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Abstract
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expectations. Conversely, an agreement on posterior Choquet expectations - but
not on posterior capacities - implies that each agent’s private information con-
sists of Nehring-unambiguous events. These results indicate that under ambi-
guity - contrary to the standard Bayesian framework - asymmetric information
matters and can explain differences in common knowledge decisions due to the
ambiguous nature of agents’ private information.
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1 Introduction

In his celebrated article “Agreeing to Disagree”, Aumann (1976) challenged the role

that asymmetric information plays in the context of interpersonal decision problems

under uncertainty. Presupposing that agents are Bayesian and share an identical prior

probability distribution, Aumann showed that the agents cannot “agree to disagree”

on their posterior beliefs. More precisely, whenever agents’ posterior beliefs for some

fixed event are common knowledge, then these posteriors must coincide despite the fact

that the posteriors may be conditioned on diverse information. This remarkable result

implies that whenever a group of agents come to an agreement on individual decisions

then these decisions must be made as if there was no private information at all. In this

paper, we scrutinize the role of asymmetric information among non-Bayesian agents.

In essence, we demonstrate that differences in commonly known decisions are possible

due to the ambiguous character of the agents’ private information.

Within the Bayesian framework, Aumann’s impossibility result has been extended

to more abstract decisions such as posterior expectations (Geanakoplos and Sebenius

(1983)) and actions maximizing posterior expectations (Milgrom (1981), Milgrom and

Stokey (1982) and Bacharach (1985)). These “agreeing to disagree” type results, also

referred to as probabilistic agreement theorems, are often viewed as pointing out limi-

tations of the explanatory power of asymmetric information. Differences in individual

decisions cannot be explained solely by differences in agents’ private information. Two

approaches have been proposed in order to overcome these limitations. In the first ap-

proach Morris (1994, 1995) advocates to discard the “commonness” assumption of

prior probabilities, while in the second, suggested by Monderer and Samet (1989), the

notion of “common knowledge” is replaced be a weaker concept of “common beliefs”.

However, both of these approaches continue to maintain the Bayesian paradigm. In

this paper an alternative approach is suggested. We maintain the assumption of com-

mon prior beliefs as well as the notion of common knowledge, and instead weaken the

“additivity” property of subjective beliefs by allowing the agents to be non-Bayesian

in the vein of the Choquet expected utility theory of Schmeidler (1989).

In Schmeidler’s theory subjective beliefs are represented by a normalized and mono-
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tone (but-not-necessarily-additive) set function, called capacity. The notion of capacity

allows for the accommodation of ambiguity and attitudes towards it into the decision

making process. Ambiguity refers to situations in which probabilities for some un-

certain events are known, whereas for other events they are unknown due to missing

probabilistic information. The lack of probabilistic information and reaction to it,

as manifested for instance in Ellsberg’s (1961) type experiments, may affect agents’

choices in the way that they are incompatible with the subjective expected utility the-

ory of Savage (1954). When beliefs are non-additive, individual decisions are made on

the basis of maximizing expected utilities, which are computed by means of Choquet

(1954) integrals.

There is a finite group of agents facing a dynamic decision problem under ambiguity.

The agents share a common prior capacity distribution over an algebra of events

generated by a finite set of states. Moreover, each agent is endowed with a partition

over the set of states which represents his private information. There are two stages

of planning: an ex-ante and an interim stage. At the ex-ante stage all agents share

identical information. At the ex-post stage, the agents receive their private information

and conditional on their private signals they revise their prior preferences. Posterior

preferences are derived by updating prior capacity and keeping the utility function

unchanged. There are many reasonable updating rules for non-additive beliefs, with

Bayes’ rule being only one alternative (see Gilboa and Schmeidler, 1993). However,

our results do not depend upon which updating rule is used. It is only required

that updating rules respect consequentialism, a property introduced by Hammond

(1988). Consequentialism requires that posterior preferences are only affected by the

conditioning events, i.e. agents’ private information in our setup. Counterfactual

events, as well as the past decision history, are immaterial for posterior decisions (see

Hanany and Klibanoff (2007)). Once posterior preferences have been generated, the

agents announce their individual decisions. An agreement on decisions describes a

situation in which it is impossible that the agents disagree on common knowledge

posterior decisions. The decisions focused on in this paper are; posterior capacities

for some fixed event, posterior Choquet expectations for a given action, and actions

maximizing posterior Choquet expectations for a given set of feasible actions.
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The first objective is to characterize the properties of events in agents’ information

partitions which guarantee that disagreements on decisions are impossible. A natural

choice for such events are events which are perceived by the agents as being unam-

biguous. In the Bayesian framework, in which probabilistic agreement theorems are

established, all uncertain events are unambiguous. However, in non-Bayesian setups

some uncertain events may be subjectively seen as unambiguous while other events

are perceived as ambiguous. Recently, several notions of revealed unambiguous events

have been proposed, e.g. by Nehring (1999) and by Zhang (2002). The analysis starts

with the assumption that only the events which reflect agents’ private information

are unambiguous, while other events may be ambiguous. In turns out that Nehring’s

(1999) notion of unambiguous events is sufficient to rule out possibilities of disagree-

ments on common knowledge decisions. More precisely, if each agent’s information

partition is made up of Nehring-unambiguous events then it is impossible that at

some state agents’ decisions are common knowledge and they are not the same. These

decisions can be posterior capacities, posterior Choquet expectations, or actions maxi-

mizing posterior Choquet expectations. However, disagreements on commonly known

decisions may occur as soon as one departs from the notion of Nehring-unambiguous

events. If one adapts a slightly weaker notion of unambiguous events, such as that

proposed by Zhang (2002), then the agents may “agree to disagree” on their individ-

ual decisions. We exemplify a situation in which a disagreement on posterior beliefs

among two agents whose information partitions are made up of Zhang-unambiguous

events occurs. That is, the agents come to a common knowledge of their posterior

capacities for some fixed event. Nevertheless, these posteriors do not coincide.

Next focus is placed on a converse result. Situations are considered in which it

is impossible for the agents to “agree to disagree” on their decisions. An immediate

question that arises in this context is if knowing that disagreements are impossible,

can one infer something about the nature of the agents’ private information? In

principle, the answer is affirmative. However, what may be inferred about the na-

ture of agents’ private information depends on the type of decisions that the agents

“agree to agree” on. Assuming that disagreements on posterior capacities are impos-

sible, it can be shown that nothing can be said about the properties of the events in
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agents’ information partitions. This is because one can always find a capacity dis-

tribution and an updating rule for prior beliefs such that an agreement on posterior

beliefs holds true. Nevertheless, the events in agents’ information partitions will be

neither Nehring- nor Zhang-unambiguous events. However, when an agreement on

posterior Choquet expectations as well as on actions maximizing posterior Choquet

expectations is reached, then each agent’s private information must be made up of

Nehring-unambiguous events.

This paper is organized as follows. The following section introduces the capac-

ity model of Schmeidler (1989). First, the Choquet expected utility preferences are

defined, and then, the notion of unambiguous events in the sense of Nehring (1999)

and Zhang (2002) are presented. In Section 3, the Choquet expected utility model is

extended to dynamic choice situations. In Section 4, the standard epistemic frame-

work used for modeling interpersonal decision problems with differential information

is introduced. In Section 5, the sufficient condition for the impossibility of “agreeing

to disagree” on individual decisions is established. This section ends with an exam-

ple demonstrating a possibility of disagreement about common knowledge posterior

capacities. In Section 6, the necessary condition for the impossibility of disagreement

on posteriors Choquet expectations is established and proven. At the end of this sec-

tion a brief discussion on the meaningfulness of consequentialism in the context of

interpersonal decision problems with differential information is provided. In Section

7, a no-speculative trade corollary is established. The conclusions of this paper are

summarized in Section 8.

2 Static Choquet Preferences

In this section we recall the main tenets of the Choquet expected utility theory pioneered

by Schmeidler (1989). There is a finite set Ω of states. An event E is a subset of Ω.

