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when updated on an arbitrary event is for the capacity to be neo-additive. We �nd a
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1 INTRODUCTION

This paper studies how to update ambiguous beliefs as new information arrives. There have been

a number of previous papers on updating and ambiguity, for instance, Eichberger and Kelsey

(1996), Epstein and Schneider (2003), or Sarin and Wakker (1998). Much of this literature

has explicitly or implicitly assumed ambiguity-aversion. Less attention has been paid to the

problem of updating preferences which are not necessarily ambiguity-averse. However there

is substantial experimental evidence that individuals are not uniformly ambiguity-averse but

also at times display ambiguity-seeking, (Abdellaoui, Vossmann, and Weber (2005), Kilka and

Weber (2001) and Wu and Gonzalez (1999)).

We shall use the Choquet expected utility (henceforth CEU) model of ambiguity, see Schmei-

dler (1989). CEU represents the decision-maker�s beliefs by a capacity or non-additive belief.

Preferences are represented by the expected value of a utility function with respect to this

capacity. The expectation is expressed as a Choquet integral, Choquet (1953-4). When new in-

formation is received we shall assume the decision-maker updates his/her capacity but does not

change the utility function or the form of the CEU functional. We think this is reasonable since

in our opinion the capacity is the only part of the CEU functional which re�ects the decision-

maker�s subjective perception of the environment. The other aspects of the representation are

personal characteristics of the decision-maker.

At present there is no general agreement how to update a capacity. It is desirable that the

procedure should coincide with Bayesian updating when the capacity is additive, i.e. there is no

ambiguity. However a number of ways of updating capacities have been proposed which have

this property, (see section 2.2). We believe the most promising is the Generalized Bayesian

Updating rule (henceforth GBU), Eichberger, Grant, and Kelsey (2007) and Horie (2007). (See

Section 3.1 for a de�nition of the GBU update.)

Chateauneuf, Eichberger, and Grant (2007) axiomatized CEU preferences where beliefs are

represented by a class of capacities known as neo-additive capacities. In this case preferences

can be represented as maximizing a weighted average of the best pay-o¤, the worst pay-o¤ and

an average pay-o¤. That is, the Choquet integral with respect to the neo-additive capacity �

of the state-utility vector u � a associated with the act a (a mapping from states to outcomes)
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may be expressed as:

Z
u (a (s)) d� (s) = ��min

s2S
u (a (s)) + � (1� �)max

s2S
u (a (s)) + (1� �) �E�u (a (s)) , (1)

where � is a probability measure on S and E� denotes conventional expectation with respect

to �.

In Eichberger, Grant, and Kelsey (2010), we showed the GBU update of a neo-additive

capacity is also neo-additive and has the same ambiguity-attitude, i.e. the same value of �.

We �nd this a particularly appealing and intuitive property. Firstly it implies that the class

of neo-additive preferences is closed under GBU updating. Secondly, notice that if � is a neo-

additive capacity given by � (E) � (1� �)� (E) + � (1� �), it may be expressed as the convex

combination �� + (1� �) ��, where � (E) � (1� �)� (E) is a convex capacity and �� (E) �

1 � � (Ec) = (1� �)� (E) + � is its dual. Since � depends on the beliefs represented by �

and the ambiguity which the individual perceives as embodied in the parameter �, we argue

it re�ects a subjective description of the environment and as such it is reasonable that � (and

hence its conjugate ��) should be revised when new information is received. In contrast �

represents attitude of the individual towards the ambiguity and as such it is desirable that this

be a characteristic of the individual that is invariant to the receipt of new information.

This paper investigates whether there is a larger class of capacities which have this desirable

property. It can be argued that the CEU model is too general since it is exponential in the

number of states. For the analysis to be tractable, we restrict attention to prior beliefs in the

form of Ja¤ray-Phillipe (henceforth JP)-capacities (Ja¤ray and Philippe (1997)). These also

have the advantage that they allow for a clean separation between an individual�s perception of

the ambiguity she faces and her attitudes towards it. These are capacities which may be written

in the form, � = ��+ (1� �) ��; where � is a convex capacity, �� is its dual and 0 6 � 6 1. The

Choquet integral with respect to a JP-capacity has the following representation

Z
u (a (s)) d� (s) = � min

�2C(�)
E�u (a (s)) + (1� �) max

�2C(�)
E�u (a (s)) ,

where C (�) is a closed and convex set of probability distributions on S corresponding to the

core of the capacity �, that we shall interpret as the individual�s perception of ambiguity, and
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where � is a measure of her degree of (relative) pessimism towards ambiguity.1

First we shall consider the problem of updating on an arbitrary event. In this case we

require the update of a JP-capacity to have the same ambiguity-attitude when updated on any

non-trivial event. We �nd that, under some mild assumptions, this property will hold if and

only if the original preferences can be represented by a neo-additive capacity.2 This provides a

new characterization of neo-additive capacities.

However it can be argued that it is too strong to require updates on all events to preserve

ambiguity-attitude. It is su¢ cient to require that ambiguity-attitude is preserved at the events

which an individual actually has to make decisions. To model this we consider the case where

there is a given partition of the state space. Ex-post it will be revealed in which element of the

partition the true state lies. This is a more restrictive problem. However it is one of economic

interest. For instance if an individual faces a �xed decision tree then (s)he will only need to

update beliefs on events which may be reached in that tree. It is not necessary to consider

updates conditional on other events. In practice experimental tests of updating have this form.

(Cohen, Gilboa, Ja¤ray, and Schmeidler (2000)).

Another example is where an individual may get one of a �nite number of signals, which

give information about the process determining the state. Updating conditional on a signal, is

related to updating on a partition as follows. Let S denote the state space and let C be the

set of possible signals. For simplicity we shall assume that both S and C are �nite. Beliefs

can be represented by a prior capacity over the Cartesian product of the state space and the

signal space. The signals generate a partition of the product space consisting of sets of the form

S � c; c 2 C. Henceforth we adopt the terminology appropriate for updating beliefs on signals.

However this is for convenience only and does not restrict the generality of the analysis.

For updating on a partition, we �nd that a larger class of capacities will have ambiguity-

attitude preserved by updating. We show that if the GBU-updates have the same ambiguity-

attitude as the original preferences, the prior beliefs must lie in a sub-class of JP capacities we

1At present there are some unresolved issues concerning how to separate perceptions of ambiguity from
ambiguity-attitude. Ghirardato, Maccheroni, and Marinacci (2004) present an alternative way to di¤erentiate
between ambiguity and ambiguity attitude. But Eichberger, Grant, and Kelsey (2008) and Eichberger, Grant,
Kelsey, and Koshevoy (2010) show that for a �nite state space, Ghirardato, Macheroni and Marinacci�s separation
implies that the capacity cannot exhibit a constant attitude towards ambiguity. Klibano¤, Mukerji, and Seo (2011)
and Wakker (2011) present theories of ambiguity and ambiguity-attitude, which are closer to the interpretation
in the present paper.

2This is close to being a converse to Proposition 1 of Eichberger, Grant, and Kelsey (2010).
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refer to as partitionaly-additive JP-capacities, (henceforth PAJP). These capacities are additive

over events, which lie in the algebra generated by the partition but may be non-additive over

other events.

To understand these results it is helpful to think of ex-ante ambiguity as being derived from

two sources. There is ambiguity about which state will be observed. In addition the information

which the signals convey may itself be more or less ambiguous. We �nd that an increase in

either source of ambiguity will increase ex-post ambiguity. Moreover a signal which con�rms

prior beliefs will tend to reduce ambiguity, while an unexpected signal will increase ambiguity.

Hence we believe that for this class of capacities, GBU updating has intuitive properties.

We �nd necessary and su¢ cient conditions for JP capacities to be dynamically consistent un-

der GBU updating. We show these are only slightly stronger than the conditions for ambiguity-

attitude to be invariant when updating. This is intuitive since changes in ambiguity-attitude

are likely to be a major cause of dynamic inconsistency.

Organization of the Paper In the next section we present our framework and de�nitions.

Section 3 studies updating on an arbitrary event. Updating with a given partition of events is

studied in Section 4 and Section 5 concludes. The appendix contains proofs of those results not

proved in the text.

