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Abstract

I apply a prospect theory model of risk preferences with an endogenously
determined reference point to propose an alternative objective of maximizing
expected outcome rather than maximizing expected utility. I show that an
agent can always form a consistent expected outcome for any binary gamble
and derive a parametric formula, which can then be used to examine the
effects of loss aversion, risk aversion, and probability weighting on behavior.
To illustrate the applicability of the results, I use this model to consider
the incentives of an agent purchasing insurance against the possibility of a
loss and show that it is optimal for him to either purchase full insurance or
purchase no insurance.
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1. Introduction

Prospect theory (Kahneman and Tversky, 1979; Tversky and Kahne-
man, 1992) applies psychological principles to incorporate several important
and frequently observed behavioral tendencies into the neoclassical expected
utility model of preferences. This formulation helps resolve several appar-
ent paradoxes and provides a useful descriptive model of choice under risk
and uncertainty (Camerer, 2000). The model seeks to accommodate five
important behavioral concerns that have been observed empirically:
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• Reference Dependence: Outcomes are evaluated as deviations rela-
tive to some reference point rather than absolute levels. This reference
point is therefore critical to determining how the agent assesses an out-
come. Reference points are flexible and could be based on any number
of judgments, such as the status quo (Kahneman and Tversky, 1979),
an aspiration level (Siegel, 1957; Tversky and Kahneman, 1991), or
past observations (Baucells, Weber, and Welfens, 2011). A prospect
theory model with a flexible reference point has been used to help
explain behavior by real-world agents facing risky decisions involving
large monetary outcomes (see e.g. Post et al., 2008).

Koszegi and Rabin (2006, 2007) argue that expectations about the
future form the most natural reference point for valuing realized out-
comes. According to this model, an agent makes two related judge-
ments when facing a risky prospect: He determines a reference point
that will allow him to evaluate the realized outcome. He also assesses
his prospects relative to this reference point and forms an expecta-
tion about his outcome. For an agent who uses expectations as his
reference point, this implies that reference point formation is an in-
herently endogenous process. Koszegi (2010) argues that, at least in
a ex ante sense, the agent should then seek to maximize this antici-
pated outcome. Abeler et al. (2011) find support for the hypothesis
that subjects use expectations as a reference point in labor supply de-
cisions, and Crawford and Meng (2011) use this model to explain New
York City cabdrivers’ labor supply behavior.

• Loss Aversion: Outcomes that fall below the reference point (“losses”)
are felt more intensely than equivalent outcomes above the reference
point (“gains”). This means that the value function is steeper for losses
than for gains, which can be parameterized by applying a scaling factor
λ ≥ 1 to the portion of the value function below the reference point.
The larger λ is, the more averse the agent is to (and the more heavily
he negatively weights) outcomes which fall below his expectation.

• Risk Aversion in Gains, Risk Seeking in Losses: While the agent
displays a general preference for an assured moderate-sized outcome
over 50-50 chance of a large gain or zero gain, he prefers a 50-50 chance
of taking a large loss or avoiding the loss altogether over an assured
moderate-sized loss. This so-called reflection hypothesis is modeled by
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a concave value function in the domain above the reference point and
a convex value function in the domain below the reference point and
has been debated empirically. Budescu and Weiss (1987) and Baucells
and Villasis (2010) find support for the reflection effect while Hershey
and Schoemaker (1980) conduct experiments that provide evidence to
the contrary.

• Diminishing Sensitivity to Gains and Losses: The marginal effect
of changes in the outcome are smaller as the agent moves further away
from the reference point. For example, if the reference point is $0, the
agent will experience a stronger effect when moving from $100 to $200
than when moving from $1,100 to $1,200. An intuitive, simple, and
frequently utilized value function that captures this effect is a power
function (Wakker, 2008) with parameters α ∈ (0, 1) and β ∈ (0, 1) in
the domain of gains and losses, respectively.

• Probability Weighting: Agents tend to overweight small probabili-
ties and underweight probabilities close to 1. This effect can be modeled
with an S-shaped probability weighting function, such as Goldstein and
Einhorn’s (1987) specification w(p) = δpγ

δpγ+(1−p)γ , where δ and γ ∈ (0, 1)
parameterize the shape of the probability weighting. Modern prospect
theory (Tversky and Kahneman, 1992) allows for separate weighting
functions in the domain of gains and losses while imposing additional
restrictions to ensure that the total weights sum to 1.

