subjects. Whether or not one uses the betting task 

data or the WTP task data to infer probabilities, it is important to control for risk attitudes. 

We use additional choice tasks that present subjects with risky options with known 

probabilities to infer risk attitudes.  

   

Choice Tasks with Known Probabilities 

We present subjects with several pairwise choice tasks where the probabilities are 

precisely known and no VR simulation is used. All of these choice tasks use ordered lists of 

pairs of lotteries, which we call lotteries S or R. The letter S (R) refers to the relatively safer 

(riskier) of the two lotteries. Table 3 illustrates the basic payoff matrix presented to subjects 

in the first such task, which we will refer to as the standard lottery task.  The first row of 

Table 3 shows a choice between getting $24 for certain (lottery S) or $1 for certain (lottery 

R). The second row shows a more interesting choice, where lottery S offers a 90% chance of 

receiving $24 and a 10% chance of receiving $26. The expected value of this lottery is shown 

as $24.20, although the EV columns are not presented to subjects. Similarly, lottery R in the 

second row has prizes $50 and $1, for an expected value of $5.90. Thus the two lotteries 

have a difference in expected value of $18.30. As one proceeds down Table 3, the expected 

value of both lotteries increases, but the expected value of lottery R becomes greater relative 

to the expected value of lottery S. 

Each subject chooses S or R for each row, and only one row may later be selected at 

random for payment. The logic behind this test for risk aversion is that only risk loving 

subjects would take lottery R in the second row, and only very risk averse subjects would 
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take lottery S in the last row. Arguably, the first row is simply a test that the subject 

understood the instructions, and has no relevance for risk aversion at all. A risk neutral 

subject should switch from choosing S to R when the EV of each is about the same, so a 

risk neutral subject would choose S for the first five rows and R thereafter.  In each row the 

subject is equally likely to get the bigger prize or the smaller prize, which rules out the 

possibility of self-protection; the only difference is the payoff amount. 

The second choice task using known probabilities presents the subjects with the 

same pairwise lottery choices as in the standard lottery task, but now they are framed as 

losses instead of gains. For example, instead of winning $26 the subject now loses $24 from 

an initial endowment of $50, with probabilities applied as before. Accordingly, for an 

endowment of $50 our prizes after “reflections” into a loss framing become -$24, -$26, -$0 

and -$49.9 The basic hypothesis to be tested is that the risk aversion coefficients in the gain 

and loss frames are identical. This task is illustrated in Table 4. 

Our primary interest in restating the standard lottery task in the loss frame is to make 

it comparable with the framing of other tasks in our experiment. Both the betting tasks and 

the WTP tasks are stated as losses from initial endowments, mimicking how fires in the 

naturally occurring field imply losses from some initial property endowment. The lotteries in 

the gain and loss frame are, however, identical only to the extent that the assumption about 

the reference point being a $0 prize in the lottery is valid. As emphasized in Harrison and 

Rutström (2008; p.95ff.), it is difficult to determine the reference point that the subject 

actually uses in tasks such as these. It is possible, for instance, that the subject has a 

reference point of $50, such that he views all of the net prizes in the loss frame lottery as 

positive and therefore perceives no losses. The expected values of the lotteries with $0 and 

                                                 
9 Holt and Laury (2008) undertook a similar exercise but where subjects earned their initial endowment in 
earlier experimental tasks, which averaged $43 and ranged from $21.68 to $92.08. They find evidence of risk 
averse behavior in the gain domain and risk loving behavior in the loss domain. 
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$50 reference points are the same. Hence in either case a risk neutral subject chooses lottery 

S for the first five rows and lottery R for the last five rows.10 

Allowing for loss aversion, it is possible that subjects make different choices in the 

lotteries presented in Tables 3 and 4 if they perceive a reference point of $0.  We test 

whether estimated risk aversion coefficients in the gain and loss domains are identical and 

whether there is evidence of such a framing effect.  