2 FRAMEWORK AND DEFINITIONS

2.1 Choquet Expected Utility

There is a �nite set S; of states of nature. There is a set of consequences X; which is assumed

to be a convex subset of Rn: An act is a function a : S ! X: Let A(S) denotes the space of all

acts. The decision-maker has a preference relation < de�ned over A (S) : We shall assume that

< satis�es the CEU axioms, (Schmeidler (1989) Sarin and Wakker (1992)). The CEU model of

ambiguity represents beliefs as capacities. A capacity assigns non-additive weights to subsets

of S. Formally, they are de�ned as follows.

De�nition 2.1 A capacity on S is a function � : P (S)! R such that A � B ) � (A) 6 � (B)

and � (?) = 0; � (S) = 1.3 The dual capacity �� is de�ned by �� (A) = 1� � (Ac) :
3As usual, P (S) denotes the set of all subsets of S:
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The capacity and its dual are two alternative ways of representing the same information. A

special case of a capacity is the Hurwicz capacity, de�ned below.

De�nition 2.2 The Hurwicz capacity � on S is de�ned by � (A) = 0; for all A & S; � (S) = 1:

In the CEU model, preferences over A (S) are represented by the Choquet expected value

of the utility function u; which is de�ned below.

Notation 2.1 Since S is �nite, one can order the utility from a given act a : u
�
a1
�
> u

�
a2
�
>

::: > u
�
ar�1

�
> u (ar) ; where u

�
a1
�
; : : : ; u (ar) are the possible utility levels yielded by action

a: Denote by Ak (a) = fs 2 Sj u(a(s)) > u
�
ak
�
g the set of states that yield a utility at least as

high as ak: By convention, let Ao(a) = ;:

De�nition 2.3 The Choquet expected utility of act a with respect to capacity � is:

Z
u(a(s))d�(s) =

rX
k=1

u
�
ak
�
[�(Ak(a))� �(Ak�1(a))]:

De�nition 2.4 A capacity, �; is convex if � (A [B) > � (A) + � (B)� � (A \B).

Convex capacities can be associated in a natural way with a set of probability distributions

called the core of the capacity.

De�nition 2.5 Let � be a capacity on S: The core, C (�) ; is de�ned by

C (�) = fp 2 �(S) ;8A � S; p (A) > � (A)g :

Schmeidler (1989) has shown that for a convex capacity,
R
u (a (s)) d� (s) = minp2C(�)Epu (a (s)) ;

where Ep denotes a conventional expectation with respect to the probability p: A stronger con-

dition than convexity is that the capacity be a belief function, de�ned below.

De�nition 2.6 A capacity � on S is a belief function if for all A1; :::; Am � S;

�
�[m

i=1
Ai

�
>
X

I�f1;:::;mg
I 6=?

(�1)jIj+1 �
�\

i2I
Ai

�

for all m; 2 6 m 61:
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Convexity is the special case where this property is only required to hold for m = 2:

Remark 2.1 Recall that any set function � on S has a Möbius inverse � : P (S)! R with the

property that � (A) =
P
B�A �B and

P
B�S �B = 1. One can show that a capacity is a belief

function if and only if its Möbius inverse is non-negative i.e. for all B � S; �B > 0, (Dempster

(1967), Shafer (1976)).

2.1.1 Ja¤ray-Phillipe Capacities

This section introduces the class of JP-capacities which will prove important in our analysis.

Ja¤ray and Philippe (1997) study capacities which may be written as a convex combination of

a convex capacity � and its dual. As we saw in the introduction above, neo-additive capacities

are a special case. We shall restrict attention to JP-capacities since there is a natural way to

distinguish between the perception of ambiguity and the attitude towards this ambiguity for

such capacities. Note that here we only study deviations from expected utility due to ambiguity.

In other words we assume that the decision-makers use expected utility for all decisions with

known probabilities. JP-capacities are formally de�ned as follows.

De�nition 2.7 A capacity � on S is a JP-capacity if there exists a convex capacity � and

� 2 [0; 1] ; such that � = ��+ (1� �) ��:

We take the degree of ambiguity associated with the JP-capacity to correspond to standard

measures of ambiguity for convex capacities.

De�nition 2.8 Let � be a convex capacity on S: De�ne the degree of ambiguity of event A

associated with the capacity � by:

� (�;A) = �� (A)� � (A) ,

and the maximal degree of ambiguity associated with � by

� (�) = max f� (�;A) : ? $ A $ S�ig :
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This measure provides an upper bound on the amount of ambiguity which the decision-

maker perceives.4 The degree of ambiguity measures the deviation from (binary) additivity.

For a probability it is equal to zero. Convex capacities have degrees of ambiguity between 0 and

1, with higher values corresponding to more ambiguity. For a JP-capacity � = ��+ (1� �) ��;

we apply this de�nition to the convex part �:

As the following proposition shows, the CEU of a JP-capacity is a convex combination of

the minimum and the maximum expected utility over the set of probabilities in the core of �.

Proposition 2.1 (Ja¤ray and Philippe (1997)) The CEU of a utility function u with respect

to a JP-capacity � = ��+ (1� �) �� on S is:

Z
u (a (s)) d� (s) = � min

�2C(�)
E�u (a (s)) + (1� �) max

�2C(�)
E�u (a (s)) :

Thus if beliefs may be represented by JP-capacities, preferences lie in the intersection of the

CEU and multiple priors models. Proposition 2.1 suggests an interpretation of the parameter

� as a degree of (relative) pessimism, since it gives a weight to the worst expected utility an

individual could expect from the act a. If � = 1, then we obtain a special case of the MEU model

axiomatized by Gilboa and Schmeidler (1989). On the other hand, the weight (1 � �) given

to the best expected utility which a player can obtain with act a provides a natural measure

for his/her optimism. For � = 0 we have a pure optimist, while in general for � 2 (0; 1); the

player�s preferences have both optimistic and pessimistic features. Ambiguity may be measured

by the core of the convex capacity �: A larger core would correspond to a situation, which is

perceived to be more ambiguous. Hence JP capacities allow a distinction between ambiguity

and ambiguity-attitude.

The neo-additive capacity de�ned below is a special case of a JP-capacity, which will prove

useful in our analysis.

De�nition 2.9 Let �; � be real numbers such that 0 < � < 1; 0 < � < 1; de�ne a neo-additive-

capacity � on S by � (A) = � (1� �) + (1� �)� (A) ; for ; $ A $ S; where � is an additive

probability distribution on S:

4The de�nition is based on one in Dow and Werlang (1992).

8



This capacity can be interpreted as describing a situation where the decision maker�s �beliefs�

are represented by the probability distribution �. However (s)he has some doubts about these

beliefs. This ambiguity about the true probability distribution is re�ected by the parameter �:

The highest possible level of ambiguity corresponds to � = 1; while � = 0 corresponds to no

ambiguity. The reaction to these doubts is in part pessimistic and in part optimistic. As for

JP capacities, ambiguity-attitude may be measured by the parameter �: The Choquet expected

utility of an act a with respect to the neo-additive-capacity � is given by equation (1). The

Choquet integral for a neo-additive capacity is a weighted average of the highest payo¤, the

lowest payo¤ and an average payo¤.

2.2 Updating Rules

In this section we describe some procedures for updating preferences as new information is

received. As discussed in the introduction we con�ne attention to procedures which update the

capacity while leaving other features of the CEU functional unchanged. Below we de�ne three

of the most common rules for updating non-additive beliefs. All of them coincide with Bayesian

updating when beliefs are additive.

De�nition 2.10 Let � be a capacity on S and let E � S. The Generalised Bayesian Update

(henceforth GBU) of � conditional on E is given by:

�E (A) =
� (A \ E)

� (A \ E) + 1� � (Ec [A) =
� (A \ E)

� (A \ E) + �� (Ac \ E) .

The GBU update has been axiomatized in Eichberger, Grant, and Kelsey (2007) and Horie

(2007).

De�nition 2.11 Let � be a capacity on S and let E � S. The Dempster-Shafer update (hence-

forth DS-update) of � conditional on E is given by:

�E (A) =
�(A [ Ec)� �(Ec)

1� �(Ec) =
��(E)� �� (Ac \ E)

��(E)
.

The DS-update has been axiomatized in Gilboa and Schmeidler (1993), where it is shown to

be equivalent to a maximum likelihood updating procedure. The �nal updating rule we consider
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is the Optimistic update de�ned below. This was also axiomatized by Gilboa and Schmeidler

(1993). This rule assumes that the worst possible outcome occurred on the complement of E;

hence the term optimistic.

