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Abstract

Evidence from the lab and the field shows that most
people exhibit substantial risk aversion over stakes of hun-
dreds of dollars. Expected utility cannot capture nonnegli-
gible risk aversion over such small stakes without producing
implausible risk aversion over large stakes, and under the
reduction of compound lotteries axiom, neither can non-
expected utility preferences. Motivated by experimental
evidence, this paper assumes that compound lotteries are
evaluated recursively and shows that popular nonexpected
utility models can be consistent with empirically plausible
risk aversion over both small and large stakes.
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Recent calibration critiques of Rabin (2000) and Safra and Se-
gal (2008) show that whenever expected utility (EU) and non-
expected utility (non-EU) define utility over final wealth states,
they cannot simultaneously exhibit nonnegligible risk aversion over
small stakes and can only exhibit moderate risk aversion over large
stakes. Introspection and empirical evidence suggest that even if
the stakes are small, most people would rather not take a small risk
with a positive expected value if it could involve a loss of money.
Yet most people still take substantial risks over large stakes, for
instance, by investing in stocks. As a result, these calibration cri-
tiques have been widely understood as suggesting the demise of
descriptive theories that define utility over final wealth except as
a normative benchmark—further suggesting that descriptive mod-
els must define utility over gains and losses. But defining utility
over final wealth gives non-EU theories a tractability and mod-
elling discipline that more psychologically based theories such as
prospect theory lack.

This paper shows that nonexpected utility can generate both
nonnegligible small-stakes risk aversion as well as the moderate
large-stakes risk aversion. The crucial assumption made here is
that a decision maker (DM) who faces preexisting risks treats a
gamble that is offered as the first stage of a two-stage compound

lottery, which is then not treated as equivalent to the one-stage lot-
tery that gives the same probability distribution over final wealth
but is evaluated recursively (Segal, 1990). This contrasts sharply
with existing proposals for solving the Rabin critique, which have
all relied on abandoning consequentialism—the assumption that
utility is defined over final wealth levels—assuming instead that
utility is also evaluated over gains and losses or lab income.

The intuition for the rank-dependent utility (RDU) (Quiggin,
1982) case of the main results of the paper is as follows: with-
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out background risk, RDU can produce descriptively reasonable
risk aversion at a range of stakes through probability weight-
ing even if utility is defined over wealth levels. Now suppose
DM faces background risk w̃, and the utility-for-wealth function
u is linear. Under recursive RDU, a compound lottery is eval-
uated by a folding back procedure, and DM evaluates the of-
fered gamble (−L, .5;+G, .5) by folding back the compound lottery
[w̃−L, .5; w̃+G, .5] to [c(w̃−L), .5; c(w̃+G), .5] where c is DM’s
certainty-equivalent function. When u is linear, c(w̃+x) = c(w̃)+

x; this compound lottery is evaluated as [c(w̃)−L, .5; c(w̃)+G, .5],
and probability weighting produces small-stakes risk aversion over
the offered gamble the way it would without background risk.
With a linear u, DM turns down (−L, .5;+G, .5) if and only if
DM turns down (−tL, .5;+tG, .5) for all t > 0; therefore, small-
stakes risk aversion due to probability weighting is compatible with
reasonable large stakes risk aversion.

Relation to previous literature Since EU maximizers are ap-
proximately risk neutral over small stakes, they would only be
willing to pay a trivial amount to avoid small risks. Popular alter-
natives to EU that define utility over final wealth levels are either
(i) ’smooth’ as in (Machina, 1982), locally risk neutral, and subject
to the same criticism as EU (Safra and Segal, 2008), or (ii) obtain
nonnegligible risk aversion over small stakes because they weigh
probabilities nonlinearly (as suggested by the Allais paradox) and
are hence immune from Rabin’s critique.

However, most people face substantial lifetime wealth risk (e.g.,
employment-income risk and ownership of risky assets). The com-
bination of a gamble offered in the lab in the presence of preex-
isting wealth risk is naturally viewed as a two-stage compound
lottery in which the offered gamble resolves first. When DM re-
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duces compound lotteries to single-stage lotteries by multiplying
out probabilities, any small-stakes gamble offered adds only min-
imally to lifetime wealth risk; therefore, probability weighting is
mostly determined by preexisting lifetime wealth risk and does not
produce substantial risk aversion over offered small-stakes gam-
bles (Safra and Segal, 2008; Barberis, Huang and Thaler, 2006).
This argument relies crucially on the assumption that DM satisfies
reduction of compound lotteries—an assumption that is not con-
sistent with experimental evidence. Instead, this paper assumes
recursive preferences over compound lotteries.

Recursive non-EU (RNEU) preferences over compound lotter-
ies are used in this paper as a descriptive model of decision making,
following Segal (1990). The theoretical distinction between com-
pound versus single-stage lotteries was first suggested by Samuel-
son (1952). RNEU preferences have been applied by Segal (1987b)
to explain ambiguity aversion and by Dillenberger (2010) to ex-
plain preferences for one-shot resolution of uncertainty. Dillen-
berger also remarks that an RNEU DM behaves as if they frame
narrowly; section 1.5 of this paper makes a precise connection be-
tween RNEU and risk aversion with narrow framing.