 

III. Results 

We have two kinds of tasks: lottery tasks with known objective probabilities and VR 

tasks with probabilities unknown to the subject.  We can infer risk attitudes from the 

observations on choices in the lottery tasks. We can then infer subjective probabilities from 

the observations on choices in the betting and WTP tasks that rely on VR simulations as 

providing information about risk.  The sample consists of 57 subjects recruited from the 

student population of the University of Central Florida.  

 

Estimating Risk Attitude under Expected Utility Theory (EUT) 

We assume that utility is defined by 

)1/()( )1( rxxU r    

where x is the lottery prize and 1r  is a parameter to be estimated. Thus r is the CRRA 

coefficient, where 0r  corresponds to risk neutrality, 0r  to risk loving, and 0r  to 

risk aversion. The parameter λ captures a possible reflection effect when the lottery outcome 

is framed as a loss (and is set equal to one in the gain frame). The variable x in the estimation 

                                                 
10 Of course, $0 and $50 are not the only two possible reference points. If the subject integrates the show up 
fee of $5 into his wealth coefficient, then the reference points are $5 ands $55 respectively. If he integrates his 
lifetime income or income outside the current experiment things get more complicated. Inferences about 
lotteries in the loss domain are very sensitive to assumptions about the reference point. 
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is then the net payoffs, i.e. the initial endowment minus the loss. 11 All lotteries used in our 

experiment have two outcomes. If the probability of the worse outcome is p, expected utility 

(EU) is simply the probability weighted utility of each outcome in each lottery i, 

)()()1( bgi xpUxUpEU   

The subscript g on the lottery prize x indicates the good outcome and the subscript b 

indicates the bad outcomes. The choice depends on the difference in EU between lottery S 

(safe) and R (risky): 

SR EUEUEU   

 This latent index, based on latent preferences, is then linked to the observed choices using a 

standard cumulative normal distribution function )( EU . This “probit” function takes 

any argument between   and transforms it into a number between 0 and 1 using the 

function shown in Figure 3. Thus we have the probit link function, 

prob (choose lottery R) = )( EU  

This function forms the link between the observed binary choices, the latent structure 

generating the index, and the probability of that index being observed. The conditional log-

likelihood function is then 

))]1())(1(ln())1()((ln[).;(ln   ii
i

yIEUyIEUXyrL  

where  .I  is the indicator function and 1iy (-1) indicates the choice of the R (S) lottery. 

The only variable that has to be estimated from this log-likelihood function is r.  

An important extension of the core model is to allow subjects to make errors in the 

decision process. The notion of error is one that has already been encountered in the form 

of the statistical assumption that the probability of choosing a lottery is not 1 when the EU 

                                                 
11 Allowing more flexible functional forms that model possible income effects, such as the Expo-Power 
function of Saha (1993), does not affect our findings in any significant manner. 
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of that lottery exceeds the EU of the other lottery. This is implicitly assumed when one 

adopts a link function, of the kind shown in Figure 3, to go from the latent index to 

observed choices. The contextual error specification, suggested by Wilcox (2011), introduces 

a normalizing term   for each lottery pair, and a structural “noise parameter” to allow for 

error from the deterministic EU model: 

 /]/)[( SR EUEUEU   

The normalizing term   is defined as the maximum utility over all prizes in this lottery pair 

minus the minimum utility over all prizes in this lottery pair, and ensures that the normalized 

EU difference /)( SR EUEU  remains in the unit interval. This normalization allows one 

to define robust measures of “stochastic risk aversion,” in parallel to the deterministic 

concepts from traditional theory. When 1 we return to the original specification without 

error. As   increases, the above index falls until, at  , it collapses to zero, so that the 

probability of either choice becomes ½. In other words, as the noise in the data increases, 

the model has less and less predictive power until at the extreme the prediction collapses to 

50:50 or equal likelihood of both choices.  