Let A = 2Ω be the set of all subsets of Ω. For any E ⊂ Ω we denote Ω \ E, the

complement of E, by Ec. Subjective beliefs over uncertain events are represented by

capacities. A capacity ν : A → R is a normalized and monotone set function, i.e.,

i) ν(∅) = 0, ν(Ω) = 1 and ii) ν(E) ≤ ν(F ) whenever E ⊂ F ⊂ Ω. Capacities are
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not required to be additive, although they must satisfy the monotonicity property. In

terms of qualitative beliefs, monotonicity has a natural interpretation that “larger”

events, with respect to the set inclusion, are regarded as “more likely”.

Let X be a set of consequences. A mapping f : Ω→ X assigning consequences to

states is called an action. Let F be a set of all actions. We refer to a subset B ⊂ F as

a set of feasible actions. For a pair of actions f, g ∈ F and an event E ∈ A, denote fEg

as an action that assigns the consequence f(ω) ∈ X to each state ω in E and g(ω) ∈ X

to each state ω ∈ Ec. Let < be a preference relation defined on the set of actions F . A

preference relation < is said to admit Choquet expected utility representation if there

exists a vN-M utility function u : X → R and a capacity ν on A such that for any

f, g ∈ F :

f < g ⇔
∫

Ω

u ◦ f dν ≥
∫

Ω

u ◦ g dν. (1)

Choquet expected utility preferences have been justified behaviorally by Schmeidler

(1989), Gilboa (1987) and Sarin and Wakker (1992) for an infinite state space. Im-

posing some richness conditions on the set of outcomes and allowing for a finite state

space, Choquet expected utility preferences has been axiomatized by Nakamura (1990)

and Chew and Karni (1994).

In the presence of non-additive beliefs, the expectations in (1) are computed by

means of Choquet integrals. For a given action f , let E1, . . . , En denote the partition

ordered from the most to the least favorable events, i.e. such that u
(
f(E1)

)
≥ · · · ≥

u
(
f(En)

)
. The ranking position of an event expresses its favorableness with respect

to consequences associated with f . The Choquet integral of f with respect to ν and u

is defined to be:∫
Ω

u ◦ f dν =
n−1∑
j=1

[
u
(
f(Ej)

)
− u
(
f(Ej−n)

)]
ν
(
E1, . . . , Ej

)
+ u
(
f(En)

)
(2)

For a given capacity ν and an action f one can define a rank-dependent probability

distribution pνf on E1, . . . , En, where

pνf
(
Ej
)

= ν
(
E1, . . . , Ej

)
− ν
(
E1, . . . , Ej−1

)
. (3)

The probability pνf (Ej) of Ej can be interpreted as the marginal capacity contribution

of the event Ej to events E1, . . . , Ej−1 which yield better consequences. Accordingly,
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(2) can be equivalently written as an expected utility of f with respect to the rank-

dependent probability distribution pνf and u:

∫
Ω

u ◦ f dpνf =
n−1∑
j=1

[
u
(
f(Ej)

)]
pνf (Ej). (4)

In general, actions generating distinct ranking position of states are evaluated with re-

spect to different rank-dependent probability distributions. Only actions which induce

the same ordering of events E1, . . . , En, also called comonotonic actions, are always

evaluated with respect to the same rank-dependent probability distribution.1

In the face of ambiguity it is important to localize events that are somehow un-

ambiguous. The intuition behind the notion of unambiguous events is that they must

support some kind of probabilistic beliefs. For Nehring (1999), ambiguity of an event is

closely related to its rank dependence.2 More precisely, Nehring calls an event U unam-

biguous if the probability pνf (U) attached to the event does not depend on the ranking

position of U ; or equivalently, it does not depend upon the act f being evaluated.

Accordingly, an event U ∈ A is called Nehring-unambiguous if pνf (U) = pνg(U) = ν(U)

for all f, g ∈ F . Let AUN be the collection of Nehring-unambiguous events.3 Any event

in AUN can be also characterized in terms of a given capacity ν. Nehring (1999) showed

namely that ν is additively separable across its unambiguous events. That is, U ∈ AUN
if and only if for all E ∈ A:

ν(E) = ν(E ∩ U) + ν(E ∩ U c). (5)

From a behavioral point of view, the notion of Nehring-unambiguous events can also be

characterized by applying Savage’s (1954) Sure-Thing-Principle (see Sarin and Wakker

(1992) and Dominiak and Lefort (2011)). That is to say, U ∈ AUN if and only if for

any f, g, h, h
′ ∈ F :

fUh < gUh ⇒ fUh
′ < gUh

′ (6)

1Formally, two actions f and g are called comonotonic if there are now two states, ω and ω′, such

that f(ω) > g(ω) and f(ω′) < g(ω′).

2Recently, other notions of unambiguous events have been suggested in the literature, see for

instance Epstein and Zhang (2001), Zhang (2002) and Ghirardato, Maccheroni, and Marinacci (2004).

3Nehring (1999) proved that for any capacity ν the set AU
N is always an algebra.
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and (6) is also satisfied when U is replaced by U c. Otherwise, U is called ambigu-

ous. The Sure-Thing-Principle constrained to the events U and U c guarantees that

the ranking of acts, fUh and gUh, remains unchanged regardless of the common con-

sequences assigned to the states outside of U .

Zhang (2002) suggested an alternative definition of unambiguous events by weak-

ening the Sure-Thing-Principle. Zhang defines an event U to be unambiguous, if

replacing a constant outcome x outside of U by any other constant outcome x′ does

not change the ranking of acts being compared. Accordingly, an event U is Zhang-

unambiguous if and only if for any action f, g ∈ A and for any outcome x, x′ ∈ X:

fUx < gUx ⇒ fUx
′ < gUx

′ (7)

and (7) also holds true when U is replaced by U c. Otherwise, U is called ambiguous.

Let AUZ be the collection of all Zhang-unambiguous events. In terms of capacities,

Zhang (2002) showed that U ∈ AUZ if and only if for all E ∈ A such that E ⊂ U c:

ν(E ∪ U) = ν(E) + ν(U). (8)

Thus, the additive separability property of ν is satisfied only on subevents of their

unambiguous complements. It is worth mentioning that AUZ ⊂ AUN , since AUZ does not

need to be an algebra.4 AUZ is a λ-system, a collection of events that contains Ω and

is closed under complements and disjoint unions, but not under intersections.

3 Dynamic Choquet Preferences

In this section, we extend the previous setup to dynamic choice situations. In dynamic

choice problems there are two stages of planning: an ex ante and an interim stage. In

the interim stage, agents are informed that some event has occurred and incorporate

this information by updating their preferences. When beliefs are probabilistic and

preferences are of expected utility type, then prior preferences are updated in the

Bayesian way. That is, the conditional preferences are derived by updating prior

beliefs with accordance to Bayes’ rule and by leaving the utility function unchanged.

4Nehring (1999) proved that for any capacity ν the set AU
N is an algebra.
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However, when beliefs are non-additive there are many possible updating procedures.

In this paper, the analysis is constrained to updating rules generating conditional

preferences which respect consequentialism and are representable by Choquet expected

utilities with respect to an updated capacity and the same unconditional vN-M utility

function.

At the ex-ante stage, when no information is available, the unconditional Choquet

expected utility preferences is denoted by <. At the interim stage, an event E has

been observed and conditional preferences are generated. Throughout the paper, is is

assumed that all conditioning events are non-null, i.e., ν(E) > 0, and denote by <E

the conditional preferences over the set of actions F . Such a conditional preference

relation is viewed as governing decisions upon the realization of E. As Machina (1989)

observes, updating of non-expected utility preferences may lead to conditional choices

which are affected by states in the counterfactual event, Ec, as well as by the the whole

choice history, i.e., by prior choices and the feasible set of actions. Such an updating

rule is referred to as non-consequantialist, a property introduced by Hammond (1988).