The theoretical tradition of RNEU preferences following Segal
(1990) is related to but distinct from the use of recursive utility
due to preferences over the timing of resolution of uncertainty
(Kreps and Porteus, 1978; Epstein and Zin, 1989). When recursive
preferences are used only because of preferences over the resolution
of uncertainty then DM applies reduction of compound lotteries to
an offered delayed risk combined with income risk that resolves at
the same time, and will not demonstrate small-stakes risk aversion
over such gambles (Barberis, Huang and Thaler, 2006).

Existing theoretical approaches that avoid a calibration cri-
tique (Kahneman and Tversky (1979); Cox and Sadiraj (2006);
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Barberis, Huang and Thaler (2006)) directly incorporate narrow
framing by assuming that the value function is defined over the
outcomes of a gamble as well as (possibly) over final wealth states.
RNEU is formally very different from these nonconsequentialist
models in that the utility function is only defined over final wealth
states and not directly over the outcomes of a gamble.

Under RDU, the RNEU preferences studied in this paper are
still subject to calibration arguments by Neilson (2001) and Cox
and Sadiraj (2011); however, the assumptions that drive their cal-
ibration critiques lack strong experimental support or obvious in-
tuitive appeal. For a literature review of calibration critiques, see
Section 8.6 of Wakker (2010).

Experimental evidence on compound lotteries Halevy (2007)
finds that 80 percent of subjects violate reduction of compound
lotteries, while 59 percent of subjects’ choices are best explained
by RNEU. Previous experimental work also found substantial vi-
olations of reduction of compound lotteries that suggest the use
of RNEU preferences; for example, Carlin (1992); Camerer and
Ho (1994). Recursive preferences over compound lotteries are also
consistent with experimental findings that randomly picking one
of the subject’s many decisions to determine payment is an incen-
tive compatible mechanism for eliciting preferences (Cubitt and
Sugden (1998); Laury (2005)).
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1 Theory: RNEU risk preferences with
background wealth risk

1.1 Nonexpected utility over lotteries

Notation Let W = �+ denote the set of feasible final wealth lev-
els, and consider a preference over one-stage lotteries, V : ∆(W ) →
� with utility-for-wealth function u : W → �. A one-stage lottery

over W can be written as q = [w1, q1; ...;wn, qn] ∈ ∆(W ) whenever
q has finite support, where qi denotes the probability of receiv-
ing prize wi. Assume V is increasing in the sense of first-order
stochastic dominance. Adopt the convention that w1 ≤ ... ≤ wn.
Say that V is risk averse if it is averse to mean-preserving spreads.

Popular models The two most commonly used non-EU theo-
ries are RDU ( Quiggin (1982), Yaari (1987), Segal (1990)), and
disappointment aversion (DA) (Gul, 1991). Table 1 reviews these
and EU; it notes conditions under which RDU and DA demon-
strate the Allais paradox and small-stakes risk aversion not present
under EU. DA preferences are a special case of the larger class of
betweenness-satisfying preferences (Dekel (1986), Chew (1989)).

1.2 Recursive nonexpected utility

RNEU extends non-EU preferences over single-stage lotteries to
the domain of compound lotteries.

Define a compound lottery as a finite lottery over lotteries
over final wealth levels; a compound lottery can be written as
Q = [q1, p1; ...; qm, pm] where qi ∈ ∆(W ) and pi is the prob-
ability of receiving lottery qi; let ∆(∆(W )) denote the set of
compound lotteries. The utility function U is defined over com-
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Table 1: Nonexpected utility theories

Theory V ([w1, q1; ...;wn, qn]) Allais? Small-stakes risk averse?

EU
n�

i=1
qiu(wi) No Not if u� exists

RDU
n�

i=1
[g(

i�
j=1

qj)− g(
i−1�
j=1

qj)]u(wi) g concave g concave

DA
n�

i=1

1+βIV (wi)<V (q)

1+β

n�
i=1

qjIV (wj)<V (q)

qiu(wi) β > 0 β > 0

Sources: Gul (1991); Segal and Spivak (1990); Segal (1987a)

pound lotteries over final wealth levels. Without loss of general-
ity, adopt the convention that for a compound lottery Q as above,
V ([q1, 1]) ≤ ... ≤ V ([qm, 1]).1

A RNEU maximizer evaluates a compound lottery Q via a
simple two step procedure:

1. Compute the certainty equivalent of each lottery qi that is a
possible prize of Q:

c(qi) = u−1 ◦ V (qi)

2. Recursively compute the value of the compound lottery as
the nonexpected utility of the one-step lottery [c(q1), p1; ...; c(qm), pm]:

U(Q) = V ([c(q1), p1; ...; c(q
m), pm]) (1.1)

An alternative to the recursivity assumption is that a DM im-
mediately reduces the compound lottery to a single-stage lottery,