To allow for subject heterogeneity with respect to risk attitudes, the parameter r is 

modeled as a linear function of observed individual characteristics of the subject. For 

example, assume that we only had information on the age and sex of the subject, denoted 

age (in years) and female (0 for males, and 1 for females). Then we would estimate the 

coefficients ,  and   in femaleage  r . The covariates we use are all 

binary. The variable Age is given in years over 17; Female is a dummy for whether the 

subject is female or male; Hispanic is a dummy for Hispanic heritage; Business is whether 

or not the subject is a business major; GPAhigh is for subjects with a self-reported GPA 

higher than 3.24; Works is a dummy for whether or not the subject is employed.  
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In this design multiple responses are elicited from each subject. This may lead to 

clustering, or heteroskedasticity. Therefore while estimating the model it is essential to 

correct for clustering effects. We estimate this model on the data from all the lottery tasks 

with known probabilities: the standard lottery, the loss frame lottery and the four self-

protection frame lotteries.  These results are shown in Tables 5a, 5b and 5c.  

We find evidence of modest risk aversion, with a CRRA coefficient of 0.33 as shown 

in Table 5a, consistent with a large body of existing literature reviewed by Harrison and 

Rutström (2008). None of the demographic variables we include is individually significant in 

Table 5b. Importantly, we do not find a framing effect of the task being presented in the loss 

frame, as shown in Table 5c. The coefficient for λ, which would indicate a reflection effect, 

is 1.12 and not significantly different from 1. Because of this result we can simplify our 

analysis by not including this parameter in our further analysis.  

 

Jointly Estimating Belief and Risk Attitudes under SEUT  

Subjective beliefs about the risk of property damage from fires can be inferred from 

both the betting tasks or from the WTP tasks. The beauty of using a controlled VR 

experiment is that, even though probabilities are not known to subjects, they are known to 

the experimenter. We control for the risk attitude of subjects by jointly estimating risk 

attitudes and beliefs, using data from all choice tasks for the same subject.  

A subject that bets on the house burning (B) in the betting tasks receives the EU 

given by 

UEU BBonbet  | (payout if B occurs | bet on B) 

           + UB  )1(  (payout if NB occurs |bet on B)  

where NB refers to the event “the house does not burn,” and B  is the subjective 

probability that B will occur. We use the notation π for the subjective probability to 
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distinguish it from p, the objective probability. The example in the second row of Table 1 

now is evaluated as   

)1/()0()1()1/()25(| )1()1( rUrEU r
B

r
BBonbet      

and 

)1/()25.6()1()1/()0(| )1()1( rrEU r
B

r
BNBonbet     

where the event A refers to when the house burns down and event B refers to when it does 

not. The index function is again 

  /]/)[( BNB EUEUEU   

An increase in this index should increase the likelihood of betting on event NB rather than 

event B. Subjects have 2 betting tasks, one for the forest that has been prescribed burn (the 

safe case) and one for the forest that has not been prescribed burn  (the risky case). Thus the 

probabilities, B , will not be the same for the two betting tasks, so we elicit both risky
B  and 

safe
B . 

 In the WTP tasks safe
B is the subjective probability of the house burning down 

when prescribed burning is implemented, and risky
B  is the subjective probability that the 

house will burn down if no prescribed burning is implemented. More generally, 

 safe
BsafeEU  U(payout net of cost of prescribed burn if B) 

     +  )1( safe
B U(payout net of cost of prescribed burn if NB) 

and 

 risky
BriskyEU  U(payout if B) 

     +  )1( risky
B U(payout if NB). 

The latent index in this problem is the difference in EU from paying for prescribed burning 

and not paying for prescribed burning: 
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 /]/)[( saferisky EUEUEU   

An increase in this index should increase the likelihood of selecting the risky option, i.e. of 

not paying for prescribed burn. Apart from ,r and  , we now need to estimate the two 

subjective probabilities safe and risky . The joint maximum likelihood problem is to find the 

values of all of these parameters that best explain observed choices in the belief elicitation 

tasks, WTP tasks and lottery tasks.  