De�nition 2.12 Let � be a capacity on S and let E � S. The Optimistic update of � condi-

tional on E is given by:

�E (A) =
�(A \ E)
�(E)

.

In Eichberger, Grant, and Kelsey (2010) we show that when GBU is applied to updating

neo-additive capacities, the ambiguity-attitude parameter � is unchanged. Moreover it is the

only one of the three updating rules with this property. In the present paper we investigate

whether a similar result applies to the larger class of JP-capacities.

3 UPDATING ON AN EVENT

This section �nds conditions for the GBU update of a JP-capacity on an arbitrary event to have

the same ambiguity-attitude parameter �; as the original capacity. Under the assumption that

� is a belief function we can show that a necessary and su¢ cient condition for this property

to hold is that the original capacity be neo-additive. This provides a new motivation for neo-

additive capacities. Finally we consider the DS and Optimistic updates. We show that for these

updates ambiguity-attitude is only constant if the prior capacity is additive.

3.1 Generalized Bayesian Updates

The following result �nds a necessary and su¢ cient condition for the update of a JP-capacity

to have the JP form with the same ambiguity-attitude parameter.

Lemma 3.1 Let � be a given convex capacity on S: De�ne �� = �� + (1� �) ��: Consider a

given event E: Then a necessary and su¢ cient condition for the GBU update of �� conditional

on E to be a JP capacity with the same �; for all �; 0 6 � 6 1; i.e. ��E = ��E + (1� �) ��E ; 5

is that for all partitions A;B of E;A [B = E;A \B = ?:

� (A [ Ec)� � (A) = � (B [ Ec)� � (B) : (2)

5To clarify we require this equation to hold for all �; 0 6 � 6 1 but only for the given event E: The capacity
�E depends on E but is independent of �:
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Remark 3.1 A su¢ cient condition for equation (2) to be satis�ed is for all F � E; � (F [ Ec) =

� (F ) + � (Ec) : This condition is not also necessary. However in practice it may be easier to

check than the necessary and su¢ cient condition.

If we strengthen our assumptions by requiring � to be a belief function then we can show that

a necessary and su¢ cient condition for the ambiguity-attitude to be the same before and after

GBU updating is that the capacity be neo-additive. We provide the converse to Proposition 1

of Eichberger, Grant, and Kelsey (2010) for the case where � is a belief function.

Proposition 3.1 Let � = �� + (1� �) �� be a JP-capacity where � is a belief function on S;

0 6 � 6 1 and jSj > 4: Let �E denote the GBU update of � conditional on E: Then a necessary

and su¢ cient condition for �E to be a JP-capacity with the same � for all E & S is that � be

neo-additive.

In practice the condition jSj > 4 is not restrictive. If there are three or less states then after

updating there at most two states will remain possible. If there are only two states, JP-capacities

are over-determined. Thus four states is the minimum needed to have a meaningful updating

problem. The following example shows that there exists a JP-capacity � = �� + (1� �) ��;

which is not neo-additive even though � satis�es equation (2). Since � is convex but not a

belief function this demonstrates that it is not possible to drop that requirement in the above

result.

Example 3.1 Suppose there are 4 states. The example is a symmetric capacity on S; by which

we mean that the capacity of an event only depends on the number of states in the event.

We adopt the notation that � (m) denotes the capacity of an event with m states. Choose

� < 1
4 and � <

1
4 � �: Let � = �� + (1� �) ��; where � is the symmetric capacity given by

� (0) = 0; � (1) = �; � (2) = 2� + �; � (3) = 3� + 2� and � (4) = 1: Then as Proposition A.1

shows, the updates of � have the JP-form with the same �; however � is not neo-additive. The

capacity � is convex but is not a belief function.

3.2 Dempster-Shafer and Optimistic Updates

In Eichberger, Grant, and Kelsey (2010) we found that the DS-update of a neo-additive capac-

ity always displayed ambiguity-aversion no matter what ambiguity-attitude is displayed in the
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original beliefs. We found the opposite problem with the Optimistic update of a neo-additive

capacity, which always displays ambiguity-seeking. We interpreted this result to be a disadvan-

tage of the DS and optimistic updating rules. However another possible interpretation is that

these results highlight a restrictive property of neo-additive capacities.

The following results show that for any JP-capacity, the DS and Optimistic updates do

not preserve ambiguity-attitude. This is similar to but less extreme than the earlier result for

neo-additive capacities reported in Eichberger, Grant, and Kelsey (2010). This strengthens our

conclusion that the DS and Optimistic rules are not suitable for capacities which display both

ambiguity-aversion in some choices and ambiguity-seeking in others.

Proposition 3.2 Let � = �� + (1� �) �� be a JP-capacity where 0 6 � 6 1: Let �̂E denote

the DS update of � conditional on E: Then a necessary and su¢ cient condition for �̂E to be a

JP-capacity with the same � for all E & S is that � be additive.

In Eichberger, Grant, and Kelsey (2010) we found that the DS-update of a neo-additive

capacity is always convex and thus has an extreme pessimistic bias. Below we investigate

whether this result can be generalized to a larger class of capacities. We �nd that it is not

generally true that the DS-update is always convex.

Assume A & E & S: Suppose that event E & S; is observed. Let �̂�E (A) denote the

DS-update conditional on E. Then �̂�E (A) =
��(A[Ec)+(1��)(1��((A[Ec)c))���(Ec)�(1��)(1��(E))

1���(Ec)�(1��)(1��(E)) :

The denominator is just a constant of normalization. Hence we shall focus on the numerator,

which is equal to:

� (A [ Ec)� (1� �)� (A [ Ec) + (1� �)� (1� �)� ((A [ Ec)c)� 1 + �+ � (E)� �� (E)

= � (A [ Ec)+ (1� �) [1� � (A [ Ec)� � ((A [ Ec)c)]+� [1� � (E)� � (Ec)]� 1+� (E) :

The �rst term is (up to normalization) a convex capacity. The second term is the degree

of ambiguity of � (A [ Ec) and the �nal term is a constant, which has the e¤ect of ensuring

�̂�E satis�es the equality �̂
�
E (?) = 0. Thus the DS-update may be seen as the sum of a convex

capacity and a measure of ambiguity of the prior. De�ne a set function � by � (A) = 1 �

� (A [ Ec) � � ((A [ Ec)c) ; i.e. the degree of ambiguity of � (A [ Ec) : One can show that

convexity of � implies concavity of �: Thus it is not possible to tell whether �̂�E is convex or

concave without additional information. If � is close to 1; the �rst term will dominate and
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hence the DS-update will be convex. If the prior is neo-additive, the degree of ambiguity is

constant, which again implies the DS-update is convex.

This might lead one to think the DS-update tends to be convex, however the numerator of

the DS-update may also be rearranged as follows:

1� � ((A [ Ec)c) + �� (A [ Ec)� �+ �� ((A [ Ec)c)� �� (Ec)� (1� �) (1� � (E))

= �� (A [ Ec)� � [1� � (A [ Ec)� � ((A [ Ec)c)] + � [1� � (E)� � (Ec)]� 1 + � (E) :

This is the sum of a concave capacity and a degree of ambiguity. Hence if � is su¢ ciently close

to 0; then the DS-update is concave. This suggests that the analysis of Eichberger, Grant, and

Kelsey (2010) for neo-additive capacities is a special case, which arises because the degree of

ambiguity of � is constant for a neo-additive capacity. In general there is no presumption that

the DS-update will be convex.

Next we prove a similar result for the optimistic updating rule.

Proposition 3.3 Let � = ��+ (1� �) �� be a JP-capacity where 0 6 � 6 1: Let ��E denote the

Optimistic update of � conditional on E: Then a necessary and su¢ cient condition for ��E to

be a JP-capacity with the same � for all E & S is that � be additive.

Thus we have partially generalized the analysis of Eichberger, Grant, and Kelsey (2010) to

JP capacities. Only the GBU update preserves ambiguity-attitude. However in general it is not

possible to argue that the Optimistic update expresses ambiguity-preference. The reasoning is

similar to that given for the DS-update in the previous section.