This paper applies Shalev (2000) and Koszegi and Rabin’s (2006, 2007,
2010) model of expectations as an endogenously determined reference point
to propose a tractable objective of maximizing expected outcome EO (as an
alternative to the classical objective of maximizing expected utility) under a
prospect theory model of risk preferences. I show that an agent can always
form this unique consistent expectation about his prospects and derive its
functional form for binary prospects. Consequently, the model provides a
parametric method to analyze incentives in the presence of risk and can be
used to predict how changes in different risk attitudes affect behavior.

The rest of the paper is organized as follows: Section 2 presents the model
and the main results. Section 3 demonstrates the applicability of this model
by considering an agent making an insurance decision. Section 4 concludes
and the appendix contains proofs of all results.
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2. The Model

I consider an agent who faces a risky future prospect with n possible
outcomes x1 ≤ · · · ≤ xn, which could each occur with respective probabilities
p1, . . . , pn, with

∑n
i=1 pi = 1. Before the uncertainty is resolved, the agent

forms an expectation about his outcome X, and this expected outcome,
which I will denote as EO, serves as a reference point for him to evaluate
the outcome that he ultimately receives. When his outcome exceeds this
expectation, he feels an additional gain equal to (X − EO)α. When his
outcome falls below his expectation, he perceives this as an added loss equal
to −λ(EO −X)β.

Numerous studies attempt to estimate the parameters λ, α, and β for
the general population by analyzing subjects’ choices over risky gambles.
Tversky and Kahneman (1992) estimate λ = 2.25, α = β = 0.88, Tu (2005)
finds λ = 3.18, α = 0.68, and β = 0.74, and Abdellaoui, Bleichrodt, and
Paraschiv (2007) find λ = 2.54, α = 0.72, and β = 0.73. Booij et al. (2010)
estimate λ = 1.58, α = 0.86, and β = 0.83, and cannot reject that α and β
are equal. Based on these results, I assume that α = β, which simplifies the
model and allows for a broader spectrum of definitions of the loss aversion
parameter λ (see e.g. Kobberling and Wakker, 2005).

EO-2 EO-1 EO+1 EO+2
x

EO-3

EO-2

EO-1

EO+1

EO+2

v Hx, EOL

EO

Figure 1: A prospect theory type reference-dependent utility function v(x,EO)
displaying loss aversion with coefficient λ > 1, risk aversion in gains and risk
seeking in losses.
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Specifically, I use a prospect theory type generalization of Shalev’s (2000)
utility function which incorporates all of the key features of cumulative
prospect theory discussed earlier:

v(x,EO) =

{
EO − λ(EO − x)α if x < EO
EO + (x− EO)α if x ≥ EO,

where λ ≥ 1 represents the coefficient of loss aversion as before, and α ∈ (0, 1]
determines the curvature of the utility function. Figure 1 depicts the shape
of this utility function. For a fixed reference point EO, v(x,EO) displays
constant Arrow-Pratt relative risk aversion (CRRA) of 1 − α in gains and
−1−α (risk seeking) in losses. The power family of utility functions exhibits
a diminishing sensitivity to absolute gains and losses, retains its properties
under positive linear transformation of the payoffs, and is widely used for
estimating risk attitudes from real-world data (Wakker, 2008). If α = λ = 1
this formulation will revert back to a risk-neutral utility function equal to
expected payoff.

0.2 0.4 0.6 0.8 1.0
p

0.2

0.4

0.6

0.8

1.0

wHpL

Figure 2: Probability weighting functions w−(p) (the upper solid curve) and
w+(p) (the lower solid curve) versus the true probability p (the dashed line)
for δ+ = 0.8, γ+ = 0.7, δ− = 1.1 and γ− = 0.7.

I also assume that the expert applies probability weighting functions
w+(p) and w−(p) for scores above and below EO (positive and negative
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events), respectively. w+(·) and w−(·) are assumed to be strictly increas-
ing and satisfy w+(0) = w−(0) = 0 and w+(1) = w−(1) = 1. For w(p) =

δpγ

δpγ+(1−p)γ , Abdellaoui (2000) estimates δ+ = 0.65, γ+ = 0.60, δ− = 0.84 and

γ− = 0.65, while Abdellaoui, Vossmann, and Weber (2005) find δ+ = 0.98,
γ+ = 0.83, δ− = 1.35 and γ− = 0.84 and Booij et al. (2010) estimate
δ+ = 0.77, γ+ = 0.62, δ− = 1.02 and γ− = 0.59. Figure 2 displays the shape
of the weighting function for a rough average of these parameter estimates.