Detailed maximum likelihood estimates are contained in Table 6. We estimate this 

model including observations on all 7 tasks. The lottery tasks with known probabilities serve 

the purpose of identifying risk attitudes, and we confirm that adding data from the betting 

and WTP tasks does not change the estimated risk attitude appreciably. The pooled estimate 

of r shown in Table 6 is 0.33, and is not affected by adding the VR tasks.  

 We find evidence that subjects overestimate the loss probabilities both for the safe 

and the risky case. In Table 6 the constant terms reflect the betting task, and the WTP terms 

are the equivalent estimates for the WTP task. The constant term for the perceived 

probability with prescribed burn , safe
A , is 0.40 instead of the objective value 0.06; and the 

perceived probability without prescribed burn, risky
A , is 0.56 instead of the objective value 

0.29.  

 These overestimations lead to higher predicted willingness to invest (WTI) than if 

based on the objective probabilities, but only in the presence of self protection options. We 

infer the WTI from the Certainty Equivalents (CE). Using the objective probabilities and the 

estimated risk attitudes we find a CE for the safe case of $19.48 and a CE for the risky case 

of $17.54.  These numbers are based on the task where the house is worth $8, so would be 

higher for the tasks where the house is worth more. The difference between these CE is the 

WTI in a prescribed burn, which is $1.94, with a 95% confidence interval of [$1.90, $1.98]. If 

instead we calculate the CE based on the subjective probabilities from the betting tasks, which 
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are much higher, we find an implied WTI of $1.27, with a 95% confidence interval of [$0.99, 

$1.55].  The overestimation of the safer probability, safe
B , thus has a stronger influence on 

the WTI than the overestimation of the riskier probability, risky
B , such that the implied WTI 

for prescribed burn is less than one would find based on the objective probabilities.  The 

confidence intervals of the objectively and subjectively calculated WTI do not overlap, so 

this is a statistically significant shift.  The exact dollar values appear small only because these 

calculations are based on the low house value of $8. For a house value of $28 one would 

instead find a WTI of $6.87 based on objective probabilities and $4.45 based on subjective 

probabilities.  

 When subjects are able to engage in self protection, as in the WTP tasks shown by 

the WTP coefficient in Table 6, we find that the subjective probability for the risky case goes 

to 1.0, but the subjective probability for the safe case drops to 0.31. The CE when the house 

is valued at $8 is now $12.00 and $17.53, respectively for the high and low risk case, resulting 

in a much higher WTI of $5.53 with a 95% confidence interval of [$4.99, $6.08]. Again, this 

interval does not overlap with the objective interval or the interval without self-protection 

options, so the shift is statistically significant.  When the house is valued at $28 the WTI for 

mitigation is $19.27. Figure 4 shows the distributions of the subjective probabilities from a 

model that includes our demographic variables. Not only do we see that the implied WTI is 

higher with self-protection than without self-protection, we also see that the inferred 

subjective probabilities are much more dispersed in the former case.  

Thus, based on the betting task alone one may be tempted to conclude that 

voluntary risk mitigation would lead to underinvestment, but once subjects are allowed to 

self-protect they are in fact overinvesting in mitigation.  

 

 



 

 23

IV. Conclusion 

Risk attitudes and subjective beliefs are two fundamental determinants of decision 

making under risk and risk management. Virtually all field settings in which there is risk and 

uncertainty allow for the ability to mitigate risk through some form of insurance or self-

protection. Surprisingly, much more attention has been given to risk settings that do not 

allow for such measures.  Our results provide evidence that behavior is quite different in 

these two settings. There does not appear to be significant differences in attitudes to risk, but 

subjective beliefs are shown to vary significantly. Estimating voluntary risk mitigation 

investments based on subjective probabilities elicited using betting instruments (or standard 

scoring rules) can lead to dramatic underestimates. Conclusions regarding the optimality of 

voluntary investment levels, and the implied role for government risk regulation, require that 

subjective beliefs be elicited under conditions when mitigation options are present. The 

practical implications of this are important since in many cases it may not be possible to 

design mitigation options for study purposes short of undertaking the full voluntary 

investment. 
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Table 1. Betting Task with Stake of $5 