4 LEARNING FROM SIGNALS

In this section we consider the problem of updating beliefs when there is a given partition of

the state space. As argued in the introduction, the problem of updating on a signal can be

interpreted as a special case of updating on a partition. In this context, we �nd a necessary

and su¢ cient condition for ambiguity-attitude to be the same before and after updating is that

the prior capacity lie in a class of capacities we refer to as PAJP capacities (de�ned below).

This restricts the set of capacities which can be used as a prior. The restriction is close to the

conditions found by Eichberger, Grant, and Kelsey (2005), for full dynamic consistency.
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Let E1; :::; EK be a partition of S: There are two time periods t = 0 and t = 1: The decision-

maker has initial beliefs at time t = 0: At time t = 1; (s)he observes which element of the

partition obtains and updates his/her beliefs. We shall use terminology appropriate to the

problem of updating on a signal. Thus we shall refer to E1; :::; EK as signals. However the

analysis is applicable more generally.

4.1 Partitionaly-additive JP-Capacities

Below we de�ne a subclass of JP-capacities, which we call partitionaly-additive JP-capacities

(PAJP). We then show that a su¢ cient condition for a capacity to have the same ambiguity-

attitude before and after updating on a partition is that it be a PAJP capacity. Under some

assumptions we show that this condition is also necessary.

De�nition 4.1 A capacity � is a partitionaly-additive JP-capacity (PAJP) if it has the form

� = ��+ (1� �) ��; where � is a convex capacity de�ned by:

� (D) = (1� �)
KX
k=1

qk�k (D \ Ek) ; D & S; � (S) = 1; (3)

where 0 < � < 1; q is a probability distribution over fE1; :::; EKg the elements of the partition

and �k is a convex capacity on Ek:

The capacity � (D) may be viewed as the fraction (1� �) of the expected capacity of

D according to the capacities �k. These are de�ned on the elements of the partition for

which the signal is measurable. Notice that if � = 0 then � (D) is equal to this expecta-

tion and the capacity is additive over the partition. If � 2 (0; 1), then for all non-empty

events D & S; the conjugate capacity �� is given by, �� (D) = 1 � (1� �)
PK
k=1 qk�k (D

c \ Ek)

= � + (1� �)
PK
k=1 qk��k (D [ Eck) = � + (1� �)

PK
k=1 qk��k ((D [ Eck) \ Ek), since ��k (Ek) = 1.

Finally �� (D) = � + (1� �)
PK
k=1 qk��k (D \ Ek). Thus we obtain for all non-empty events

D & S,

� (D) = (1� �) � + (1� �)
KX
k=1

qk [��k (D \ Ek) + (1� �) ��k (D \ Ek)] (4)

= (1� �)
KX
k=1

qk�k (D \ Ek) + � (1� �) , (5)
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where �k = ��k+(1� �) ��k is, by construction, a JP-capacity on Ek. Further straight forward

calculation yields, for all non-empty events D & S,

�� (D) = (1� �)
KX
k=1

qk��k (D \ Ek) + ��. (6)

Expression (5) can be viewed as saying that the weight assigned to event D by the capacity �,

is a convex combination of the weight assigned by K + 1 capacities. The expectation of the K

JP-capacities �k�s de�ned on the elements of the partition on which the signal is measurable is

weighted by (1� �). But a fraction � is reserved for the Hurwicz capacity that puts weight �

on the worst outcome and weight (1� �) on the best outcome.6

4.2 Updating Partitionaly-additive JP-Capacities

The following result �nds the GBU update of a PAJP-capacity �: In particular we see that

for each possible realization of the signal the update is a JP capacity with the same �: Thus

the e¤ect of updating is to revise � to take account of the new information, while leaving the

ambiguity-attitude unchanged. The convex capacity � and hence its conjugate �� depend on

beliefs and the ambiguity which the individual perceives. Therefore it re�ects a subjective

description of the environment and as such we argue it is reasonable that � (and hence its

conjugate ��) should be revised when new information is received. In contrast � represents the

attitude of the individual towards the ambiguity she perceives and as such we argue that this

should be invariant to the receipt of new information.

Proposition 4.1 The GBU update of the PAJP-capacity, � conditional on event Ek is given

by: �̂k (A) =
�
1� �̂

�
�k (A \ Ek) + �̂ (1� �)

= �

�
(1� �) qk�k (A \ Ek)

� + (1� �) qk

�
+ (1� �)

�
1� (1� �) qk�k (A

c \ Ek)
� + (1� �) qk

�
,

where,

�̂ =
�

� + (1� �) qk
> �, (7)

6This is reminiscent of the neo-additive capacities introduced by Chateauneuf, Eichberger, and Grant (2007).
Indeed if all the �k�s are additive (that is, are conditional probabilities, and so, ��k = �k, for all k) then using
expression (4) we see that such an PAJP capacity comes from the class of neo-additive capacities in which for
all non-empty events D & S, � (D) = (1� �) p (D) + � (1� �), where p is an unconditional probability given by
p (D) =

PK
k=1 qk�k (D \ Ek).
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with the inequality strict whenever qk < 1. The convex component of the updated JP-capacity is

given by

�0k (A) =
(1� �) qk�k (A \ Ek)

� + (1� �) qk
: (8)

The following result shows that a necessary and su¢ cient condition for the GBU updates

on a partition to have the same ambiguity-attitude as the prior belief, is that the capacity be a

PAJP-capacity.

Proposition 4.2 Let � = �� + (1� �) �� be a JP-capacity where � is a belief function on S

and 0 6 � 6 1: Assume that jEkj > 3; for 1 6 k 6 K: Let �Ek denote the GBU update of �

conditional on Ek: Then a necessary and su¢ cient condition for �Ek to be a JP-capacity with

the same � for 1 6 k 6 K is that � be a PAJP capacity, i.e. there exists a belief function �k

on Ek, an additive probability distribution q on f1; :::;Kg and a number �; 0 6 � 6 1 such that

for A & S :

� (A) = (1� �)
KX
k=1

qk�k (A \ Ek) ; � (S) = 1:

The following example shows that it is not possible to drop the assumption jEkj > 3; in

Proposition 4.2.

Example 4.1 Suppose that there are 4 states S = fs1; s2; s3; s4g : Let the partition be E1 =

fs1; s2g ; E2 = fs3; s4g : Let � be the capacity whose Möbius inverse is �si = �; for 1 6 i 6 4;

�s1s3 = �s2s3 = �s1s4 = �s2s4 = �; �S = 1� 4�� 4�; �E = 0 for all other events E, where � <
1
4

and � < 1
4 � �: Let � = ��+ (1� �) ��: We claim that the GBU updates of � on E1 and E2 are

JP capacities with the same �: This is proved in the appendix.

4.3 Ex-Ante and Ex-Post Ambiguity

This section investigates how updating a¤ects perceived ambiguity. Recall that a PAJP capacity

is a convex combination of a Hurwicz capacity representing ambiguity about the states and K

convex capacities which represent ambiguous beliefs about the signals. Before updating, the

degree of ambiguity is a similar convex combination of the degree of ambiguity of the Hurwicz

capacity, 1, receiving weight � and K degrees of ambiguity of the signals �
�
�j
�
; receiving

weight (1� �) qj : Now suppose signal Ek is observed. Ex-post K�1 of the signals are no longer

possible. Thus the updated beliefs are represented by a capacity which is a convex combination
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of the Hurwicz capacity and the one signal capacity which is realized. Correspondingly the

ex-post degree of ambiguity is a convex combination of the degree of ambiguity of the Hurwicz

capacity (i.e. 1) and that of the signal actually observed, � (�k). The following result �nds

expressions for ex-ante and ex-post ambiguity.

Proposition 4.3 Let � = ��+ (1� �) �� be a PAJP capacity, where

� (A) = (1� �)
KX
j=1

qj�j (A \ Ek) forA $ S:

1. The ex-ante degree of ambiguity of � is � (�) = � + (1� �)
PK
j=1 qj�

�
�j
�
:

2. If event Ek is observed then the ex-post degree of ambiguity is,

�
�
�0k
�
=

�

� + (1� �) qk
+

(1� �) qk
� + (1� �) qk

� (�k) :

In the ex-ante measure of ambiguity, 1 received weight � and � (�k) gets weight (1� �) qk:

The weights have been renormalized to ensure that they sum to unity. Ex post the weight on

the Hurwicz capacity is greater. Thus for ex-post ambiguity to be lower it is necessary for the

second term to be smaller to o¤-set this e¤ect.