1
Readers familiar with Segal (1990) will note that I assume time neutrality

here. This is not essential for the conclusions.
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which is then evaluated according to V . Such a reduction of com-
pound lotteries assumption is not consistent with evidence that
subjects fail to reduce compound lotteries to one-stage lotteries
presented earlier. If a non-EU DM reduces compound lotteries,
compound lottery Q is evaluated as equivalent to the one-stage
lottery QR = [w1,

m�
i=1

piqi1; ...;wK ,
m�
i=1

piqiK ]. For purposes of com-

parison, a nonexpected utility with reduction DM evaluates a com-
pound lottery p by:

UROCL(Q) = V (QR) (1.2)

1.3 Wealth risk as a compound lottery

A one-time choice is never the only thing going on in a DM’s life.
Empirical work shows that people face substantial risks in their
lives (Guiso, Jappelli and Pistaferri, 2002). If we want to retain the
modeling discipline of defining utility over final wealth levels, then
we have to make a choice about how to model a DM’s attitude to
risk from a one-time gamble and from everything else in life. The
combination of a one-time gamble offered (like those offered in lab
experiments) and background wealth risk constitutes a compound
lottery composed of two distinct and independent sources of risk
in which the one-time gamble resolves first, and the rest of life’s
uncertainties resolve in due course.

Consider a DM who faces background wealth risk described
by the random variable w̃ = [w1, q1; ...;wm, qm], which is not the
subject of choice, and who is offered the gamble over prizes p̂ =

(y1, p1; ...; yn, pn) where yi ∈ Y ⊂ � is a monetary prize added to
or taken away from the DM’s final wealth after lottery p̂ resolves.
Let p̂⊕ w̃ denote the compound lottery formed by simple gamble
over prizes p̂, which resolves first, and independent background
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risk w̃, which resolves second. The compound lottery p̂ ⊕ w̃ is
given by:

p̂⊕ w̃ = [w̃ + y1, p1; ...; w̃ + yn, pn] (1.3)

where w̃+ yi = [w1 + yi, q1; ...;wn + yi, qn] denotes the lottery over
final wealth states that the DM faces if prize yi is won in the
gamble p̂. The compound lottery p̂ ⊕ w̃ is well defined whenever
w + yi ∈ W for each w in the support of w̃ and each yi in the
support of p̂.2

Say that a DM with utility function U defined on ∆(∆(W ))

treats an offered gamble p̂ in the presence of background risk w̃

as a compound lottery in which p̂ resolves first if for any offered
gambles p̂ ∈ ∆(Y ), DM evaluates the utility of p̂ according to
U(p̂⊕ w̃).

1.4 Small-stakes risk aversion in recursive non-
expected utility: calibration results

Suppose we only assume that DM is a recursive non-EU decision
maker and V is a risk-averse. When combined with the observation
that DM turns down a given gamble p̂ at different background risk
distributions, assuming risk aversion alone does not allow us to
conclude anything stronger than that DM will turn down mean-
preserving spreads of p̂. This is the content of Remark 1.

Remark 1. Suppose a recursive non-EU decision maker treats an
offered gamble in the presence of background risk as a compound
lottery as in (1.3), and always turns down an actuarially favorable

2
An alternative but less intuitive assumption is that DM distinguishes

between one-stage and compound risks but treats the gamble p̂ as resolving

in the second stage. The main results of the paper are not sensitive to this

assumption.
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gamble p̂ for any distribution of background risk w̃. Knowing only
that V is globally risk averse, the strongest conclusion that can
be drawn is that DM will always turn down any mean-preserving
spread of p̂.

Perhaps if we were to assume more about V , such as that V

is RDU (or alternatively, DA) and DM is risk averse, the stronger
set of assumptions would allow us to draw a stronger calibration
result. Theorem 2 shows that the strongest possible calibration
result that can be obtained from RNEU preferences under these
assumptions is that if a DM turns down the offered gamble, any
version of the gamble with the stakes scaled up by a factor of t > 1

will also be turned down.

Theorem 2. Suppose a recursive non-EU decision maker treats

an offered gamble in the presence of background risk as a com-

pound lottery as in (1.3), and always turns down a gamble p̂ =

(y1, p1; ...; yn, pn) for any distribution of background risk w̃. Know-

ing only that V is risk averse and is RDU, then the strongest re-

striction on large-stakes gambles that can be drawn without fur-

ther assumptions is that DM will turn down any gamble p̂t =

(ty1, p1; ...; tyn, pn) for all t > 1 and for all w̃. The same result

applies if “RDU” is replaced with “DA”.

Proof. DM turns down p̂t if U(p̂t⊕ w̃)−V (w̃) < 0. Turning down
p̂ implies U(p̂ ⊕ w̃) − V (w̃) < 0. If u is linear, then under DA
and RDU this implies that DM turns down p̂t for all t but cannot
rule out accepting more favorable gambles. If u is concave, then
it can be shown that under risk aversion and either DA or RDU
that U(p̂t ⊕ w̃) is concave in t; therefore, DM will still turn down
p̂t for any t > 1. However, EU remains a special case of DA and
RDU, and if DM had EU preferences, p̂t would be accepted for a
sufficiently small t whenever 0 /∈ support(w̃).
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Under DA and RDU, if V is globally risk averse u must be
weakly concave, so the strongest calibration result possible comes
from the case where u is linear for t > 1. That is, DM will turn
down p̂t for all t > 1.