In this paper it is required that updating rules maintain consequentialism. That

is, updating rules generate conditional Choquet preferences which depend only on

the conditioning events E by leaving the forgone uncertainty as well as the decision

history immaterial for future choices.5 Let AE be the algebra of events generated by

all sub-events of the the conditional event E. A consequentialist updating rule delivers

conditional preferences <E representable by Choquet expected utilities with respect

to the unconditional vN-M utility function u and a well-defined conditional capacity

ν(· | E) on AE, that is, such that for all f, g ∈ F :

f <E f ⇔
∫

Ω

u ◦ f dν(· | E) ≥
∫

Ω

u ◦ g dν(· | E). (9)

and

ν(· | E) : AE → [0; 1]. (10)

5From behavioral point of view, consequentialism states that for any action f, g ∈ F and event

E ∈ A, whenever f(ω) = g(ω) for all ω ∈ E then f ∼E g. The meaningfulness of maintaining

consequentialism in the context of interpersonal decision problems will be further discussed and

justified in Section 6.
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There are many reasonable revision rules which guarantee that conditional capac-

ity satisfies the required property (10). Besides the Bayes rule, proposed by Gilboa

and Schmeidler (1993), there are other prominent revision rules for capacities: the

Maximum-Likelihood updating rule, introduced by Dempster (1968) and Shafer (1976),

the Full-Bayesian updating rule suggested by Jaffray (1992) and Walley (1991), and

the h-Bayesian updating rule of Gilboa and Schmeidler (1993). It is worth mentioning,

however, that the results obtained are independent of which consequentialist updating

rule is applied.

4 Interpersonal Decision Model

This section describes an epistemic framework in which agreement theorems are es-

tablished. There is a finite group of agents I indexed by i = 1, . . . , N . Each agent i is

endowed with a partition Pi of Ω. The partition Pi represents i’s private information.

That is, if the true state is ω, then i is informed of the atom Pi(ω) of Pi to which ω

belongs. Intuitively, Pi(ω) is the set of all states that agent i considers possible at ω.

Thus, all other states are deemed impossible at ω. Given this information structure it

is said that agent i knows an event E at ω if Pi(ω) ⊂ E. The event that i knows E,

denoted by KiE, is the set of all states in which i knows E, i.e.

KiE = {ω ∈ Ω : Pi(ω) ⊂ E}. (11)

An event E is common knowledge at ω if everyone knows E at ω, everyone knows that

everyone knows E at ω, and so on, ad infinitum. The event that everyone knows an

event E is captured by an operator K1 : A → A defined as:

K1 = K1E ∩ · · · ∩KnE =
N⋂
i=1

KiE. (12)

A common knowledge operator CK : A → A is defined as an infinite application of

the operator K1, i.e.

CKE = K1E ∩K1K1E ∩K1K1K1K1E · · · =
∞⋂
m=1

Km(E). (13)

An event E is commonly known at ω if ω ∈ CKE. Following Aumann (1976) and

Milgrom (1981), the concept of common knowledge can be expressed equivalently as

9



follows: LetM = ∧Ni=1Pi be the meet (i.e. finest common coarsening) and J = ∨Ni=1Pi
the joint (i.e. coarsest common refinement) of all agents’ partitions. Denote byM(ω)

the member of M that contains ω. Then, E is commonly known at ω if and only if

M(ω) ⊂ E.

At each state ω ∈ Ω, each agent i ∈ I makes an individual decision. Let D be

a non-empty set of possible decisions. An individual decision is determined by i’s

decision rule di : Ω → D which is a function of i’s private information, i.e., di(ω) =

di(Pi(ω)). Furthermore, let Di(ξi) = {ω : d(Pi(ω)) = ξi} be the event that the

agent i makes a decision ξi ∈ D. The partitional information structure can also be

applied for reasoning about what the agents know about the other agents’ decisions.

In particular, agents’ individual decisions are common knowledge at ω if and only if

M(ω) ⊆ D1(ξ1) ∩ · · · ∩DN(ξN).

A collection I = (I,Ω,D, (Pi, di)i∈I) where I is the set of agents, Ω the set of states,

D the set of decisions, (Pi)i∈I the agents’ information partitions, and (di)i∈I the agents’

decision rule is termed an interpersonal decision model. For a given interpersonal

decision problem, the impossibility of “agreeing to disagree” on decisions designates a

situation in which there is no state at which agents’ individual decisions are common

knowledge and not the same, regardless of which private signals the agent received.

Formally, the agreement theorem can be stated as follows.

Agreement Theorem. Let I be a interpersonal decision model. If at some state ω∗

the event
⋂
i∈I
Di(ξi) is common knowledge, then ξ1 = ξ2 = · · · = ξN .

In general, individual decisions may be described as arbitrary functions. However,

in this study, as in the case of probabilistic agreement theorems, individual decisions

are considered that are based on an agent’s subjective beliefs over uncertain events.

The probabilistic theorems rely on the assumption that the agents are Bayesian and

that they share a common prior probability distribution π over Ω. If the true state is

ω, then the agent i is informed of the atom Pi(ω) of her partition Pi to which ω belongs

and revises the prior π given Pi(ω) according to Bayes’ rule. The posterior probability

distribution π(· | Pi(ω)) serves as a basis for an agents’ individual decisions. These

decisions may just be posterior probabilities for a given event E, posterior expectations

for a given action f , or actions maximizing posterior expectations from a given set

10



of feasible actions B. Adopting the Bayesian paradigm, the agreement theorem for

posterior probabilities was proven by Aumann (1976) and for posterior expectations

by Milgrom (1981), Geanakoplos and Sebenius (1983), and Rubinstein and Wolinsky

(1990). Bacharach (1985) and Cave (1983) extended the previous results to actions

maximizing posterior expectations.

In the next section, the probabilistic agreement theorems are extended to the non-

Bayesian setup in which individuals decisions are based on subjective beliefs repre-

sented by a common-but-not-necessarily-additive prior distribution.

5 Agreement Theorems under Ambiguity

Throughout the paper interpersonal decision models, I, with agents being endowed

with Choquet expected utility preferences are considered. Furthermore, it is assumed

that the agents share a common capacity distribution ν on the state space Ω where

ν(Pi(ω)) > 0 for all states ω ∈ Ω and for all i ∈ I. If the true state is ω, each

agent i revises the prior capacity ν given her private information Pi(ω) by applying a

consequantialist updating rule (see Section 3). The updated ν(· | Pi(ω)) serves as a

basis for agent i’s decisions. In analogy to the Bayesian framework we focus on three

types of individual decisions:

i) conditional capacities for some event E ∈ A,

di(ω) = ν(E | Pi(ω)), (14)

ii) conditional Choquet expectations for some action f ∈ F ,

di(ω) =

∫
Ω

u ◦ f dν(· | Pi(ω)). (15)

iii) optimal actions from a given set of feasible actions B ⊂ F :

di(ω) = max
f∈B

∫
Ω

u(f) dν(· | Pi(ω)). (16)

We refer to situations in which the agreement theorem holds true and agents’ indi-

vidual decisions are conditional capacities (14) as Agreement in Choquet Beliefs, when
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decisions are conditional Choquet expectations (15) as Agreement in Choquet Expec-

tations, and when decisions are actions maximizing conditional Choquet expectations

(16) as Agreement in Choquet Actions.

It is well-known that in the presence of arbitrary decision rules the agreement

theorem holds true whenever agents are ”like-minded”, i.e. they follow the same

decision rule, and their decisions satisfy the union-consistency condition (see e.g. Cave

(1983), Bacharach (1985) and Samet (2010)). Let E1, . . . , En be a partition of Ω. The

union-consistency condition requires that if an agent i makes the same decision ξi

knowing which of the mutually exclusive events Ej has occurred, then she also should

make the same decision ξi without knowing which one occurred, i.e. E1 ∪ . . . ∪ En.

Union Consistency. Let E1, . . . , En of Ω be a partition of Ω. The decision function

di satisfies union-consistency if and only if:

di(E1) = · · · = di(En) = ξi ⇒ d(
n⋃
j=1

Ej) = ξi. (17)

Bacharach (1985) refers to condition (17) as a“[. . . ] fundamental principle of rational

decision-making”. Note, in the class of probabilistic models, decision functions such as

conditional probabilities, conditional expectations, as well as actions maximizing con-

ditional expectations, satisfy the union-consistency condition on any partition. How-

ever, in non-probabilistic models the decision function may satisfy union-consistency

on some partitions, but not on others.