4.3.1 Comparative Statics

The comparative statics of updating are intuitive. Consider equation (2). As one would expect

ex-post ambiguity is increasing in the ambiguity of the observed signal, i.e. the greater is � (�k) ;

the higher is ex-post ambiguity.

Ex post, the ambiguity is a convex combination of 1 and � (�k) : The weight on 1 is
�

�+(1��)qk

while that on � (�k) is
(1��)qk
�+(1��)qk : Note that 1 > � (�k) : Increasing � (resp. decreasing qk)

decreases the weight on � (�k) and increases the weight on 1 in the convex combination. Thus

ex-post ambiguity is increasing in � and decreasing in qk: This is intuitive. The higher is � the

more ex-ante ambiguity there is over the states. As one would expect this increases ex-post

ambiguity. The smaller is qk the more unlikely is the signal. Thus seeing an unlikely signal

increases ambiguity. The result below proves this formally.
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Proposition 4.4 Ex post ambiguity � (�0k) is increasing in � and decreasing in qk:

4.3.2 Examples

We now wish to investigate the factors which determine whether ambiguity increases or decreases

after updating. For illustrative purposes we shall consider some special cases.

Case 1 The prior over the state space is unambiguous. This implies that the only

source of ambiguity is the signals, i.e. � = 0: Then � (�) =
PK
j=1 qj�

�
�j
�
and � (�0k) = � (�k) :

The degree of ambiguity increases/decreases as � (�k) ?
PK
j=1 qj�

�
�j
�
: If the observed signal

is less ambiguous than the average signal, then ambiguity will decrease after updating.

When the only source of ambiguity is from the signals, observing one of the less ambiguous

signals will reduce ambiguity. This is intuitive since there is no longer the possibility of being

exposed to the more ambiguous signals. By continuity, updating will have similar properties

when � is small, which implies that there is little ambiguity about the prior over the state space.

Case 2 The observed signal is unambiguous, � (�k) = 0: Ex-ante ambiguity is

given by, � (�) = � + (1� �)
P
j 6=k qj�

�
�j
�
: Ex-post ambiguity is given by, � (�0k) =

�
�+(1��)qk :

For ambiguity to be lower ex-post we require � (�)� � (�0k) > 0:

Now � (�)�� (�0k) = �+(1� �)
P
j 6=k qj�

�
�j
�
� �
�+(1��)qk = (1� �)

�qk��+(�+(1��)qk)
P
j 6=k qj�(�j)

�+(1��)qk :

Hence

� (�)� �
�
�0k
�
= (1� �)

(� + (1� �) qk)
P
j 6=k qj�

�
�j
�
� � (1� qk)

� + (1� �) qk
: (9)

Thus � (�) ? � (�0k) as
1

(1�qk)

�P
j 6=k qj�

�
�j
��
? �

(�+(1��)qk) : The lhs of this inequality is the

average ambiguity of the signals ex-ante and the rhs is what the ambiguity of the states ex post

would be if none of the signals were ambiguous.

An interesting sub-case is where the observed signal is unambiguous, while all the other

signals display the maximal degree of ambiguity, i.e. � (�k) = 0; �
�
�j
�
= 1; j 6= k: These

assumptions imply that
�P

j 6=k qj�
�
�j
��
= (1� qk) : Hence from equation (9), � (�)�� (�0k) =

(1� �) (1� qk) (�+(1��)qk)���+(1��)qk = (1��)2qk(1�qk)
�+(1��)qk > 0: Thus in this extreme case, observing the

least ambiguous signal will always decrease ambiguity. By continuity, if an individual observes
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a signal with much lower ambiguity than the other possible signals then ambiguity will be

reduced.

Case 3 All signals are equally ambiguous This assumption implies, �
�
�j
�
= �; 1 6

j 6 K for some �; 0 6 � 6 1: One may see that ambiguity always rises in this case. Ex-

ante ambiguity is given by � (�) = � + (1� �)�, while ex-post ambiguity is given by � (�0k) =

�
�+(1��)qk +

(1��)qk
�+(1��)qk�: Both are convex combinations of 1 and �: Since

1
�+(1��)qk > 1; the

weight on 1 has increased in the expression for ex-post ambiguity. Thus provided � > 0; ex-post

ambiguity is always larger than ex-ante ambiguity when the signals are equally ambiguous.

To summarise, ambiguity is more likely to be lower after updating:

1. the smaller is the ambiguity of the states i.e. �;

2. if the observed signal is less ambiguous than average;

3. the more likely the observed signal is, (i.e. the higher is qk):

4.4 Dynamic Consistency

In previous sections we have explored the implications of keeping ambiguity-attitude the same

before and after updating. This can be viewed as a weak form of dynamic consistency. The

condition is clearly necessary but not su¢ cient for dynamic consistency. Here we explore the

relation between this condition and full dynamic consistency. We �nd that the necessary and

su¢ cient conditions for dynamic consistency are only slightly stronger. This is intuitive since

changes in ambiguity-attitude when updating are likely to be a major cause of dynamic incon-

sistency. First we shall de�ne dynamic consistency

De�nition 4.2 Preferences are said to be dynamically consistent with respect to a partition;

E1; :::; EK if
R
u (a) d� >

R
u (b) d� implies

R
u (ak) d�Ek >

R
u (bk) d�Ek ; for 1 6 k 6 K: Here

ak 2 A (Ek) denotes the restriction of act a to the event Ek; where A (Ek) denotes the set of all

acts on Ek; i.e. the set of all functions f : Ek ! X:

This implies that if act a is chosen in the �rst period the decision-maker will not wish to

revise his/her decision in the second period no matter which element of the partition is observed.
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First we make some additional assumptions. In particular, we shall assume that the utility

function is continuous and that no state is null in the sense that increasing the utility in that

state will always lead to a strictly preferred option.

Assumption 4.1 The utility function u : X ! R is continuous.

Assumption 4.2 (Strong Monotonicity) For two acts a; b 2 A (S) ; if 9ŝ 2 S; such that

u(a(ŝ)) > u(b(ŝ)) and 8s 2 S; u(a(s)) > u(b(s)) then a � b:7

De�nition 4.3 We say that the partition E1; :::; EK is non-trivial, if K > 2 and jEkj > 2; for

1 6 k 6 K:

The next result �nds necessary and su¢ cient conditions for dynamic consistency. The

condition is that the convex part of the JP-capacity be additive over the given partition.

Proposition 4.5 Let E1; :::; EK be a non-trivial partition of S: If a decision-maker has CEU

preferences, which satisfy Assumptions 4.1 and 4.2 with beliefs represented by a JP-capacity

� = �� + (1� �) ��, where � 6= 1
2 ; and (s)he updates his/her preferences with GBU updating

then the following conditions are equivalent:

1. (s)he is dynamically consistent,

2.
PK
k=1 �(Ek) = 1:

As far as we are aware this is the �rst result on the dynamic consistency of JP capacities.

Both the result and the proof are extensions of Theorem 2.1 in Eichberger, Grant, and Kelsey

(2005) who, in turn, extended an earlier result in Sarin and Wakker (1998). The main di¤erence

is that we have dropped the assumption of ambiguity-aversion made in the earlier paper. In the

case where � = 1
2 the su¢ ciency proof still holds, however we conjecture that this condition is

no longer necessary for dynamic consistency.

As already noted, keeping ambiguity-attitude unchanged when updating can be seen as a

weak form of dynamic consistency. Comparing Propositions 4.2 and 4.5 we notice that the

only additional restriction imposed by full dynamic consistency is that � = 0: This implies that

�rst period beliefs are additive or there is no ambiguity about which signal we shall see. Thus
7We do not use the full strength of this assumption. In fact we only need it to apply to the events C and D

in the proof of Proposition 4.5.
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the necessary and su¢ cient conditions for keeping � constant are close to those for dynamic

consistency. It is clear that changes in ambiguity-attitude could be a source of dynamic incon-

sistency. This result shows that when � = 0 changes in ambiguity-attitude are the only reason

for violations of dynamic consistency.

5 CONCLUSION

This paper studies learning and ambiguity. We have extended previous work on updating

ambiguous beliefs by allowing for the possibility of ambiguity-seeking behaviour in some choices

and ambiguity avoiding in others. The main principle used in this paper is that ambiguity-

attitude should be preserved by updating, while beliefs and perceptions of ambiguity may be

revised when new information is received. We believe this principle may be applicable more

generally.