I interpret Theorem 2 as demonstrating that recursive RDU
and DA are immune to Rabin-style calibration critiques. Since
recursive is a special case of the more general class of betweenness
preferences (Dekel, 1986; Chew, 1989), if recursive DA is immune
to calibration critiques, then the class of recursive betweenness
preferences is immune to Rabin-style calibration critiques, as are
more general classes of preferences. Thus, recursive versions of a
wide range of non-EU theories are not susceptible to calibration
critiques, and are potentially suitable for modeling risk preferences
over both small and large stakes.

An alternative way of thinking about small-stakes risk aversion
is in terms of whether DM maintains aversion to a risk as its stakes
are uniformly shrunk to zero, (i.e., demonstrates first-order risk

aversion) or is neutral to arbitrarily small risks (second-order risk

aversion) (Segal and Spivak, 1990). The Supplementary Appendix
characterizes small-stakes risk aversion of a broader class of models
under recursive non-EU in terms of first- versus second-order risk
aversion.

1.5 Nonreduction versus narrow framing

Segal (1990) first suggested replacing the reduction of compound
lotteries axiom with recursivity as a consequentialist alternative
to prospect theory that captures Kahneman and Tversky’s (1979)
“isolation effect” (a particular example of a failure of the reduction
of compound lotteries axiom). Rabin (2000) noted that prospect
theory is immune to his calibration critique. Existing theoretical
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approaches that avoid a calibration critique (Kahneman and Tver-
sky (1979); Cox and Sadiraj (2006); Barberis, Huang and Thaler
(2006)) directly incorporate narrow framing by assuming that the
value function is defined over the outcomes of a gamble as well as
(possibly) over final wealth states. RNEU is formally very different
from these nonconsequentialist models in that the value function
is only defined over final wealth states and not directly over the
outcomes of a gamble.

While RNEU does not assume that a gamble is framed nar-
rowly, Theorem 3 shows that to a first-order approximation (i.e.,
over arbitrarily small stakes), DM’s attitudes to a gamble under
recursive non-EU are independent of background risk—consistent
with narrow framing over small stakes. The intuition for this is
that if u is differentiable, then it is locally linear over arbitrarily
small stakes, and DM’s local risk attitudes are determined entirely
by probability weighting.

Theorem 3. Suppose a recursive non-EU decision maker treats

an offered gamble in the presence of background risk as a compound

lottery as in (1.3):

1. When V is RDU, DM takes on a gamble p̂t = (ty1, p1; ...; tyn, pn)

as t → 0+ if and only if

n�
i=1

[g(
i�

j=1
pj) − g(

i−1�
j=1

pj)]yi > 0, re-

gardless of the other risks faced.

2. When V is DA, DM takes on a gamble p̂t = (ty1, p1; ...; tyn, pn)

as t → 0+ if and only if

n�
i=1

pi[1 + βIyi<0]yi > 0, regardless of

the other risks faced, so long as the background wealth risk

does not have a mass point at its certainty equivalent.

3. If u is linear, then the above results hold for all t such that

DM never faces wealth constraints.
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4. If u(w) = 1−exp(−γw) for γ > 0, then under RDU DM ac-

cepts p̂t if and only if

n�
i=1

[g(
i�

j=1
pj)−g(

i−1�
j=1

pj)][1−exp(−γyi)] >

0 for all t such that DM never faces wealth constraints.

A recent study by Barseghyan et al. (2010) estimated RDU
preferences with an exponential u while ignoring background wealth
risk; they found substantial support for probability weighting as an
explanation for insurance choices. Their specification is inconsis-
tent with RDU with reduction of compound lotteries, but Result 4
of Theorem 3 shows that their empirical specification is consistent
with RNEU preferences, lending nonexperimental support to the
use of RNEU.

2 Calibration

What constitutes descriptively reasonable risk aversion is a quanti-
tative question. This section calibrates a version of recursive RDU
and shows that this calibration can produce descriptively reason-
able risk aversion, while EU and RDU with reduction cannot.

Convenient functional forms for g and u should have as few pa-
rameters as possible to calibrate and should be easily comparable
to commonly used models. I adopt the standard power utility-for-
wealth function:

u(w) = w1−γ

1−γ

and the probability weighting function:
g(p) = pν

used in Safra and Segal (2008) since it is only one parameter
richer than EU, is consistent with small-stakes risk aversion and
Allais-type choices when 0 < ν < 1, and captures expected utility
as a special case when ν = 1.
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Chetty (2006) points out that the curvature of the utility-
for-wealth function also governs how an individual makes trade-
offs between labour and leisure. I use γ = .71, suggested by
Chetty based on previous studies of labor supply responses to wage
changes.3 I then calibrate ν to match modal choices in Holt and
Laury’s (2002) experimental data on small-stakes risk aversion to
the extent possible. While EU cannot avoid mispredicting the
modal choice in their data when most subjects demonstrate risk
aversion, if ν ∈ [.5, .64], the calibrated recursive RDU model fits
the data reasonably but not perfectly.