  
Bet on A and earn if… 

 
Bet on B and earn if… 

 
Gross expected value of betting 
  when probability of A is 0.75   A occurs  B occurs  A occurs  B occurs

        A B Difference
 $50  $0  $0  $5.55 $37.50 $1.39 $36.11 
 $25  $0  $0  $6.25 $18.75 $1.56 $17.19 
 $16.65  $0  $0  $7.15 $12.50 $1.79 $10.71 
 $12.5  $0  $0  $8.35 $9.38 $2.09 $7.29 
 $10  $0  $0  $10 $7.50 $2.50 $5.00 
 $8.35  $0  $0  $12.5 $6.26 $3.13 $3.13 
 $7.15  $0  $0  $16.65 $5.36 $4.16 $1.20 
 $6.25  $0  $0  $25 $4.69 $6.25 -$1.56 
 $5.55  40  $0  $50 $4.16 $12.50 -$8.34 

  

 

 Table 2. Price List for WTP when House is Worth $8 

 
Cost 

 
Yes, I choose 

prescribed burn 

 
No, I do not choose 

prescribed burn 
 

$0 
 

Yes 
 

No 
$2 Yes No 
$4 Yes No 
$6 Yes No 
$8 Yes No 
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 Table 3. Standard Lottery Task in Gains Domain 
 

 
Lottery S 

 
Lottery R 

 
EVS 

 
EVR 

 
Difference 

p($24)  p($26)  p($1)  p($50)  
1 $24 0 $26 1 $1 0 $50 $24 $1 $23 

0.9 $24 0.1 $26 0.9 $1 0.1 $50 $24.2 $5.9 $18.3 
0.8 $24 0.2 $26 0.8 $1 0.2 $50 $24.4 $10.8 $13.6 
0.7 $24 0.3 $26 0.7 $1 0.3 $50 $24.6 $15.7 $8.9 
0.6 $24 0.4 $26 0.6 $1 0.4 $50 $24.8 $20.6 $4.2 
0.5 $24 0.5 $26 0.5 $1 0.5 $50 $25 $25.5 -$0.5 
0.4 $24 0.6 $26 0.4 $1 0.6 $50 $25.2 $30.4 -$5.2 
0.3 $24 0.7 $26 0.3 $1 0.7 $50 $25.4 $35.3 -$9.9 
0.2 $24 0.8 $26 0.2 $1 0.8 $50 $25.6 $40.2 -$14.6 
0.1 $24 0.9 $26 0.1 $1 0.9 $50 $25.8 $45.1 -$19.3 

 

Table 4. Standard Lottery Task in the Loss Domain 

with Initial Endowment of $50 

 
Lottery S  

 
Lottery R  

EVS 
 

EVR 
 

Difference p(-$26)  p(-$24)  p(-$49)  p(-$0)  
1 -$26 0 -$24 1 -$49 0 -$0 -$26 -$49 $23 

0.9 -$26 0.1 -$24 0.9 -$49 0.1 -$0 -$25.8 -$44.1 $18.3 
0.8 -$26 0.2 -$24 0.8 -$49 0.2 -$0 -$25.6 -$39.2 $13.6 
0.7 -$26 0.3 -$24 0.7 -$49 0.3 -$0 -$25.4 -$34.3 $8.9 
0.6 -$26 0.4 -$24 0.6 -$49 0.4 -$0 -$25.2 -$29.4 $4.2 
0.5 -$26 0.5 -$24 0.5 -$49 0.5 -$0 -$25 -$24.5 -$0.5 
0.4 -$26 0.6 -$24 0.4 -$49 0.6 -$0 -$24.8 -$19.6 -$5.2 
0.3 -$26 0.7 -$24 0.3 -$49 0.7 -$0 -$24.6 -$14.7 -$9.9 
0.2 -$26 0.8 -$24 0.2 -$49 0.8 -$0 -$24.4 -$9.8 -$14.6 
0.1 -$26 0.9 -$24 0.1 -$49 0.9 -$0 -$24.2 -$4.9 -$19.3 