One might note that there is a connection between the results of section 3 and 4. If we

consider updates on an arbitrary event, the condition for dynamic consistency is that beliefs be

additive and the condition for ambiguity-attitude to be constant is that beliefs be neo-additive.

If we only consider updates on a given partition, the condition for dynamic consistency is that

beliefs be additive over that partition and the condition for ambiguity-attitude to be constant

is that they be neo-additive over the partition.8

This paper has looked for classes of preferences which are closed under GBU updating. In

other words we require the updated preferences to have the same functional form and the same

ambiguity-attitude as the original preference. It is desirable that a class of preferences be closed

under updating, since in practice the prior will itself be an update of an earlier belief.9 If we

require the updates on all events to lie in the same class as the original preferences, then, under

mild assumptions, the preferences must be neo-additive.

A PROOFS

This appendix contains proofs of those results not proved in the text.

8By neo-additive we mean additive except on events where extreme outcomes occur.
9This is reminiscent of the notion from statistics of a conjugate family of probability distributions for which

a posterior distribution has the same form as the prior from which it was updated.

21



Proof of Lemma 3.1 Consider A & E; then

�E (A) =
��(A)+(1��)(1��(Ac))

��(A)+(1��)(1��(Ac))+1���(A[Ec)�(1��)(1��((A[Ec)c))

= ��(A)+(1��)(1��(Ac))
�[�(A)�1+�(B[Ec)��(A[Ec)+(1��(B))]+1��(B[Ec)+�(B)

= ��(A)+(1��)(1��(B[Ec))
�[�(A)��(A[Ec)+�(B[Ec)��(B)]+1��(B[Ec)+�(B) :

Su¢ ciency If � (A [ Ec)� � (A) = � (B [ Ec)� � (B) ; then

�E (A) =
�� (A)

1� � (B [ Ec) + � (B) + (1� �)
�

1� � (B [ Ec)
1� � (B [ Ec) + � (B)

�
(10)

= ��(A)
1��(A[Ec)+�(A) + (1� �)

�
1��(A[Ec)+�(A)��(B)

1��(A[Ec)+�(A)

�

=
�� (A)

1� � (A [ Ec) + � (A) + (1� �)
�
1� � (EnA)

1� � (A [ Ec) + � (A)

�
;

which has the JP form with the same ambiguity-attitude parameter �.

Necessity If ��E (A) = �� (A) + (1� �) �� (A) ; where 0 6 � 6 1 and � is a convex capacity

on E; then ��(A)+(1��)(1��(Ac))
�[�(A)��(A[Ec)+�(B[Ec)��(B)]+1��(B[Ec)+�(B) = �� (A) + (1� �) �� (A) :

This equation has the form a�+b
c�+d = e� + f; where c = � (A) + � (Ac) � � (A [ Ec) �

� ((A [ Ec)c) ; etc. Cross multiplying, a� + b = �2ce + (fc+ de)� + fd: Equating coe¢ cients

we obtain: ce = 0; a = (fc+ de) ; b = fd:

Unless � is the complete uncertainty capacity, there exists A such that � (A) = e 6= 0; which

implies c = 0: (Note one can easily show that the result holds if � is the complete uncertainty

capacity.) Hence � (A)� � (A [ Ec) + � (B [ Ec)� � (B) ; holds.

Proposition 3.1 Let � = �� + (1� �) �� be a JP-capacity where � is a belief function on S

and 0 6 � 6 1 and jSj > 4: Let �E denote the GBU update of � conditional on E: Then a

necessary and su¢ cient condition for �E to be a JP-capacity with the same � for all E & S is

that � be neo-additive.

Proof. Su¢ ciency of this condition follows from Proposition 1 of Eichberger, Grant, and Kelsey

(2010).

Necessity Suppose that � is a belief function and let � denote the Möbius inverse of �: It is

su¢ cient to show �B = 0 unless B = S or B is a singleton.
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Let ŝ denote a given state. Let E = Snŝ; then Ec = fŝg : Take � 2 E: Let A = En f�g and

B = f�g : Then by equation (2), � (A [ Ec) � � (A) = � (B [ Ec) � � (B) : Rewriting this in

terms of the Möbius inverse we obtain:
P
D�A[Ec �D �

P
D�A �D =

P
D��[Ec �D � ��:

This may be reorganized as,P
D�A �D + �ŝ +

P
D�A �D[ŝ �

P
D�A �D = �� + �ŝ + ��ŝ � ��:

Simplifying

��ŝ =
X
D�A

�D[ŝ: (11)

Hence ��ŝ >
P
s0 6=ŝ;� �s0ŝ; since we have deleted some non-negative terms from the rhs.

Summing over �;
P
� 6=ŝ ��ŝ >

P
� 6=ŝ

P
s0 6=ŝ;� �s0ŝ = (n� 2)

P
s0 6=ŝ �s0ŝ:

10 Note that the

two sums are identical. Hence if n > 4 this implies �s0ŝ = 0 for all s0; ŝ 2 S: Substituting

into equation (11),
P
D�A �D[ŝ = 0: Since �D[ŝ > 0; this implies �D[ŝ = 0 for all D � A.

Bearing in mind that ŝ and A were chosen arbitrarily this establishes that �G = 0; for all

G; 2 6 jGj 6 n� 1:

Proposition A.1 If we de�ne a JP-capacity �; by � = ��+ (1� �) ��, where � is the capacity

from Example 3.1 then for all E � S :

1. The GBU update �E is a JP-capacity with the same ambiguity-attitude parameter �:

However � is not neo-additive and � is not a belief function;

2. If E is any 3-element event. Then the GBU update of � conditional on E is �E =

��E + (1� �) ��E ; where �E is the symmetric convex capacity on E de�ned by �E (0) =

0; �E (1) =
�

1���� ; �E (2) =
2�+�
1���� and �E (3) = 1;

3. If E is any 2-element event �E = ��E + (1� �) ��E where �E is the symmetric convex

capacity on E given by �E (0) = 0; �E (1) =
�

1�2��2� ; �E (2) = 1:

Proof. First we shall show that � is convex and satis�es equation (2), which establishes that

the GBU update of � is a JP capacity with the same � by Lemma 3.1. Equation (2) requires

that � (3)� � (2) = � (2)� � (1) or 3� + 2�� (2� + �) = 2� + �� �; which clearly holds.

Convexity is satis�ed since:

10Since E contains n� 2 elements other than s0:
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1. 1 > 2� (3) � � (2) , 1 > 6� + 4� � (2� + �) = 4� + 2�; which holds since � < 1
4 and

� < 1
4 � �;

2. � (3) > 2� (2)� � (1), 3� + 2� > 2 (2� + �)� �; which always holds;

3. � (2) > 2� (1), � (2) = 2� + � > 2�:

The Möbius inverse of � is: �1 = �; �2 = �; �3 = ��; where �j denotes the Möbius inverse

of a set with j states for 1 6 j 6 3: Since the Möbius inverse has some negative values, � is not

a belief function.

To show the updates have the given form We only need to consider the updates condi-

tional on 2 and 3-element events, since updating on a 1-element event is trivial. Let E be an

arbitrary 3-element event. Let C be a 2-element subset of E: By equation (10) the GBU-update

is given by: �E (C) =
��(C)+(1��)(1��(Cc))
1��(Cc)+�((C[Ec)c) =

�(2�+�)+(1��)(1�(2�+�))
1�(2�+�)+� : Thus

�E (C) =
� (2� + �)

1� � � � + (1� �)
�
1� �

1� � � �

�
: (12)

Similarly if G is a 1-element subset of E: By equation (10) the GBU-update is

�E (G) = �
�

1� � � � + (1� �)
�
1� 2� + �

1� � � �

�
: (13)

This establishes part (2).

Now consider the updates of � conditional on a 2-element event. Let E denote an arbitrary

2-element event, let A be a non-trivial subset of E and let B = EnA: Then by equation (10)

the GBU update is given by �E (A) =
��(A)+(1��)(1��(Ac))
1��(Ac)+�((A[Ec)c) =

��+(1��)(1�(3�+2�))
1�(3�+2�)+�

= �

�
�

1� 2� � 2�

�
+ (1� �)

�
1� �

1� 2� � 2�

�
:

Thus �E has the JP form with the same ambiguity-attitude parameter and updated convex

capacity �E given by �E (0) = 0; �E (1) =
�

1�2��2� ; �E (2) = 1: Note that 1 � 2� � 2� >

1� 2� � 1
2 + 2� =

1
2 : Since � <

1
4 this implies that �E is convex.