For this reason focus is placed on a fixed partition and properties of events of

that partition which are sufficient for a decision function d(·) to satisfy the union-

consistency condition are examined. It turns out that the decision function di(·),

defined either as conditional capacities, conditional Choquet expectations, or ac-

tions maximizing conditional expectations, satisfies the union-consistency on parti-

tions made up of N -unambiguous events. This condition on its own is sufficient for

the agreement theorem to hold true under ambiguity. That is, if each agent i’s pri-

vate information is represented by a partition Pi made up of N -unambiguous events,

then the agents cannot agree to disagree on their individual decisions, whatever these

decisions are; whether conditional capacities, conditional Choquet expectations or ac-

tions maximizing conditional Choquet expectations. In other words, the unambiguous
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character of the agents’ private information precludes the possibility of agreeing to

disagree on individual decisions. Again, this result occurs despite the fact that agents’

decisions may be conditioned on diverse information. It is formally stated in Theorem

1.

Theorem 1. Let ν be a common capacity distribution on Ω and let AUN ⊂ A be

a collection of N-unambiguous events. Let P i
1, . . . , P

i
k, . . . , P

i
K be the events in i’s

partition Pi. If P i
k ∈ AUN for all k = 1, . . . , K and all agents i ∈ I, then the following

statements are true:

(i) Agreement in Choquet Beliefs holds true,

(ii) Agreement in Choquet Expectations holds true.

(iii) Agreement in Choquet Actions holds true.

How strong is the sufficiency condition in Theorem 1? In particular, suppose that we

adapt a weaker notion of unambiguous events, for instance, the one proposed by Zhang

(2002). Is the claim still true that disagreements in commonly known decisions are im-

possible? As Example 1 demonstrates, the answer is negative. Even a small departure

from Nehring’s notion of unambiguous events may create disagreement opportunities.

That is, if agent i’s information partition Pi is made up of Z-unambiguous events,

which are not N -unambiguous, then her decision function may violate the union-

consistency on Pi. Consequently, one may construct information partitions for the

other agents (made up of Z or N -unambiguous events) so that there will be a state

at which agents’ decisions are common knowledge and do not coincide after all. In a

two agent setup, Example 1 shows that even in the case when one agent’s information

partition consists of Z-unambiguous events, then the two agents may disagree on their

common known posterior capacities.

Example 1 (Disagreement in Choquet Beliefs). Consider an interpersonal decision

model I with two agents I = {A,B}, called Anna and Bob, the set of states Ω =

{ω1, ω2, ω3, ω4}, the set of decisions D = [0, 1] and the decision function defined as in

(14). Let PA = {{ω1, ω2}, {ω3, ω4}} and PB = {ω1, ω2, ω3, ω4} be the agents’ informa-

tion partitions. Anna and Bob face the following capacity distribution on A:
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ν(ωj) = 1
10

, for any j = 1, . . . , 4,

ν(ωj, ωk) = 1
2
, for any j + k 6= 5,

ν(ωj, ωk) = α, for any j + k = 5 where α ∈ [ 1
10

; 1
2
),

ν(ωj, ωk, ωl) = 6
10

, for any j, k, l = 1, . . . , 4.

Note, all events {ωj, ωk} with j + k 6= 5 are Z-unambiguous, but not N-unambiguous.

To see this, consider the event {ω1, ω2} and its complement {ω3, ω4}. On this par-

tition the capacity sums up to one. Now, if these events were N-unambiguous, then

according to the additive separability property (5) the capacity for the event {ω1, ω3}

were ν(ω1, ω3) = ν(ω1) + ν(ω3) = 1
5
, but not 1

2
. One can verify that the capacity

ν satisfies the additive separability property (8) only on subevents of its unambigu-

ous complements. For instance, ν(ω1, ω2, ω3) = ν(ω1, ω2) + ν(ω3) = 6
10

. Accordingly,

AUZ = {∅, {ω1, ω2}, {ω3, ω4}, {ω1, ω3}, {ω2, ω4},Ω} is the collection of Z-unambiguous

events.

Thus, Anna’s partition is made up of Z-unambiguous events, which are not N-unambiguous.

Consider the event E = {ω1, ω3}. At each state ω ∈ Ω, Anna and Bob announce their

posterior beliefs for the occurrence of E given their private information at ω. Due

to Bob’s private information his decision is dB(ω) = ν(E | PB(ω)) = 1
2

at each

state. Anna has finer information than Bob, and therefore her conditional capacity is

dA(ω) = ν(E | PA(ω)) = 1
5

on all states. Note, Anna’s decision function dA(·) violates

the union-consistency condition on PA. Furthermore, since M = Ω, the event that

Anna’s decision is 1
5

and that Bob’s decision is 1
2

is commonly known at any state.

That is, M(ω) ⊆ DA(1
5
) ∩DB(1

2
) = Ω for all ω ∈ Ω. But, these decisions are in fact

not the same! This shows that, if for one agent her private information is made up

of Z-unambiguous events, which are not N-unambiguous, than the union-consistency

condition may be violated and it is possible that the agents end up agreeing to disagree

after all!

Suppose now Anna’s partition PA = {{ω1, ω2}, {ω3, ω4}} is made up of N-unambiguous

events. In this case, the capacity for the event E must be equal to 1
5

due to the additive

separability property (5). Now 1
5

is Bob’s decision which he announces in all states.

Therefore, agents’ decisions are commonly known at any state and in fact they are the

same. Thus, when agents’ private information is made up of N-unambiguous events
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it is impossible for them to agree to disagree on their posterior capacities.

6 Agreement Theorems - The Converse Result

Suppose now that individual decisions satisfy the union consistency condition on

agents’ information partitions and consequently the agents cannot “agree to disagree”.

A natural question that arises in this context is, whether can one infer something

about the nature of the agents’ private information, presupposing that disagreements

are impossible? In principle, the answer is affirmative. However, what may be inferred

depends upon the type of decisions on which agents “agree to agree”. There are situa-

tions in which Agreement in Choquet Beliefs holds true and nothing can be said about

the nature of the agents’ private information. The reason is as follows. One can find a

common capacity distribution on A and a consequentialist updating rule for the prior

capacity for which the conditional capacities satisfy the union consistency condition

on agents’ partition. Hence, as soon as the agents’ conditional capacities for some

fixed event E ∈ A are common knowledge then they must coincide and Agreement

in Choquet Beliefs holds true. Nevertheless, agents’ information partitions are am-

biguous, i.e., they will be neither made up of N -unambiguous, nor of Z-unambiguous

events. This situation is elaborated in Example 2.

Example 2. Consider the interpersonal decision model I as it was described in Ex-

ample 1. Suppose now, Anna and Bob face the following capacity distribution on A:

ν(ωj) = 1
9
, ν(ωj, ωk) = 1

3
, ν(ωj, ωk, ωl) = 4

9
,

where j, k, l ∈ {1, . . . , 4} are distinct indexes. Consider the event E = {ωj, ωk} with

j + k = 5. At ω ∈ Ω, the agents observe their private information, revise their prior

beliefs in accordance with Bayes’ rule, and then announce their posterior capacities for

E. Note that the Bayesian update coincides here with the Maximum-Likelihood and

the Full-Bayesian update. Since dA(ω) = ν(E | PA(ω)) = 1
3

for all ω, Anna announces

1
3

at any state. Since dB(ω) = ν(E | PB(ω)) = 1
3

for all ω, Bob’s announcement

is also 1
3

at any state. Anna’s as well as Bobs’s conditional capacities satisfy the

union consistency condition on their partitions. At each state, the agents’ posteriors
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for the event E are common knowledge and the same. Thus, Agreement in Choquet

Beliefs is on hand. However, the impossibility of “agreeing to disagree” on posterior

beliefs does not indicate that Anna’s or Bob’s private information is in some sense

unambiguous. Events in Anna’s partition are made up of neither N-unambiguous,

nor of Z-unambiguous events. The capacity ν does not even add up to one on Anna’s

partition.