The agent’s expected-valuation function when he uses EO as a reference
point for this prospect is

V (EO) ≡
n∑
i=1

πi(EO)v(xi, EO)

where decision weights are given by

πi(EO) ≡ w+(
n∑
j=i

pj)− w+(
n∑

j=i+1

pj) for all i such that xi > EO,

and πi(EO) ≡ w−(
i∑

k=1

pk)− w−(
i−1∑
k=1

pk) for all i such that xi ≤ EO,

as in cumulative prospect theory (Tversky and Kahneman, 1992). Of par-
ticular interest is EO ∈ [x1, xn), in which case π1(EO) = w−(p1) and
πn(EO) = w+(pn).

Definition 1 (Consistent Expectations). Following the definition of personal
equilibrium presented in Koszegi (2010), I say that the reference point EO
is consistent with the agent’s expectations if the expected-valuation of the
prospect is equal to the reference point he is using. Mathematically, this
requires that V (EO) = EO.

A reference point that satisfies this consistency equation is the natural
expectation formed by an agent who carefully deliberates over his future
prospects. If he initially forms a reference point R that is higher than EO,
then upon further introspection he will find that his potential future losses
−λ(R−x)α outweigh his potential future gains (x−R)α. As a result, he will
adjust his expectation about the future downwards, in anticipation of these
future feelings, which in expectation are negative. Likewise, if he initially
forms a reference point that is lower than R, then upon contemplating his
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s.t. EO = V (EO)
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if X > EO, he feels
an additional gain

(X − EO)α

Figure 3: Timeline of the agent’s ex ante reference point formation and ex post evaluation
of his realized outcome.

prospects he will find that his expected future gains outweigh his expected
future losses and adjust his expectation upwards. A thoughtful agent will
thus continue to adjust his expectation closer and closer towards EO. A
reference point EO that satisfies the consistency equation is stable because,
in the agent’s ex ante assessment, his potential future losses λ(EO− x)α are
perfectly balanced with his potential future gains (x− EO)α.

An agent choosing between multiple risky prospects should select the one
that provides the highest ex ante expected outcome EO. In particular, the
consistent expected outcome associated with a certain payoff of x, which is
equivalent to a risky prospect that pays x with probability 1 and 0 with
probability 0, is simply EO = x. As a corollary, the agent will then be
indifferent between taking a gamble with expected outcome EO and receiving
a payment of EO with certainty. EO is therefore exactly analogous to a
certainty equivalent in classical expected utility theory, and as such, can be
associated with a corresponding risk premium.

Definition 2 (Consistent Risk Premium). The risk premium RPEO is the
difference between the mathematical expected payoff of the gamble and the

consistent expected outcome, RPEO =
n∑
i=1

pixi − EO.

In other words, RPEO is the most the agent would be willing to pay to
remove the risk from the gamble and receive a certain payment equal to the
average payoff of the gamble instead. RPEO is typically positive and largely
driven by the agent’s degree of loss aversion λ, but can be negative as well.
For example, when p is very small and λ is not significantly greater than
1, the overweighting of small probabilities can lead the agent to value the
gamble higher than its average payoff.
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2.1. Binary Prospects

The mechanics and implications of this model become much clearer in
the case of a binary prospect. Consider an example of consistent reference
point formation for an agent evaluating a risky prospect that pays $0 with
probability p and $100 with probability 1−p. Suppose that w(p) = p, α = 1,
and λ = 2. The agent’s consistent expected outcome will be the reference
point EO ∈ [0, 100] such that EO = p · (EO− 2(EO− 0)1) + (1− p) · (EO+

(100 − EO)1). Then EO(p) = 100(1−p)
1+p

, as shown in Figure 4. Note that

when p = 0, the agent’s consistent expected outcome is $100, since this is
the amount that he will receive with certainty. As p increases, the consistent
expected outcome gradually falls to $0, which is the amount he will receive
with certainty when p = 1. Also note that the units of EO are always the
same as the units of the outcomes of the risky prospect, which in this case
are dollars.

0.2 0.4 0.6 0.8 1.0
p

20

40

60

80

100

$

EO

Expected Value

Figure 4: The consistent expected outcome EO corresponding to a risky
prospect that pays $0 with probability p and $100 with probability 1 − p for
various values of p when w(p) = p, α = 1, and λ = 2.

The consistent risk premium for this prospect is RPEO = 0 · p+ 100 · (1−
p)−EO = 100(1−p)p

1+p
, which is the difference between the dashed line and the

solid curve in Figure 4.