 

 26

Table 5a. Estimated Risk Attitudes from Lottery Tasks 
 

 
Parameter 

 
Variable 

 
Point 

Estimate 

 
Standard 

Error 

 
p-value 

 
Lower 95% 
Confidence 

Interval 

 
Upper 95% 
Confidence 

Interval 
r  Constant 0.33 0.06 0.00 0.21 0.44 
       
  Constant 3.41 0.67 0.00 2.11 4.71 

† p-value=0.76 for test of coefficient value significantly different from 1  
 

Table 5b. Maximum Likelihood Estimate of Risk Attitudes allowing for 
Demographic Effects 

 
 

Parameter 
 

Variable 
 

Point 
Estimate 

 
Standard 

Error 

 
p-value 

 
Lower 95% 
Confidence 

Interval 

 
Upper 95% 
Confidence 

Interval 
r  Constant 0.33 0.06 0.00 0.21 0.44 
 Age -0.00 0.02 0.91 -.03 0.03 
 Female 0.14 0.13 0.27 -.11 0.39 
 Hispanic -.05 0.17 0.79 -.38 0.29 
 Business -.01 0.12 0.92 -.25 0.22 
 GPAhigh 0.10 0.15 0.48 -.18 0.39 
 Works -.19 0.13 0.15 -.44 0.06 
       
  Constant 0.18 0.200.15 0.00 -1.69 0.61 

 
Table 5c. Maximum Likelihood Estimate of Risk Attitudes in the Loss Frame 

 
 

Parameter 
 

Variable 
 

Point 
Estimate 

 
Standard 

Error 

 
p-value 

 
Lower 95% 
Confidence 

Interval 

 
Upper 95% 
Confidence 

Interval 
r  Constant 0.34 0.07 0.00 0.21 0.47 
 λ Constant 1.12 0.17  0.00 † 0.79 1.46 
       
  Constant 0.19 0.02 0.00 0.14 0.24 

† p-value=0.67 for test of coefficient value significantly different from 1  
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Table 6. Joint Estimate of Risk Attitude and Subjective Beliefs 

† When estimating the probability of the house burning in the risky scenario where the forest has not been 
treated with prescribed burn, the estimate is too close to the corner solution of 1.0 to give us a reliable 
standard error. 
 
  

 
Parameter 

 
Variable 

 
Point 

Estimate 

 
Standard 

Error 

 
p-value 

 
Lower 95% 
Confidence 

Interval 

 
Upper 95% 
Confidence 

Interval 
r  Constant 0.33 0.06 0.00 0.22 0.44 
       
safe
B  Constant 0.40 0.01 0.00 0.37 0.43 

 WTP .31 0.04 0.00 .23 .39 
       
risky
B  Constant 0.56 0.01 0.00 0.54 0.58 

 WTP 1.00 † † † † 
       
  Constant 0.13 0.01 0.00 0.10 0.15 
 WTP 0.25 0.05 0.00 0.14 0.35 
 Risk 0.18 0.02 0.00 0.15 0.21 
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Figure 1. Histogram Displaying Distribution of Forest that Burned  
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Figure 2. Illustrative Images from VR Interface 
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Figure 3. Normal and Logistic Cumulative Density Function  
 

 

 
Figure 4. Estimated Subjective Probabilities 

of House Burning with and without Self-Protection (Fix to look like Fig 3.) 
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Figure 4: Estimated Subjective Probabilities
of House Burning with and without self protection 
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