Similar examples can by easily constructed within the class of ε-contaminated ca-

pacities. An ε-contaminated capacity is defined as a distortion of a probability measure

π on Ω. That is, ν(E) = επ(E) with ε ∈ [0, 1] and E ( Ω. The parameter ε may

be interpreted as the agent’s degree of perceived ambiguity. Now, conditionally on an

event E define an ε-contaminated update of ν as Bayesian updated, distorted by the

parameter ε, i.e., ν(· | E) = επ(· | E). Obviously, this updating rule satisfies conse-

quentialism and ensures that conditional capacities maintains the union consistency

condition. Consequently, the agents sharing a common ε-contaminated capacity and

following the ε-contaminated updating rule cannot agree to disagree on the values of

their posteriors beliefs. However, the ε-contaminated capacity, by construction, is not

suitable to model ambiguous and unambiguous events at same time. Then, whenever

the parameter ε < 1 then all uncertain events are perceived as being ambiguous. That

is, these events are neither unambiguous in the sense of Nehring (1999) nor in the

sense of Zhang (2002). Consequently, nothing can be said about the nature of events

representing the agents’ private information knowing that the agents cannot agree to

disagree on the values of ε-contaminated conditional capacities. In light of these obser-

vations one may conclude that Agreement in Beliefs is simply too “weak” for making

any inference about the nature of the agents’ private information.

Can something more be said about the nature of agents’ information partitions

knowing that the agents reach an Agreement in Expectations for some bets? A bet

b = xEy is a function which assigns the constant outcome f(ω) = x ∈ X to each state

ω in E and the constant outcome f(ω) = y ∈ X to each ω in Ec. It turns out that

Agreement in Bets does not provide any information about the quality of the agents’

private information. This negative result is due to Proposition 1. It states that, if at

some state ω it is impossible that the agents agree to disagree on conditional capacities
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for some fixed event E, then it is also impossible at ω that they agree to disagree on

conditional Choquet expectations of binary actions defined on the event E.

Proposition 1. Let ν be a common capacity distribution ν on Ω. Let Pi be i’s in-

formation partition and let di(·) be i’s conditional capacity for some event E ∈ A.

Suppose that at some state ω∗ Agreement in Choquet Beliefs holds true for the event

E. Consider a bet b = xEy defined on the event E with x, y ∈ X. Let d̃i be i’s condi-

tional Choquet expectation of b. Then, Agreement in Expectations holds true at ω∗ for

the bet b.

Hence, knowing that agents cannot agree to disagree on expectations for some

bet, nothing can be said about the nature of events representing the agents’ private

information. Thus, in the view of Example 2, one can always find a common capacity

distribution and an updating rule such that for a some fixed event E Agreement in

Beliefs is on hand. According to Proposition 1, the agents will also reach Agreement in

Expectations for bets on the event E. Nevertheless, the agents’ information partitions

will be composed neither of N -unambiguous, nor Z-unambiguous events.

Motivated by these observations we move to situations in which agents cannot

agree to disagree on the expected values of many-valued actions. Again, the question

is asked whether one can infer something about the nature of events in agents’ in-

formation partitions knowing that Agreement in Expectations for some fixed action

f ∈ F is present. It can be shown that Agreement in Expectations implies that agents’

information partitions must be made up of N -unambiguous events. Theorem 2 states

this result formally.

Theorem 2. Let ν be a common capacity distribution on A. Let A′ be a sub-algebra of

A. Let di(·) be the Choquet conditional expectation for some action f in F . If for any

information partition Pi = P i
1, . . . , P

i
k, . . . , P

i
K such that P i

k ∈ A′ for all k = 1, . . . , K

and all agents i ∈ I, di(·) satisfies the union-consistency on Pi, then A′ is the algebra

made up of N-unambiguous events.

Theorem 1 and 2 highlight the relevance of asymmetric information in the context

of interpersonal decision problems under ambiguity. Differences in commonly known
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expectations are possible and can be attributed to the ambiguous character of agents’

private information.

Note, both theorems have been established under the assumption that agents share

a common capacity distribution. However, in light of probabilistic agreement theo-

rems, it has been argued that the assumption of common prior beliefs may be too

strong and not realistic (see e.g. Aumann (1976), Morris (1995). Our results suggest

it is not necessarily the “commonness” assumption of prior beliefs, that make the prob-

abilistic agreement theorems work, but the “additivity” assumption of the prior beliefs

that make asymmetric information less powerful when explaining differences of indi-

vidual decisions. Put differently, the fact that common knowledge of decisions neglect

asymmetric information about uncertain events can be ascribed to the unambiguous

nature of these events.

Furthermore, it has been assumed that agents’ updated preferences maintain conse-

quentialism. However, when updating non-expected utility preferences there is another

attractive property of preferences, called dynamic consistency. Dynamic consistency

requires that choices made at the ex-ante stage are respected by updated preferences

and vice versa.6 When both properties, consequentialism and dynamic consistency,

are satisfied then preferences admit subjective expected utility representation and con-

ditional preferences are obtained by applying Bayes’ rule to probabilistic beliefs (see

Ghirardato (2002), Siniscalchi (2011)). Thus, when modeling dynamic choice prob-

lems in the class of non-expected utility preferences, then either consequentialism or

dynamic consistency (or both) must be weakened in some respect. We argue that

consequentialism cannot be dispensed with in the context of interpersonal decision

problems with asymmetric information. Recall, consequentialism requires that con-

ditional preferences are independent of states in forgone events. If, to the contrary,

one would allow updated preferences to depend upon contractual events then it would

be impossible to infer what is the true impact of private information on individual

decisions. Put differently, it would be possible that individual decisions diverge even

though they are based on the same information, thus violating, what Aumann (1976)

6Formally, for any E ∈ A and f, g ∈ F such that f(ω) = g(ω) for all ω ∈ Ec, it is true that f < g

if and only if f <E g.

18



calls, “Harsanyi’s consistency”.

Consider an updating rule generating the conditional capacity which depends on

the actual conditional event and agent’s information about events which are condition-

ally impossible. That is, if the true state is ω, then posterior beliefs, ν(· | Pi(ω),Pi),

are affected not only by the actual signal Pi(ω), but also by Pi \ Pi(ω). Obvi-

ously this updating rule violates consequentialism. Therefore, two agents, i and j,

with the same information at some state ω, Pi(ω) = Pj(ω), but different for some

ω′ ∈ Ω \ ω, Pi(ω′) 6= Pj(ω′), will in general have different posterior beliefs at ω, i.e.,

ν(· | Pi(ω),Pi) 6= ν(· | Pj(ω),Pj).

7 No Speculative Trade - A Corollary

In this section the no-trade theorem of Milgrom and Stokey (1982) is generalized

within the class of Choquet expected utility preferences. In light of the aforementioned

results, we are able to characterize the properties of agents’ private information which

are sufficient to guarantee that asymmetric information alone cannot generate any

profitable trade opportunities under ambiguity.

An interpersonal decision model I is interpreted as a pure exchange economy with

a single commodity. That is, let X = R+ be the commodity space and call elements

of F contingent consumption bundles. An allocation a is a family a = [a1, . . . , aN ]

where each ai ∈ F represents i’s contingent consumption bundle. An initial allocation

is denoted by e = [e1, . . . , eN ], where each ei ∈ F is referred to as i’s endowment.

As in the previous sections, it is assumed that the agents share an identical capacity

distribution ν on A. Moreover, each agent i is characterized by her preferences over

F which are asserted to admit a Choquet expected utility representation, an initial

endowment ei ∈ A, and her private information Pi. A trade t = [t1, . . . , tN ] is an

N -tuple of functions ti : Ω → R. If the true state is ω, ti(ω) corresponds to i’s net

trade of the single commodity. We say that the trade t is feasible, if:

N∑
i=1

ti(ω) ≤ 0 ∀ ω ∈ Ω,

ei(ω) + ti(ω) ≥ 0 ∀ ω ∈ Ω, ∀i ∈ I.