Lemma 1. For any risky prospect that yields a payoff of A with probability

8



p and B with probability 1−p, where A ≤ B, there exists a unique consistent
expected outcome EO ∈ [A,B] such that V (EO) = EO.

Lemma 1 ensures that given any fixed risky prospect, the agent can always
form this consistent ex ante expectation about her prospect. For prospects
with more than two possible outcomes, EO must be solved for numerically
and does not have a simple parametric form. However, for binary prospects,
EO can be expressed as a closed-form parametric function.

Definition 3 (Coherent Probability Weighting). The weighting functions are
said to be coherent if w−(p) + w+(1− p) = 1 for all p ∈ [0, 1].

Coherence holds trivially for the unweighted case w(p) = p and approxi-
mately (with the sum generally between 0.96 and 1.00 for all values of p) for
estimates of S-shaped weighting functions that overweight low probabilities
and underweight high probabilities. While coherence is not critical to the
results that follow, it is required to obtain closed-form parametric solutions
rather than nonlinear equations that must be solved numerically. Coherence
is therefore quite important for analyzing the solutions to the agent’s insur-
ance problem, and I will assume that it holds for binary prospects from here
forward.

Proposition 1. If the expert’s weighting functions are coherent and he faces
a binary prospect that yields a payoff of A with probability p and B with

probability 1− p, where A ≤ B, then EO =
B+(

λw−(p)

w+(1−p) )
1
αA

1+(
λw−(p)

w+(1−p) )
1
α
.

Note that preferences are preserved under positive linear transformation
of the payoffs. This means, for example, that if the payoffs were converted to
a different currency, or if a constant amount were added to each payoff, the
expression for EO would be adjusted according to the same linear transfor-
mation. In addition, in the cases where there is no risk, EO = A for p = 1
and EO = B for p = 0 as expected. In these situations, the agent knows for
sure what his final outcome will be and his risk attitudes are not relevant.
For risky cases p ∈ (0, 1), a sensitivity analysis can easily be performed on
EO by taking partial derivatives with respect to each of the parameters and
with respect to A, B, and p. For example, for any fixed gamble, weighting
functions, and risk attitude α, EO → A as λ → ∞. In other words, as
the agent becomes more and more loss-averse, he tends to focus only on the
worst possible outcome A.
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Figure 5: The consistent expected outcome EO and certainty equivalents corre-
sponding to a risky prospect that pays $100 with probability p and −$100 with
probability 1− p for various values of p when λ = 2.4, α = 0.8, δ+ = 0.8, γ+ = 0.7,
δ− = 1.1 and γ− = 0.7.
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As another example, consider an agent evaluating a risky prospect in
which he wins $100 with probability p and loses $100 with probability 1− p,
whose risk attitudes are characterized by parameters equal to the population
average estimates of λ = 2.4, α = 0.8, δ+ = 0.8, γ+ = 0.7, δ− = 1.1 and
γ− = 0.7. Figure 5 displays the shape of his consistent expected outcome
versus the risk-neutral expected value of the gamble for different values of
p ∈ [0, 1]. Observe that his ex ante assessment EO of this gamble remains
negative until the positive event (winning $100) becomes more than four
times as likely as the negative event (losing $100). This seemingly extreme
aversion to risk is in fact driven by his high level of loss aversion. For agents
with a smaller loss aversion parameter λ, EO follows more closely to the
expected value of the gamble.

Figure 5 also shows a graph of the certainty equivalents of the gamble un-
der the classical value function of Cumulative Prospect Theory (Tversky and
Kahneman, 1992) with a reference point of 0. These certainty equivalents,
which were calculated by finding the payoff x such that the value function of
the gamble yielded the same level as the value function applied to a gamble
yielding x with certainty, map the agent’s evaluation of the gamble back to
the payoff space and provide a way to make direct comparisons between EO
and the predictions of classical Cumulative Prospect Theory. EO and the
certainty equivalent coincide at three points: when the gamble yields either
$100 or −$100 with certainty, in which case both EO and the certainty equiv-
alent equal $100 and −$100, respectively, and when p = 0.809, when both
EO and the certainty equivalent of the gamble equal $0. For gambles that
are viewed positively (0.809 < p ≤ 1), the graphs of EO and the certainty
equivalent track fairly closely to one another. However, the graph of EO
remains much closer to the worst-case outcome of −$100 for small values of
p, while the certainty equivalents rise more quickly towards $0. For example,
for p = 0.15, the certainty equivalent of the classical Cumulative Prospect
Theory value function equals −$64.88, higher than even the expected value
of the gamble −$70, and much higher than the consistent expected outcome
EO = −$89.15.