The example may be understood by considering the symmetric neo-additive capacity de�ned

by � (A) = jAj (� + �) ; A & S; � (S) = 1. Let a be an act such that a (s1) > ::: > a (s4) : Then
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the Choquet integral of a with respect to � is:

a (s1) (� + �) + a (s2) (� + �) + a (s3) (� + �) + a (s4) (1� 3� � 3�) :

Compare this with the Choquet integral of a with respect to �:

a (s1) (�) + a (s2) (� + �) + a (s3) (� + �) + a (s4) (1� 3� � 2�) :

One can see that � is similar to � except that it under-weights the best outcome as well as

over-weighting the worst outcome in the Choquet integral.

Proof of Proposition 3.2 It is clear that if � is additive, the DS update has the required

property. Thus su¢ ciency is immediate.

Necessity Suppose that �̂�E (A) = �� (A)+ (1� �) �� (A) ; where 0 6 � 6 1 and � is a convex

capacity on E:11 Let B = EnA:

Then ��(A[Ec)+(1��)(1��((A[Ec)c))���(Ec)�(1��)(1��(E))
1���(Ec)�(1��)(1��(E)) = �� (A) + (1� �) �� (A) : The lhs

may be rearranged as: �[1��(E)+�(A[E
c)��(Ec)]+(1��(B))��(1��(B))�1+�(E)
�(E)+�(1��(E)��(Ec)) :

Thus �[�(B)+�(A[E
c)��(Ec)��(E)]+�(E)��(B)

�(E)+�[1��(E)��(Ec)] = �� (A)+ (1� �) �� (A) : This equation has the

form a�+b
c�+d = e� + f; where c = 1 � � (E) � � (Ec) etc. Cross multiplying, a� + b = �2ce +

(fc+ de)�+ fd: Equating coe¢ cients we obtain: ce = 0; a = (fc+ de) ; b = fd:

Unless � is the complete uncertainty capacity, there exists A such that � (A) = e 6= 0; which

implies c = 0: (Note one can easily show that the result holds if � is the complete uncertainty

capacity.) Since � is convex, � (E) + � (Ec) = 1 for all E � S, which implies that � is additive.

Proof of Proposition 3.3 It is clear that if � is additive the Optimistic update has the

required property.

Necessity If the update is a JP-capacity with the same �, we have

11 In this proof, �E and ��E denote the Dempster-Shafer update of � conditional on event E:
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���E (A) =
��(A)+(1��)(1��(Ac))
��(E)+(1��)(1��(Ec))

=
�� (A) + (1� �) (1� � (Ac))

1� � (Ec) + � [� (E) + � (Ec)� 1] = �� (A) + (1� �) �� (A) ;

where 0 6 � 6 1 and � is a convex capacity on E:12 As in the proof of Proposition 3.2, this

implies that the term multiplying � in the denominator must be 0; i.e. � (E) + � (Ec) = 1:

Since � is convex, � (E) + � (Ec) = 1 for all E � S, implies that � is additive.

Proposition 4.1 The GBU update of the PAJP-capacity, � conditional on event Ek is

given by: �̂k (A) = �
�
(1��)qk�k(A\Ek)

�+(1��)qk

�
+(1� �)

�
1� (1��)qk�k(Ac\Ek)

�+(1��)qk

�
, where, �̂ = �

�+(1��)qk >

�, with the inequality strict whenever qk < 1. The convex component of the updated JP-capacity

is given by �̂k (A) =
(1��)qk�k(A\Ek)

�+(1��)qk :

Proof. Suppose that Ek is observed. Let �̂k denote the GBU update of � conditional on Ek:

By de�nition, �̂k (A) =
(1��)�+(1��)qk�k(A\Ek)

(1��)�+(1��)qk�k(A\Ek)+��+(1��)qk��k(Ac\Ek)

=
(1� �) � + (1� �) qk�k (A \ Ek)

� + (1� �) qk
:

Set �̂ := �
�+(1��)qk and we obtain the right-hand side expression of equation (7). To obtain the

expression in equation (8), notice that (1��)�+(1��)qk�k(A\Ek)�+(1��)qk

=
(1� �) � + (1� �) qk [��k (A \ Ek) + (1� �) ��k (A \ Ek)]

� + (1� �) qk

= �

�
(1� �) qk�k (A \ Ek)

� + (1� �) qk

�
+ (1� �)

�
� + (1� �) qk��k (A \ Ek)

� + (1� �) qk

�

= �

�
(1� �) qk�k (A \ Ek)

� + (1� �) qk

�
+ (1� �)

�
1� (1� �) qk�k (A

c \ Ek)
� + (1� �) qk

�
.

The following lemma assumes that ambiguity-attitude is constant and shows that if a set

consists of the union of subsets of two di¤erent elements of the partition then its Möbius inverse

must be zero.

Lemma A.1 Let � = �� + (1� �) �� be a JP-capacity where � is a belief function on S and

0 6 � 6 1: Assume that jEkj > 3; for 1 6 k 6 K: Let �Ek denote the GBU update of �

12 In this proof, �E and ��E denote the Optimistic update of � conditional on event E:
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conditional on Ek: Then a necessary and su¢ cient condition for �Ek to be a JP-capacity with

the same � for 1 6 k 6 K is that for A � Ek; and for all non-empty F � Eck; �A[F = 0; for

1 6 k 6 K:

Proof. Su¢ ciency follows from Proposition 4.1.

Necessity Let � be a belief function and let � denote the Möbius inverse of �: By

equation (2) for all A;B such that A [B = Ek; A \B = ?:

� (A [ Eck)� � (A) = � (B [ Eck)� � (B) : (14)

Consider a given element of the partition Ek: Assume Ek = f�1; :::; �Lg : We claim that for

A � Ek; all non-empty F � Eck; �A[F = 0: We shall proceed by induction on the number of

states in A:

Step 1 jAj = 1: In this case A = f�`g for some `; 1 6 ` 6 L: By equation (14)

� (�` [ Eck) � � (�`) = � ((Ekn�`) [ Eck) � � (Ekn�`) : Rewriting in terms of the Möbius

inverse,
P
D�(�`[Eck)

�D � �f�`g =
P
D�(Ekn�`)[Eck

�D �
P
D�(Ekn�`) �D

or
P
D�Eck

�D +
P
D�Eck

�D[�` � �f�`g =
P
D�Eck

�D +
P
D�(Ekn�`)[Eck

D*Eck

�D �
P
D�(Ekn�`) �D;

which implies
P
D�Eck
D 6=?

�D[�` =
P
D�(Ekn�`)[Eck;D*Eck;D*(Ekn�`)

�D:

Hence
P
D�Eck
D 6=?

�D[�` >
P
j 6=`
P
D�Eck
D 6=?

�D[�j ; since we have deleted some non-negative terms

from the rhs. Summing over `;
PL
`=1

P
D�Eck
D 6=?

�D[�` > (L� 1)
P
D�Eck
D 6=?

�D[�` : Since L > 3; this

implies
P
D�Eck
D 6=?

�D[�` = 0: Since �D[�` > 0; for 1 6 ` 6 L; we may deduce �D[�` = 0; for all

non-empty D � Eck: This establishes the result in the case where jAj = 1:

Inductive step Now take a given set A � Ek: Our inductive hypothesis is that for all strictly

smaller subsets B of Ek; �B[F = 0; for all non-empty F � Eck: There are two cases to consider.