(18)

An initial allocation e is called ex-ante efficient if there does not exist a feasible trade t

19



such that at the ex-ante stage each agent i prefers the contingent consumption bundle

ei + ti to her endowment ei, i.e.:∫
Ω

u ◦ (ei + ti) dν ≥
∫

Ω

u ◦ ei dν ∀i ∈ I. (19)

Suppose that the agents trade to an ex-ante efficient allocation e before any information

is revealed. After the receipt of private information the market is reopened and the

agents have the chance to reallocate the initial allocation e through a feasible trade t.

That is, when the true state is ω, each agent i observes Pi(ω) and then the feasible

trade t is proposed. We call the feasible trade t acceptable (or weakly preferable to

a zero trade) if each agent i prefers the contingent consumption bundle ei + ti to her

endowment ei given Pi(ω) for all ω ∈ Ω, i.e.:∫
Ω

u ◦ (ei + ti) dν(· | Pi(ω)) ≥
∫

Ω

u ◦ ei dν(· | Pi(ω)) ∀ω ∈ Ω, (20)

with strict equality for at least one ω. In Bayesian frameworks, where all uncertainty

is quantifiable by a common additive probability distribution, the receipt of private

information can not create any incentives to re-trade an ex-ante efficient allocation,

even though the information the agents receive may be distinct. What are the condi-

tions on agents’ private information which are sufficient to ensure that the no-trade

theorem still holds in the presence of common, but non-additive priors? It turns out

that as long as agents’ information partitions are made up of N -unambiguous events,

at interim stage the agents will not find it advantageous to re-trade an initially effi-

cient allocation. In other words, when each agent’s private information is free from

ambiguity it is impossible that purely speculative trade occurs only due to differences

in their private information. This result is stated in the following theorem.

Corollary 7.1 (No-Trade Theorem). Let ν be a common capacity distribution on Ω

and let AUN ∈ A be a collection of N-unambiguous events. Let P i
1, . . . , P

i
k, . . . , P

i
K be

the events in i’s partition Pi. Suppose that P i
k ∈ AUN for all k = 1, . . . , K and for all

agents i ∈ I. Suppose the initial allocation e = [e1, . . . , eN ] is ex-ante efficient. Let

t = [t1, . . . , tN ] be a trade proposed at interim stage. If it is common knowledge at ω∗

that t is feasible and acceptable, then t1(ω∗) = . . . = tN(ω∗) = 0.
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Corollary 7.1 provides an intuitive explanation for the existence of speculative trade.

As it was already stipulated by Knight (1921), it is the presence of ambiguity, or what

he called “unmeasurable uncertainty”, that generates profitable trade opportunities.

When agents’ private information is ambiguous, then conditional on different informa-

tion agents may expect gains from re-trading an initially efficient allocation. Example

3 illustrates how gains from trade may occur even when one agent’s private information

partition is made up of Z-unambiguous events, which are not N -unambiguous.

Example 3. Let X = R+ be the set of outcomes. Consider an interpersonal decision

model I with the set of contingent consumption bundles F = {a | a : Ω → R+} and

the same information structure and the same capacity distribution as in Example 1.

Let e = [eA = (2, 0, 2, 0), eB = (1, 2, 1, 0)] be the initial allocation. Suppose Anna and

Bob are risk neutral. By computing the Choquet expectations of eA and eB with respect

to u and ν for both agents, we get:∫
u ◦ eA dν = 2

1

10
+ 1[

6

10
− 1

10
] + 0[1− 6

10
] =

7

10
, (21)

∫
u ◦ eB dν = 2

1

2
+ 0[1− 1

2
] = 1. (22)

At ex-ante stage there is no feasible trade t that would make both agents better off.

In fact, the contingent consumption bundle eB makes Anna better off, but any feasible

trade would make Bob worse off. Hence, e is ex-ante efficient. Now, let ω1 be the

true state. Because of Bob’s information at ω1, i.e. PB(ω1) = Ω, his evaluation of

eA and eB does not change. Given Anna’s information at ω1, i.e. PA(ω1) = {ω1, ω2},

she updates her preferences by taking into account the conditional capacities ν(ω1 |

PA(ω1)) = ν(ω2 | PA(ω1)) = 2
10

and calculates the conditional Choquet expectations of

eA and eB: ∫
u ◦ eA dν(· | PA(ω1)) = 2

2

10
+ 1[1− 2

10
] =

12

10
, (23)∫

u ◦ eB dν(· | PA(ω1)) = 2
2

10
+ 0[1− 2

10
] =

4

10
. (24)

Now, consider the trade t := [tA = (1,−2, 1, 0), tB = (−1, 2,−1, 0)] proposed at the

interim stage. Note, since eA + tA = eC and eC + tC = eA the trade t is feasible. By

(23) and (24) Anna prefers eB to eA and by (21) and (22) Bob prefers eA to eB making
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the trade t acceptable at ω1. At ω1 it is commonly known between Anna and Bob that

the trade t is feasible and acceptable and t is not the null-trade. The events in Anna’s

partition are Z-unambiguous, but not N-unambiguous; due to this fact differences in

agents’ private information matter and make a profitable trade possible.

A few remarks with regard to the related literature are in order. Close to the ap-

proach taken in this paper are the contributions of Rubinstein and Wolinsky (1990) and

Dow, Madrigal, and Werlang (1990). Their results are obtained without constraining

the analysis to a particular class of ambiguity-sensitive preferences. Rubinstein and

Wolinsky (1990) argued that Milgrom-Stokey’s result are valid for any theory of de-

cision making under uncertainty as long as preferences satisfy dynamic consistency.

Dow, Madrigal, and Werlang (1990) showed that the no-trade theorem is true if and

only if preferences are representable by a state-additive utility function. Corollary 7.1

can be viewed as characterizing those properties of events in information partitions

on which dynamic consistency as well as state-additivity of Choquet preferences are

satisfied. Then, if a fixed partition is made up of N -unambiguous events, the Choquet

expected utility preferences respect dynamic consistency on that partition. Further-

more, Choquet preferences respect dynamic consistency on a fixed partition if and only

if the Choquet integral satisfies the additivity property constrained to that partition

(see Sarin and Wakker, 1998). In two other related works, Ma (2002) and Halevy

(2004) attempt to establish sufficient conditions for the no-trade theorem to be true

for the class of preferences violating consequentialism in some respect.

8 Conclusion
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A Appendix

Proof of Theorem 1. First we show that (ii) is true.

Step 1 Consider an agent i ∈ I. Let P1, . . . , Pk, . . . , PK be the events in the agent

i’s partition Pi. That is Pi(ω) = Pi(ω
′
) for all states ω, ω′ ∈ Pk. Suppose

that the i’s information partition Pi is made up off N -unambiguous events, i.e.

Pk ∈ AUN for any k = 1, . . . , K. Fix an action f ∈ F . Let di be the Choquet

decision rule defined as in (3). Furthermore, we assume that agent i computes

the posterior capacity ν(· | Pk) conditional on Pk by applying Bayes’ rule. This

assumption is reasonable, because all updating rules coincide with Bayes’ rule

when conditioning on N -unambiguous events (see Dominiak and Lefort (2011)).

Suppose that for any index k = 1, . . . , K the conditional Choquet expectation

of f given Pk is equal to ξ:

di(P1) = . . . di(Pk) = . . . = di(PK) = ξ, (25)

where:

di(Pk) =

∫
Ω

u ◦ f dν(· | Pk)

=
n−1∑
j=1

[u(xj)− u(xj+1)]
ν(E1, . . . , Ej ∩ Pk)

ν(Pk)

= ξ.

By the additive separability condition (5) of N -unambiguous events the Choquet

expected value of f with respect to the prior capacity ν can be written as:∫
Ω

u ◦ f dν =
n∑
k=1

∫
Pk

u ◦ f dν. (26)

Thus, we obtain:∫
Ω

u ◦ f dν(·) =
n∑
k=1

ν(Pk)

∫
Pk

u ◦ f dν(· | Pk) =
n∑
k=1

ν(Pk) ξ = ξ.