3. Example: An Application To Insurance

Consider an agent with initial wealthW who faces a loss of size L ∈ (0,W )
which could occur with probability p. Before this uncertainty is resolved, he
has the option to buy up to L units of insurance at a price of q ∈ [p, 1] per
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expert purchases I units
of insurance and

forms a consistent
expected outcome EO

?
seeks to maximize EO(I)

t
uncertainty resolved
(negative event

either occurs or
does not occur)

expert realizes his
final wealth level X

?
feels an additional

gain or loss v(X,EO)

Figure 6: Timeline of the agent’s insurance level decision, reference point formation, and
ex post evaluation of the event.

unit. Let I ∈ [0, L − D] denote the number of units of insurance that the
agents decides to purchase, where D ∈ [0, L) is the deductible amount. In
the event that the loss occurs, each unit of insurance pays back ρ ∈ [0, 1]
units of reimbursement to the agent, so that his final wealth level is W − qI
with probability 1−p (if the negative event does not occur) and his ultimate
wealth level is W − qI − L + ρI with probability p (if the negative event
does occur). The expert seeks to maximize his expected outcome EO(I)
over I ∈ [0, L−D].

Proposition 2. For a given probability p of the negative event occurring, it

is optimal to not purchase any insurance (I = 0) if ρ
q
≤ 1 + ( λw−(p)

w+(1−p))
1
α , in

which case EO = W − L

1+(
λw−(p)

w+(1−p) )
1
α

. If ρ
q
≥ 1 + ( λw−(p)

w+(1−p))
1
α , the agent will

find it optimal to fully insure (I = L − D) and EO = W − L

1+(
λw−(p)

w+(1−p) )
1
α

+(
ρ

1+(
λw−(p)

w+(1−p) )
1
α
− q
)

(L−D).

This result has two key implications. First, observe that the insurance de-
cision is independent of the initial wealth level W . This happens because that
initial wealth level factors into the expected outcome regardless of the agent’s
insurance decision, which is made predominantly with the goal of balancing
a pre-event expectation against the possible post-event value adjustments.
Second, for a fixed price q and payout rate ρ, there exists a sufficiently low
level of risk p such that the agent will want to choose an insurance level of
I = 0. The agent’s behavior in response to the risk he faces is categorical;
either he finds it worthwhile to insure fully against the risk or he finds the
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unit cost of insurance to be too high and prefers to forgo insurance entirely.
An intriguing extension of this simple model would be to assume that the

agent can also control to some extent the probability p of the negative event
by choosing a risk-avoidance effort level. If the agent finds these preventative
measures to be costly, it would be interesting to see how much effort he puts
into avoiding risk ex ante (known as “self-insurance” in the literature) both
when outside insurance is and is not available.

4. Discussion

The primary goal of this paper is to propose an alternative formulation
of prospect theory that specifies a consistent mechanism for how an agent’s
reference point should be formed. The model preserves the underlying be-
havioral phenomena that prospect theory seeks to characterize, but simulta-
neously addresses the questions of what should serve as a reference point and
what the agent seeks to maximize before the uncertainty is resolved. The
model can then be used to develop normative implications for how an agent
with these preferences should and will behave.

One advantage of the model proposed here is that it provides a closed-form
expression for how the agent should evaluate a binary prospect ex ante. This
expression is easy to use, and can be adapted to reflect an agent’s individual
risk preferences by simply plugging in his parameters λ, α, γ+, δ+, γ−, and
δ− (the last four can all be set equal to 1 if probability weighting is not
an important consideration). As a result, the formulation for EO derived
in Proposition 1 can be readily used to incorporate the main insights of
prospect theory into decision modeling, as the insurance example of Section
3 demonstrates. While several assumptions have to be made to derive this
result, I feel that the probability weighting functions and parameters λ and α
allow for a sufficiently rich set of risk attitudes, and setting α = β is necessary
to derive explicit parametric solutions to the expert’s evaluation of a binary
prospect. This same methodology could be applied for α 6= β or other more
general functional forms but the results would be similar and would have to
be solved numerically.

Removing flexibility in specifying the reference point comes with disad-
vantages as well. If the agent anchors his evaluation of outcomes on some
other value, then the results derived in this paper that rely on consistency will
not hold. There are likely many situations where expectations may not be
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the appropriate reference point to use, and this possibility should be thought-
fully considered when selecting a model. The value function V (·) can in fact
accommodate many reference points other than expectations. For example,
Tversky and Kahneman’s (1992) model of cumulative prospect theory, which
implicitly assumes a reference point of 0, can be recovered by selecting the
value function V (0).