While the risk in w̃ only has a second-order effect on decisions
among offered gambles in recursive RDU, the risk in w̃ reduces
risk aversion RDU with reduction. To allow for comparison, take
w̃ = U [$100000, $500000] to capture background wealth risk.4

Table 2 summarizes how different calibrated models discussed
above would predict that a DM would make choices in (−L, .5;G, .5)

gambles. In each row of the table, L is fixed at the level in the
left-hand column, while the entry in the table lists the G at which
a DM would be indifferent to either taking or turning down the
listed gamble.

Table 2 (Columns 1 and 2) indicates that for ν = .5, .64 recur-
sive RDU can produce descriptively reasonable risk aversion over
both small and large stakes. RDU with reduction produces barely
any risk aversion over small stakes (Column 3). Even for stakes
into the thousands of dollars, EU induces preferences over gambles

3
While Chetty assumes expected utility in his calculations, the approach

he takes fully carries through to RDU in the case where utility is separable in

consumption and leisure; I use Chetty’s estimates from this case.
4
I derive quantitative results using a discrete approximation of the uniform

distribution. I assume that lifetime wealth has an expected present value of

$300,000, since this figure is emphasized in Rabin (2000), but the quantitative

results are not particularly sensitive to this assumption.
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Table 2: Calibration results - small and large stakes risk aversion
Loss ν = .5 ν = .64 ν = .5, reduction ν = 1 (EU)
10 24.14 17.91 10.10 10.00

100 241.60 179.21 103.36 100.03

200 483.59 358.62 209.61 200.13

500 1211.84 898.12 538.77 500.83

1000 2433 1801 1112 1003

2000 4904 3623 2328 2013

5000 12555 9219 6403 5084

10000 26133 18992 14364 10343

15000 40820 29358 23704 15787

20000 56714 40361 34461 21425

25000 73931 52052 46738 27270

30000 92602 64492 60685 33334

40000 134957 91889 94395 46180

50000 185392 123239 137678 60105

Gain required for DM to take (-Loss, .5;Gain, .5)
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that are extremely close to expected value maximization (Column
4). Even with a higher value for γ, EU would induce preferences
over gambles that are extremely close to expected value maxi-
mization over stakes of hundreds of dollars. Table 2 demonstrates
quantitatively what I showed qualitatively in Section 1.4: recur-
sive RDU can produce descriptively reasonable risk aversion, while
RDU with reduction and EU cannot. These quantitative results
are not sensitive to the choice of a distribution for background
wealth risk.

3 Conclusion

This paper has shown that nonexpected utility theories can pro-
duce nonnegligible small-stakes risk aversion without implying ridicu-
lous large-stakes risk aversion. A calibration exercise demonstrated
that recursive RDU can be calibrated to provide descriptively rea-
sonable levels of risk aversion in the small and in the large. The
nonexpected utility theories studied in this paper are attractive for
two reasons. Nonexpected utility theories, rank-dependent utility
and disappointment aversion in particular, have been well studied
and have clear axiomatic foundations that make them amenable
to further applications. Nonexpected utility does not relax the
assumption of consequentialism, which has made it easy to apply
expected utility to a variety of economic problems without having
to pay attention to the ’context’ or the ’frame’ present in each ap-
plication. Furthermore, the two departures this model does make
from expected utility theory are each well supported by experimen-
tal evidence on the Allais paradox and nonreduction of compound
lotteries.
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4 Appendix

Proof of Theorem 2.

Completing the proof of Theorem 2 requires showing that if DM
is risk averse and V is RDU/DA, then V (w̃ + x) is concave in x

and U(p̂t ⊕ w̃) is concave in t.
Under RDU, V (w̃+x) =

´
u(w+x)dg(Fw̃(w)) where Fw̃ is the

CDF associated with w̃. Since u is concave, V (w̃ + x) is concave
in x.

Now under RDU, U(p̂t ⊕ w̃) =
´
V (w̃ + ty)dg(Fp̂(y)). Since

V (w̃ + x) is concave in x, U(p̂t ⊕ w̃) is concave in t. This implies
that 1

t
(U(p̂t ⊕ w̃) − V (w̃)) ≤ U(p̂ ⊕ w̃) − V (w̃) < 0 for t > 1, so

DM will also turn down p̂t.
Under DA, the same argument applies, except that it is messier

to prove that V (w̃ + x) is concave in x and U(p̂t ⊕ w̃) is concave
in t - this is proven below.

Proof that V (w̃ + x) is concave in x under DA A DA DM
is globally risk averse in the sense of weakly not preferring mean-
preserving spreads if and only if u is concave and β ≥ 0.

I will show that (1 + β)[V (w̃ + x) − V (w̃)] ≤ (1 + β)[V (w̃) −
V (w̃ − x)] to prove concavity.