Therefore, di(
K⋃
j=1

Pj) = ξ shows that the Choquet conditional expectations of f

satisfy the union-consistency on partitions made up off N -unambiguous events.
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Step 2 Fix an agent i. Let Di(ξi) = {ω : d(Pi(ω)) = ξi} be the event that the

i’s decision is ξi. Suppose at some state ω∗ the event
⋂
i∈I
Di(xi) is common

knowledge, i.e. M(ω∗) ⊆
⋂
i∈I
Di(xi). Denote by Q = M(ω∗) the member of M

that contains ω∗. Let Q1, . . . , Ql, . . . , QL be events in i’s partition Pi such that

Q =
L⋃
l=1

Ql. By assumption, M(ω∗) ⊆ Di(ξi) and di(Pi(ω)) = ξi for any ω ∈ Ql

with l = 1, . . . , L. Furthermore, since each event Ql is N -unambiguous the

decision function di(·) satisfies the union-consistency by Step 1. Thus, di(Q) = ξi.

The same argument is true for any agent j ∈ I \ {i}. That is, dj(Q) = ξj. Thus,

ξ1 = . . . = ξN . The fact that the Sure-Thing-Principle is sufficient for agreement

theorem to be true has been proved, among others, by Bacharach (1985, Theorem

3, p.182).

Proof of Proposition 1. Fix an event E. Let Di(αi) = {ω : ν(E | Pi(ω)) = αi}

be the event that i’s conditional capacity of E is αi. Suppose that at some state

ω∗ the agents reached Agreement in Beliefs. That is, the event
⋂
i∈I
Di(αi) is common

knowledge at ω∗ and agents’ conditional capacities for E are the same, α1 = . . . = αN .

For any x, y ∈ X such that x � y let b = xEy be a bet. Fix an agent i. Let

P1, . . . , Pk, . . . , Pn be events in i’s information partition Pi. Let di(Pk) be the i’s

conditional Choquet expectation of b given Pk. Suppose that di(Pk) = βi for any

k = 1, . . . , K, i.e.:

di(P
i
k) =

∫
Ω

u ◦ b dν(· | Pk)

= [u(x)− u(y)]ν(E | P i
k) + u(y)

= βi,

Rearranging the above equation we get for any k = 1, . . . , n:

ν(E | P i
k) =

β − u(y)

u(x)− u(y)

= αi.

Thus, since Agreement in Beliefs holds it follows that:

ν(E |
K⋃
k=1

Pk) =
β − u(y)

u(x)− u(y)

= αi.
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Therefore:

di(
K⋃
k=1

P i
k) =

∫
Ω

u ◦ b dν(·)

= [u(x)− u(y)]ν(E) + u(y)

= βi.

Let Di(βi) = {ω : d(Pi(ω)) = βi} be the event that i’s conditional Choquet expectation

of b is βi. Since the Sure-Thing Condition holds, the event
⋂
i∈I
Di(βi) is common

knowledge at ω∗ and in fact β1 = . . . = βN . Therefore, we conclude that an Agreement

in Beliefs implies an Agreement in Expectations for binary actions.

Proof of Theorem 2. Let A′ be a sub-algebra of A. In Step 1 we show that for any

event E ∈ A′ and all events F,G ∈ A such that ∅ 6⊆ F,G 6⊆ Ec, the capacity ν has

the following property:

ν(E ∪G)− ν(G) = ν(E ∪ F )− ν(F ). (27)

In Step 2 it is shown that for any event E ∈ A′ the capacity ν is separable among all

subevents of Ec, i.e. for any F ⊂ Ec:

ν(E) = ν(E ∪ F )− ν(F ) = 1− ν(Ec). (28)

Step 1. Let A1, A2, A3 ∈ A be a collection of disjoint events partitioning the event Ec.

Consider an action f = (x1A1, x2A2, x3A3) with outcomes x1, x2, x3 ∈ X such

that x1 < x2 < x3. Suppose that the Choquet expected utility of f conditional

on Ec equals x, i.e.:

f ∼Ec x. (29)

By computing the conditional Choquet expectation of f we get:∫
u ◦ f dν(· | Ec) = u(x1)

[
1− ν(A2, A3 | Ec)

]
+ u(x2)

[
ν(A2, A3 | Ec)− ν(A3 | Ec)

]
+ u(x3) ν(A3 | Ec) = x. (30)

Now, consider an action g = fEcx. By the assumption (29) the conditional

Choquet expectation of g satisfies the union-consistency on the partition E,Ec,

i.e.: ∫
u ◦ g dν(· | Ec) = x , and

∫
u ◦ g dν(· | E) = x
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implies ∫
u ◦ g dν(· | Ω) = x. (31)

When computing the unconditional Choquet integral (31) of g with respect to ν

we consider two cases. In Case 1 we consider any x such that x2 < x < x3. In

Case 2, we consider any x such that x1 < x < x2.

Case 1. For any x such that x2 < x < x3 the unconditional Choquet integral of

g yields:∫
u ◦ g dν = u(x1)

[
1− ν(A2, E,A3)

]
+ u(x2)

[
ν(A2, E,A3)− ν(E,A3)

]
+ u(x)

[
ν(E,A3)− ν(A3)

]
+ u(x3) ν(A3)

= x. (32)

Solving Equation (32) for x we get:∫
u ◦ g dν(· | E) =

1

1− ν(E,A3) + ν(A3)

{
u(x1)

[
1− ν(A2, E,A3)

]
+ u(x2)

[
ν(A2, E,A3)− ν(E,A3)

]
+ u(x3) ν(A3)

}
= x. (33)

Equation (33) is true for any x1, x2, x3 such that x1 < x2 < x3 and any g = fEcx

with x such that x2 < x < x3. Thus, when fixing the values x1, x2 and varying

the value of x3 we get from Equation (30) and (33):

ν(A3 | E) =
ν(A3)

1− ν(E,A3) + ν(A3)
(34)

Case 2. For x such that x1 < x < x2 computing the unconditional Choquet

integral of g yields:∫
u ◦ g dν = u(x1)

[
1− ν(E,A2, A3)

]
+ u(x)

[
ν(E,A2, A3)− ν(A2, A3)

]
+ u(x2)

[
ν(A2, A3)− ν(A3)

]
+ u(x3) ν(A3)

= x. (35)
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Solving the above Equation (35) for x′′ we get:∫
u ◦ g dν(· | E) =

1

1− ν(E,A2, A3) + ν(A2, A3)

{
u(x1)

[
1− ν(E,A2, A3)

]
+ u(x2)

[
ν(E,A2, A3)− ν(A2, A3)

]
+ u(x3) ν(A3)

}
= x. (36)

Again, Equation (36) is true for any x1, x2, x3 such that x1 < x2 < x3 and any

g = fEcx with x such that x1 < x < x2. Thus, when fixing the values x1, x2 and

varying the value of x3 we get from Equations (30) and (36):

ν(A3 | E) =
ν(A3)

1− ν(E,A2, A3) + ν(A2, A3)
. (37)

From Equations (34) and (37) we conclude that:

ν(E,A3)− ν(A3) = ν(E,A2, A3)− ν(A2, A3). (38)

Now, we repeat the same argument for an action h = (y1A1, y2A2, y3A3) with

outcomes y1, y2, y3 ∈ X such that y1 < y3 < y2. Suppose that h ∼Ec y and

construct an action k = hEcy. By construction, the conditional Choquet expec-

tation of k satisfies the union-consistency on the partition E,Ec. After having

considered two cases, Case 1 in which y is such that y3 < y < y2 and in Case 2

in which y is such that y1 < y < y3, we conclude:

ν(E,A2)− ν(A2) = ν(E,A2, A3)− ν(A2, A3). (39)

From Equation (38) and Equation 39 it follows then that:

ν(E,A2)− ν(A2) = ν(E,A3)− ν(A3). (40)

Therefore, it is true that for any event E ∈ A′ for all events F,G ∈ A such that

∅ 6⊆ F,G 6⊆ Ec:

ν(E ∪G)− ν(G) = ν(E ∪ F )− ν(F ). (41)

Step 2. Let A1, A2 ∈ A be two disjoint events partitioning the event E and A3, A4 ∈