Finally, the proposed model could and should be tested experimentally
to validate its conclusions. In particular, it would be useful to examine
how subjects form an expectation about their outcome in the presence of
risk and whether this expectation in fact serves as a reference point, and to
compare the predictions of this model to actual decision making to see if it
can accurately predict behavior. One immediate prediction of the model is
that the agent should be indifferent between the prospect and receiving the
fixed payment EO. An experimenter could elicit EO by varying the fixed
payment amount and observing subjects’ choices between the risky prospect
and the certain payment. However, testing the model predictions about EO
would require careful elicitation and estimation of individual risk attitude
parameters beforehand.

5. Appendix: Proofs of Lemma 1 and Propositions 1 - 2

Proof of Lemma 1: Define the function f by f(EO) ≡ V (EO) − EO =
w−(p)

(
EO−λ(EO−A)α

)
+w+(1−p)

(
EO+(B−EO)α

)
−EO. First suppose

p ∈ (0, 1): If A < B, then f(A) = w−(p)A+w+(1− p)
(
A+ (B−A)α

)
−A =

w+(1−p)(B−A)α > 0 and f(B) = w−(p)
(
B−λ(B−A)α

)
+w+(1−p)B−B =

−w−(p)λ(B−A)α < 0. f is continuous in EO, so by the Intermediate Value
Theorem, there exists ẼO ∈ [A,B] such that f(ẼO) = 0, or V (ẼO) = ẼO.
Furthermore, f ′(EO) = −w−(p)λα(EO−A)α−1−w+(1−p)α(B−EO)α−1 < 0
for all EO ∈ (A,B), so f is strictly decreasing in (A,B) and the root ẼO is
unique. If A = B then ẼO = A = B, f(ẼO) = 0 and the root is (trivially)
unique. Second, suppose p = 0: Then f(EO) =

(
EO + (b−EO)α

)
−EO =

(b − EO)α, so the only root is ẼO = b. Finally, suppose p = 1: Then
f(EO) =

(
EO − λ(EO − A)α

)
− EO = −λ(EO − A)α and the only root is

ẼO = A.
Proof of Proposition 1: A ≤ EO ≤ B so

v(X,EO) =

{
EO − λ(EO − A)α if A is realized
EO + (B − EO)α if B is realized.
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Consistency requires that w−(p)
(
EO−λ(EO−A)α

)
+w+(1−p)

(
EO+(B−

EO)α
)

= EO. By coherence of the weighting functions, w−(p)
(
− λ(EO −

A)α
)

+w+(1−p)
(
(B−EO)α

)
= 0, or w+(1−p)(B−EO)α = w−(p)λ(EO−

A)α. Then (B − EO) = ( λw−(p)
w+(1−p))

1
α (EO − A), or B + ( λw−(p)

w+(1−p))
1
αA = (1 +

( λw−(p)
w+(1−p))

1
α )EO. So EO =

B+(
λw−(p)

w+(1−p) )
1
αA

1+(
λw−(p)

w+(1−p) )
1
α
.

Proof of Proposition 2: W − qI − L+ ρI ≤ EO ≤ W − qI so

v(X,EO) =

{
EO − λ(EO −W − qI − L+ ρI)α if the negative event occurs
EO + (W − qI − EO)α if the negative event does not occur.

Consistency requires that w−(p)
(
EO−λ(EO−W −qI−L+ρI)α

)
+w+(1−

p)
(
EO+(W −qI−EO)α

)
= EO. Then EO(I) = W −qI+ 1

1+(
λw−(p)

w+(1−p) )
1
α

(ρI−

L) = W− L

1+(
λw−(p)

w+(1−p) )
1
α

+
(

ρ

1+(
λw−(p)

w+(1−p) )
1
α
−q
)
I. EO is a linear function of I over

the compact interval [0, L−D], so its maximum value occurs at either I = 0 or
I = L−D, depending on the sign of ρ

1+(
λw−(p)

w+(1−p) )
1
α
−q. If ρ

1+(
λw−(p)

w+(1−p) )
1
α
−q ≤ 0, or

equivalently, ρ
q
≤ 1+( λw−(p)

w+(1−p))
1
α , then I = 0 is optimal. If ρ

q
≥ 1+( λw−(p)

w+(1−p))
1
α ,

then I = L−D is optimal.
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