We can write out the left- and right- hand sides of the above
equation as:

(1 + β)[V (w̃ + x)− V (w̃)]

=

ˆ
{u(w+x)−u(w)+βmin[u(w+x), V (w̃+x)]−βmin[u(w), V (w̃)]}dFw̃(w)

(4.1)
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(1 + β)[V (w̃)− V (w̃ − x)]

=

ˆ
{u(w)−u(w−x)+βmin[u(w), V (w̃)]−βmin[u(w−x), V (w̃−x)]}dFw̃(w)

(4.2)

To compare (4.1) and (4.2), compare the term inside the inte-
gral for each w. First note u(w + x) − u(w) ≤ u(w) − u(w − x).
Second, compare the remaining parts of the integrals by working
with four different regions/cases that depend on w and V .

Case A min[V (w̃+x), u(w+x)]−min[V (w̃), u(w)] = u(w+

x)−u(w) and min[V (w̃), u(w)]−min[V (w̃−x), u(w−x)] = u(w)−
u(w− x). By concavity of u for these w, the (4.1) term is smaller
than the (4.2) term.

Case B min[V (w̃+x), u(w+x)]−min[V (w̃), u(w)] = V (w̃+

x)−V (w̃) and min[V (w̃), u(w)]−min[V (w̃−x), u(w−x)] = V (w̃)−
V (w̃−x). We can cancel these terms from (1+β)[V (w̃+x)−V (w̃)]

and (1 + β)[V (w̃)− V (w̃ − x)].

Case C Suppose neither of the above two cases applies and
u(w) ≤ V (w̃). Then, applying concavity of u,

min[u(w+x), V (w̃+x)]−min[u(w), V (w̃)]} = min[u(w+x), V (w̃+x)]−u(w)

≤ u(w + x)− u(w)

≤ u(w)− u(w − x)

≤ u(w)−min[u(w−x), V (w̃−x)] = min[u(w), V (w̃)]−min[u(w−x), V (w̃−x)]}
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so in this case, this term of the (4.1) is smaller than the corre-
sponding term in (4.2).

Case D Suppose neither of the above three cases applies, so
u(w) > V (w̃). Then,

min[u(w+x), V (w̃+x)]−min[u(w), V (w̃)]} = min[u(w+x), V (w̃+x)]−V (w̃)

≤ V (w̃ + x)− V (w̃)

and

min[u(w), V (w̃)]−min[u(w−x), V (w̃−x)]} = V (w̃)−min[u(w−x), V (w̃−x)]}

≥ V (w̃)− V (w̃ − x)

Plugging in these terms and cancelling out as case B establishes
the desired inequality.

Proof that U(p̂t ⊕ w̃) is concave in t under DA Define
IV (y) = 1 if V (w̃ + ty) − V (w̃) < U(p̂t ⊕ w̃) − V (w̃)] and zero
otherwise, and IU(y) = 1 if V (w̃+ ty)−V (w̃) ≥ U(p̂t⊕ w̃)−V (w̃)]

and zero otherwise. For t > 1,
1+β

t
{U(p̂t ⊕ w̃)− V (w̃)}

= 1
t

´
{V (w̃ + ty) − V (w̃) + βmin[V (w̃ + ty) − V (w̃), U(p̂t ⊕

w̃)− V (w̃)]}dFp̂(y)

≤ 1
t

´
{V (w̃+ty)−V (w̃)+βIV (y)[V (w̃+ty)−V (w̃)]+βIU(y)[U(p̂t⊕

w̃)− V (w̃)]}dFp̂(y)

Let p̄ = 1 −
´
IU(y)dFp̂(y). Then, rearranging the above ex-

pression yields the inequality:
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1+βp̄

t
{U(p̂t⊕w̃)−V (w̃)} ≤ 1

t

´
{V (w̃+ty)−V (w̃)+βIV (y)[V (w̃+

ty)− V (w̃)]}dFp̂(y)

≤
´
{V (w̃ + y)− V (w̃) + βIV (y)[V (w̃ + y)− V (w̃)]}dFp̂(y)

= 1+βp̄

t
{U(p̂⊕ w̃)− V (w̃)}

�

Proof of Theorem 3.

Proof of 1. Define: Vx(w̃) = limx→0
V (w̃+x)−V (w̃)

x

=
´
u�(w)dg(Fw̃(w)).

DM evaluates taking p̂t based on:
U(p̂t ⊕ w̃) − V (w̃) =

�
m

i=1[g(
�

i

j=1 pj) − g(
�

i−1
j=1 pj)]{V (w̃ +

tyi)− V (w̃)} ≷ 0

Dividing by t and taking t → 0, this is equivalent to evaluating
the gamble over arbitrarily small stakes based on:

limt→0
1
t
{U(p̂t ⊕ w̃)− V (w̃)}

=
�

m

i=1[g(
�

i

j=1 pj)− g(
�

i−1
j=1 pj)]Vx(w̃)yi

which is equivalent to accepting the small-stakes gamble if :
=

�
m

i=1[g(
�

i

j=1 pj)− g(
�

i−1
j=1 pj)]yi > 0.