A two events partitioning Ec. Consider an action f = (x1A1, x2A2, x3A3, x4A4)
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with outcomes x1, x2, x3, x4 ∈ X such that x1 < x3 < x4 < x2. Suppose the con-

ditional Choquet expectation of f satisfies the union-consistency on the partition

E,Ec, i.e.: ∫
u ◦ f dν(· | Ec) = x and

∫
u ◦ f dν(· | E) = x

implies ∫
u ◦ f dν(· | Ω) = x. (42)

By computing the respective conditional Choquet integrals of f we have:∫
u ◦ f dν(· | E) = x1

[
1− ν(A2 | E)

]
+ x2 ν(A2 | E) = x, (43)∫

u ◦ f dν(· | Ec) = x3

[
1− ν(A4 | Ec)

]
+ x4 ν(A4 | Ec) = x. (44)

The unconditional Choquet integrals of f is:∫
u ◦ f dν = x1

[
1− ν(A3, A4, A2)

]
+ x3

[
ν(A3, A4, A2)− ν(A4, A2)

]
+ x4

[
ν(A4, A2)− ν(A2)

]
+ x2 ν(A2). (45)

From Step 1 and Equation (43) we obtain the following equation:

x1

[
1− ν(A3, A4, A2)

]
+ x4 ν(A4) = x

[
1− ν(A4, A3, A2) + ν(A4)

]
, (46)

and thus:

x1

[
1− ν(A3, A4, A2)

]
+ x

[
ν(A4, A3, A2)− ν(A4)

]
+ x4 ν(A4) = x. (47)

From Equation (45) and (47) we get:

x2

[
ν(A3, A4, A2)−ν(A3, A4)

]
+x3

[
ν(A3, A4)−ν(A4)

]
= x

[
ν(A3, A4, A2)−ν(A4)

]
.

(48)

and thus:

x2

[
ν(A3, A4, A2)− ν(A3, A4)

]
[
ν(A3, A4, A2)− ν(A4)

] + x3

[
ν(A4, A2)− ν(A4)

]
[
ν(A3, A4, A2)− ν(A4)

] = x. (49)

Recall, in Equation (44) we had:

x3

[
1− ν(A4 | Ec)

]
+ x4 ν(A4 | Ec) = x, (50)
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Therefore, for any x3, x4 ∈ X such that x3 < x4 we have:

ν(A4 | Ec) =
ν(A4, A2)− ν(A4)

ν(A3, A4, A2)− ν(A4)
, (51)

and

1− ν(A4 | Ec) =
ν(A3, A4, A2)− ν(A3, A4)

ν(A3, A4, A2)− ν(A4)
. (52)

Now, let us consider an action g = (x1A1, x2A2, x3A3, x4A4) with outcomes x1,

x2, x3, x4 ∈ X such that x1 < x4 < x3 < x2. The same argument as above leads

to the conclusion that:

1− ν(A3 | Ec) =
ν(A3, A4, A2)− ν(A3, A4)

ν(A3, A4, A2)− ν(A4)
. (53)

After applying Step 1 to the partition A4, A
c
4 we get:

ν(A3, A4, A2)− ν(A3, A2) = ν(A4, A2)− ν(A2). (54)

Thus, by Equation (51), (53) and (54) we have:

ν(A4 | Ec) = 1− ν(A3 | Ec). (55)

After applying Step 1 to the partition E,Ec we get:

ν(A4 | Ec) =
ν(A4)

1 + ν(A4)− ν(A4, E)
, (56)

and

ν(A3 | Ec) =
ν(A3)

1 + ν(A3)− ν(A3, E)
. (57)

Thus, by Equation (55), (56) and (57) we obtain:

ν(A4)

1 + ν(A4)− ν(A4, E)
=

1− ν(A3, E)

1 + ν(A3)− ν(A3, E)
, (58)

From Step 1 we know that:

ν(A4, E)− ν(A4) = ν(A3, E)− ν(A3). (59)

and therefore:

ν(A4) + ν(A4, E) = 1, (60)

ν(A4) + ν(Ac4) = 1. (61)
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Step 3. Let A1, A2, A3 ∈ A be events partitioning the event E and Let A4, A5 ∈ A

be events partitioning the complementary event Ec. By applying the argument

from Step 1 when deriving the updating rule we obtain:

ν(A2, A3 | E)−ν(A3 | E) =
ν(A2, A3)

1 + ν(A2, A3)− ν(Ec, A2, A3)
− ν(A2)

1 + ν(A2)− ν(Ec, A2)
.

From the property of the capacity ν derived in Step 1 we get:

ν(A2, A3 | E)− ν(A3 | E) =
ν(A2, A3)− ν(A2)

1 + ν(A1)− ν(Ec, A1)
. (62)

Furthermore, from Step 2 we get:

ν(A2, A3 | E) =
ν(A2, A3, A4)− ν(A4)

ν(A1, A2, A3, A4)− ν(A4)
, (63)

ν(A3 | E) =
ν(A2, A4)− ν(A4)

ν(A1, A2, A3, A4)− ν(A4)
. (64)

Some computations yield:

ν(A2, A3 | E)− ν(A3 | E) =
ν(A2, A3, A4)− ν(A4)

ν(A1, A2, A3, A4)− ν(A2, A4)
, (65)

=
ν(A2, A3)− ν(A3)

ν(A1, A2, A3, A4)− ν(A4)
, (66)

=
ν(A2, A3)− ν(A3)

1 + ν(A1)− ν(Ec, A4)
. (67)

and thus:

ν(A1, A2, A3, A4)− ν(A4) = 1 + ν(A1)− ν(Ec, A4). (68)

Again, from Step 1 and 2 we get the following equality:

ν(A1 | E) =
ν(A1, A4)− ν(A4)

ν(A1, A2, A3, A4)− ν(A4)
=

ν(A1)

1 + ν(A1)− ν(Ec, A4)
. (69)

By Equation (68) the denominators are the same and thus:

ν(A1) = ν(A1, A4)− ν(A4), (70)

and the capacity ν is updated according to Bayes’ rule, i.e.:

ν(A1 | E) =
ν(A1)

ν(E)
. (71)
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Step 4. Fix an event E ∈ A′ and let A ∈ A be an event such that E ∩ A 6= ∅ and

Ec ∩ A 6= ∅. Suppose that:

ν(A | E) = α, (72)

ν(A | Ec) = β < α. (73)

Let x be an outcome for which Choquet conditional expectation of the action

f = xA0 is equal to α, i.e.:∫
u ◦ f dν(· | Ec) = x ν(A | Ec),

= α. (74)

Now, consider an action g = (x,Ec ∩ A; 1, E ∩ A; 0). Suppose the conditional

Choquet expectation of g satisfies the union-consistency on the partition E,Ec,

i.e.: ∫
u ◦ g dν(· | Ec) = α and

∫
u ◦ g dν(· | E) = α

implies ∫
u ◦ g dν(· | Ω) = α. (75)

The unconditional Choquet expectation of g is:∫
u ◦ g dν = 1

[
ν(A)− ν(A ∩ Ec)

]
+ xν(A ∩ Ec),

= α. (76)

From Step 3 we know that the updating rule is Bayes’ rule:

ν(A | Ec) =
ν(Ec ∩ A)

ν(Ec)
,

and thus:

x ν(A | Ec) = α ν(Ec). (77)

From Equation (76) and (77) we have:∫
u ◦ g dν = 1

[
ν(A)− ν(A ∩ Ec)

]
+ α ν(Ec),

= α. (78)
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From Equation (77) and Step 2 we obtain:∫
u ◦ g dν = 1

[
ν(A)− ν(A ∩ Ec)

]
= α(1− ν(Ec)),

= α ν(E). (79)

Thus we have:

ν(A)− ν(A ∩ Ec)

ν(E)
=

ν(A ∩ E)

ν(E)
= x, (80)

showing that E is N -unambiguous event, that is for any A ∈ A the capacity ν

is additive separable:

ν(A) = = ν(A ∩ Ec) + ν(A ∩ E). (81)
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