Proof of 2. In DA, (1 + β)Vx(w̃) = limx→0
1
x
{
´
{u(w + x) +

βmin[u(w + x), V (w̃ + x)]}dFw̃(w)− V (w̃)}
If w̃ has no mass on c(w̃), then (1 + β)Vx(w̃) =

´
{u�(w) +

βIw<c(w̃)u�(w) + βIw>c(w̃)Vx(w̃)}dFw̃(w)

Using a similar argument as in the RDU case,
(1 + β)1

t
{U(p̂t ⊕ w̃)− V (w̃)}

= 1
t

�
n

i=1{V (w̃+tyi)−V (w̃)+βmin[V (w̃+tyi)−V (w̃), U(p̂t⊕
w̃)− V (w̃)]}pi

So:
limt→0

1
t
(1 + β

�
i:yi≥0 pi){U(p̂t ⊕ w̃)− V (w̃)}

=
�

n

i=1 pi(1 + βIyi<0)Vx(w̃)yi
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and so DM accepts the gamble for small stakes if
�

n

i=1 pi(1 +

βIyi<0)yi > 0.

Proof of 3 and 4. Under RDU or DA, c(w̃+ x) = c(w̃) + x

when u is linear or exponential.
When u(w) = w, U(p̂t ⊕ w̃) − U(w̃) = t[U(p̂ ⊕ w̃) − U(w̃)] so

part 3 of the theorem holds.
When u(w) = 1 − exp(−γw) for some γ > 0, equivalently we

could have u(w) = − exp(−γw). Then,
U(p̂t ⊕ w̃) =

�
i
[g(

�
i

j=1 pj)− g(
�

i−1
j=1 pj)]V (w̃ + tyi)

= −
�

i
[g(

�
i

j=1 pj)−g(
�

i−1
j=1 pj)]

´
exp(−γ(w+tyi))dg(Fw̃(w))

= −
�

i
[g(

�
i

j=1 pj)−g(
�

i−1
j=1 pj)]

´
exp(−γw) exp(−γtyi)dg(Fw̃(w))

= −
�

i
[g(

�
i

j=1 pj)− g(
�

i−1
j=1 pj)] exp(−γtyi)V (w̃)

So DM accepts the gamble if
−
�

i
[g(

�
i

j=1 pj)− g(
�

i−1
j=1 pj)] exp(−γtyi) > 1

or equivalently, if
�

i
[g(

�
i

j=1 pj)− g(
�

i−1
j=1 pj)][1− exp(−γtyi)] > 0.
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5 Supplementary Appendix

Results using first vs. second order risk aversion

Segal and Spivak’s (1990) concept of first-order risk aversion pro-
vides an alternative way of characterizing a model’s small-stakes
risk preferences by looking at how preferences behave over (arbi-
trarily) small stakes. Define a decision maker’s risk premium for a
gamble by πp̂,w = w−c(p̂+w). Say that V is first-order risk averse

(FORA) if V is risk averse and for any actuarially fair gamble p̂t =
(ty1, p1; ...; tyn, pn) with positive variance, limt→0+

πp̂t,w

t
> 0. Say

that V is second-order risk averse (SORA) if it is risk averse and
limt→0+

πp̂t,w

t
= 0 but limt→0+

πp̂t,w

t2
> 0. Intuitively, a FORAdeci-

sion maker who faces no risk has a positive marginal willingness
to pay to avoid actuarially fair risk. If u is differentiable, EU is
only SORA, while risk averse RDU and DA are FORA.

It is possible to work with non-EU preferences without im-
posing a specific functional form on V . I use the tool of lo-
cal utility analysis, pioneered by Machina (1982). Say that V

admits local utility analysis relative to norm ||a if, given a se-
quence of lotteries qt → q, there is a function v(·, q) such that
V (qt)−V (q) =

´
v(w, q)[dFqt(w)−dFq(w)]+o(||Fqt−Fq||a). Wang

(1993) shows that under some technical assumptions, many RDU
and betweenness satisfying (Dekel (1986), Chew (1989)) prefer-
ences admit local utility analysis relative to the Lρ norm. The-
orem 4 thus gives an alternative and model-independent result
on small-stakes risk aversion in nonexpected utility theories under
RNEU.

25



Theorem 4. Suppose a decision maker has a risk averse non-EU

representation V with a differentiable u; let U be the corresponding

utility function over compound lotteries. Suppose the decision-

maker treats an offered gamble in the presence of background risk

as a compound lottery as in (1.3) and evaluates it according to U .

(i) If V is a FORA RDU or DA non-EU function, then for

any distribution of background risk w̃ with support bounded below

by some a > 0, the decision-maker will be FORA over offered

gambles.

(ii) If V is FORA and admits local utility analysis relative to

an Lρ norm for some ρ > 1, then the decision maker is FORA

over offered gambles.

The results of Theorem 4 suggest that any FORA non-EU V

coupled with RNEU will be capable of producing non-trivial small-
stakes risk aversion without producing ridiculous large-stakes risk
aversion.

Proof of Theorem 4

RDU case. The assumptions of the theorem imply DM has
a recursive RDU representation with a concave and differentiable
u and a concave and nonlinear g.

I start by proving that the decision maker is FORA over two-
outcome gambles.

Let p̂t = (ty1, p; ty2, 1− p) with py1 + (1− p)y2 = 0.
Since u� exists, limt→0

c(w̃)−c(p̂⊕w̃)
t

> 0 if and only if limt→0+
V (w̃)−U(p̂t⊕w̃)

t
>

0.
U(p̂t ⊕ w̃) = g(p)V (w̃ − ty1) + [1− g(p)]V (w̃ + ty2)

= g(p)
´
u(w+ty1)dg(Fw̃(w))+(1−g(p))

´
u(w+ty2)dg(Fw̃(w))

Taking limits:
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limt→0+
V (w̃)−U(p̂t⊕w̃)

t

= limt→0+ [g(p)
´ [u(w)−u(w+ty1)]

t
dg(Fw̃(w))+(1−g(p))

´
u(w)−u(w+ty2)

t
dg(Fw̃(w))]

= −[g(p)y1 + [1− g(p)]y2]
´
u�(w)dg(Fw̃(w)) > 0

This proof generalizes immediately to the case where there
are an arbitrary number of outcomes in pt, since it relies only
on

�
yi[g(

�
j≤i

pj)− g(
�

j<i
pj)] < 0 if

�
yipi = 0, which follows

by the concavity and nonlinearity of g.

DA case Write the DA utility for a lottery as: V (p) =´
(u(w) + βmin[u(w), V (p)])dFp(w)

So:
U(p̂t⊕w̃) =

´
[u(c(w̃+ty))+βmin[U(p̂t⊕w̃), u(c(w̃+ty))]]dFp̂(y)

limt

U(p̂t⊕w̃)−V (w̃)
t

= limt

´
[u(c(w̃+ty))−u(c(w̃))

t
+β(min[U(p̂t⊕w̃), u(c(w̃+

ty))]− u(c(w̃)))]dFp̂(y)

=
´
[yVx(w̃)(1 + βIy<0) + βIy≥0 limt

U(p̂t⊕w̃)−V (w̃)
t

]dFp̂(y)

Since
´
ydFp̂(y) = 0, and 1 + βIy<0 is decreasing in y and

nonconstant for β > 0, it follows that
´
yVx(w̃)(1+βIy<0)dFp̂(y) <

0 hence limt

U(p̂t⊕w̃)−V (w̃)
t

< 0 hence the decision-maker is FORA
over offered gambles in this case.

Local utility analysis Let Vx(w̃) = limx→0
V (w̃+x)−V (w̃)

x
. When

V is amenable to local utility analysis, V (w̃+x)−V (w̃)
x

=
´

1
x
[v(w +

x, w̃)− v(w, w̃)]dFw̃(w) +
o(||(w̃+x)−w̃||)

x

||F(p̂t⊕w̃)REC −Fc(w̃)||ρ = (
�

i
|c(w̃+ tyi)− c(w̃)|[Iyi<0

�
i

j=1 qj +

Iyi>0(1−
�

i

j=1 qj)]
ρ)

1
ρ .

Since c(w̃+tyi)−c(w̃)
t

→ 1
u�(c(w̃)) lim

V (w̃+ty)−V (w̃)
y

< ∞, it follows

that limt→0+
||F(p̂t⊕w̃)REC−Fc(w̃)||ρ

t
is finite. Now write:

V ((p̂t⊕w̃)REC)−V (c(w̃)) =
´
[v(c(w̃+ty), Fc(w̃))−v(c(w̃), Fc(w̃))]dFp̂(y)+

o(||(p̂t ⊕ w̃)REC − w̃||)
lim 1

t

´
[v(c(w̃+ty), Fc(w̃))−v(c(w̃), Fc(w̃))]dFp̂(y)+

o(||(p̂t⊕w̃)R−w̃||ρ)
||(p̂t⊕w̃)R−w̃||ρ

||(p̂t⊕w̃)R−w̃||ρ
t
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= lim
1

t

ˆ
[v(c(w̃ + ty), Fc(w̃))− v(c(w̃), Fc(w̃))]dFp̂(y) (5.1)

From Machina (1982) and Wang (1993), v(·, Fc(w̃)) is concave
since V is risk averse, so lim�→0+

v(c(w̃)+�,Fc(w̃))−v(x,Fc(w̃))

�
= v�+(c(w̃), Fc(w̃))

and lim�→0−
v(c(w̃)+�,Fc(w̃))−v(x,Fc(w̃))

�
= v�−(c(w̃), Fc(w̃)) both exist.

Segal and Spivak (1997) show since V is FORA, v(·, Fc(w̃)) is not
differentiable at c(w̃) and hence v�+(c(w̃), Fc(w̃)) < v�−(c(w̃), Fc(w̃)).
Thus, (5.1) can be rewritten as

=
´
yv�sign(y)(c(w̃), Fc(w̃))

Vx(w̃)
u�(c(w̃))dFp̂(y) < 0. Since

´
ydFp̂(y) =

0, it is also the case that
´
yv�sign(y)(c(w̃), Fc(w̃))dFp̂(y) < 0.
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