Case 1 jAj 6 L
2 In this case we may choose G � Ek such that jGj = jAj�1 and G\A = ?:

Let H = EknG: Note that A � H: By equation (2) � (G [ Eck) � � (G) = � (H [ Eck) � � (H) :

Rewriting this in terms of the Möbius inverse we obtain:P
D�(G[Eck)

�D �
P
D�G �D =

P
D�(H[Eck)

�D �
P
D�H �D:
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Expanding
P
D�Eck

�D +
P
D�G �D +

P
D�(G[Eck);D*G;D*Eck

�D �
P
D�G �D

=
P
D�Eck

�D +
P
D�H �D +

P
D�(H[Eck);D*H;D*Eck

�
P
D�H �D:

This may be simpli�ed to:

X
D�(G[Eck);D*G;D*Eck

�D =
X

D�(H[Eck);D*H;D*Eck

�D: (15)

Recall that by the inductive hypothesis �B[F = 0; for subsets B of Ek strictly smaller than

A and non-empty F � Eck: Thus all terms on the lhs of equation (15) are zero. i.e. 0 =P
D�(H[Eck);D*H;D*Eck

�D: Since � is, by assumption, a belief function, all the ��s are non-

negative, which implies �D = 0 for all D � (H [ Eck) ; D * EckD * H: In particular �A[F = 0;

for all non-empty F � Eck: This completes the proof of this case.

Case 2, jAj > L
2 Let Q = EknA: Then jAj > jQj : By equation (2) � (A [ Eck)� � (A) =

� (Q [ Eck)� � (Q) : Rewriting this in terms of the Möbius inverse we obtain:P
D�(A[Eck)

�D �
P
D�A �D =

P
D�(Q[Eck)

�D �
P
D�Q �D:

As in case 1 this may be simpli�ed to:

X
D�(A[Eck);D*A;D*Eck

�D =
X

D�(Q[Eck);D*Q;D*Eck

�D: (16)

Recall that by the inductive hypothesis �B[F = 0; for subsets B of Ek strictly smaller than A

and non-empty F � Eck: Thus all terms on the rhs of equation (16) are zero, henceP
D�(A[Eck);D*A;D*Eck

�D = 0: As before, this implies �A[F = 0; for all non-empty F � Eck:

This completes the proof of the inductive step. The result follows.

Proof of Proposition 4.2 Su¢ ciency Proposition 4.1 has already established

su¢ ciency.

Necessity Now assume that �Ek is a JP-capacity with the same � for 1 6 k 6 K and � is a

belief function. Let � = �S > 0: Then
P
D&S �D = 1� �:

For 1 6 k 6 K; de�ne qk = 1
1��

P
D�Ek �B: If qk 6= 0 de�ne a capacity �k on Ek by

�k (A) =
1

(1��)qk
P
D�A �B for A � Ek: It is clear that �k is convex since its Möbius inverse

is non-negative. If qk = 0; de�ne �k by �k (A) = 0; A & Ek;�k (Ek) = 1: If B is an arbitrary
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(proper) subset of S; then

� (B) =
X
D�B

�D =

KX
k=1

X
D�B\Ek

�D +
X
D�B

D*B\Ek

�D:

By Lemma A.1 of A � Ek; for all non-empty F � Eck; �A[F = 0; for 1 6 k 6 K; hence the

last sum is zero. Thus � (B) =
PK
k=1

P
D�B\Ek �D = (1� �)

PK
k=1 qk�k (B \ Ek) : Clearly

� (S) = 1: Thus � is a PAJP capacity.

Example 4.1 Suppose that there are 4 states S = fs1; s2; s3; s4g : Let the partition be

E1 = fs1; s2g ; E2 = fs3; s4g : Let � be the capacity whose Möbius inverse is �si = �; for

1 6 i 6 4; �s1s3 = �s2s3 = �s1s4 = �s2s4 = �; �S = 1� 4� � 4�; �E = 0 for all other events E,

where � < 1
4 and � <

1
4 � �: Let � = ��+ (1� �) ��: We claim that the GBU updates of � on

E1 and E2 are JP capacities with the same �:

Proof for Example 4.1 By de�nition

�E1 (s1) =
��(s1)+(1��)(1��(s2;s3;s4))

��(s1)+(1��)(1��(s2;s3;s4))+1���(s1;s3;s4)�(1��)(1��(s2))

= ��+(1��)(1�(3�+2�))
��+(1��)(1�(3�+2�))+1��(3�+2�)�(1��)(1��) =

��+(1��)(1�(3�+2�))
1�2��2�

= � �
1�2��2� + (1� �)

�
1� �

1�2��2�

�
:

By symmetry �E1 (s2) =
��

1�2��� + (1� �)
�
1� �

1�2���

�
: Thus �E1 has the JP-form with

the same � as �: By symmetry �E2 also has the JP-form with the same � as �:

Proposition 4.3 Let � = ��+ (1� �) �� be an PAJP capacity, where

� (A) = (1� �)
PK
j=1 qj�j (A \ Ek) for A $ S:

1. The ex-ante degree of ambiguity of � is � (�) = � + (1� �)
PK
j=1 qj�

�
�j
�
:

2. If event Ek is observed then the ex-post degree of ambiguity is,

�
�
�0k
�
=

�

� + (1� �) qk
+

(1� �) qk
� + (1� �) qk

� (�k) :

Proof. For 1 6 k 6 K; let Fk � Ek be such that � (�k) = ��k (Fk) � �k (Fk) : De�ne F =SK
k=1 Fk: Now let A be an arbitrary subset of S: Then �� (A)� � (A)

= � + (1� �)
KX
k=1

qk [1� �k (Ac \ Ek)� �k (A \ Ek)] 6 � + (1� �)
KX
k=1

qk� (�k) ; (17)
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which establishes that � (�) > � + (1� �)
PK
k=1 qk� (�k) : Note also that equation (17) holds

with equality if A = F; which implies � (�) 6 � + (1� �)
PK
k=1 qk� (�k) :

From Proposition 4.1, if event Ek is observed, the updated capacity � 0 (A) = ��0k (A) +

(1� �) ��0k (A), where �0k (A) =
(1��)qk�k(A\Ek)

�+(1��)qk : Thus the ex-post degree of ambiguity is,

� (�0k) = maxA�Ek f��0k (A)� �0k (A)g

= maxA�Ek

n
1� (1��)qk

�+(1��)qk +
(1��)qk
�+(1��)qk [��k (A)� �k (A)]

o
= �

�+(1��)qk +
(1��)qk
�+(1��)qk� (�k) :

Proof of Proposition 4.4 The e¤ect of the likelihood of the signal on ex-post ambiguity

can be measured by the derivative,
@�(�0k)
@� = �+qk��qk��+�qk

(�+(1��)qk)2
�
�
�+qk��qk+1�qk��k+�qk

(�+(1��)qk)2
�
qk� (�k)

(by the quotient rule), = qk
(1��(�k))

(�+(1��)qk)2
> 0:

Thus an increase in the ex-ante ambiguity over the state space increases ex-post ambiguity.

Similarly,
@�(�0k)
@qk

= (1� �) (�+(1��)qk)�(�k)���(1��)�(�k)
(�+(1��)qk)2

= � (1� �) �(1��(�k))+(1��)(1�qk)�(�k)
(�+(1��)qk)2

< 0: Thus an increase in the likelihood of the signal,

qk; decreases ex-post ambiguity.

Lemma A.2 Let E1; :::; EK be a partition and let � be a convex or concave capacity on S such

that
PK
i=1 �(Ei) = 1 then for any B � S; �(B) =

PK
i=1 �(B \ Ei):

Proof. First assume that � is concave and K = 2: De�ne sets C and D by C = (B \ E1) [

E2; D = E1 [ (B \ E2) : By concavity, � (C) 6 � (B) + � (E2) � � (B \ E2) ; � (D) 6 � (B) +

� (E1)�� (B \ E1) and 1 = � (S) 6 � (C)+� (D)�� (B) : Substituting we obtain 1 6 � (B)+

� (E2)�� (B \ E2)+� (B)+� (E1)�� (B \ E1)�� (B) = 1+� (B)�� (B \ E2)�� (B \ E1)

or � (B \ E2) + � (B \ E1) 6 � (B) : However the opposite inequality follows directly from

concavity, which establishes the result in this case: The general result follows by repeated

application of the result for K = 2: If � is convex the result can be proved by reversing the

inequalities in the above proof.

Proposition 4.5 Let E1; :::; EK be a non-trivial partition of S: If a decision-maker has

CEU preferences, which satisfy Assumptions 4.1 and 4.2 with beliefs represented by a JP-capacity

� = �� + (1� �) ��, where � 6= 1
2 ; and (s)he updates his/her preferences with GBU updating

then the following conditions are equivalent:
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1. (s)he is dynamically consistent,

2.
PK
k=1 �(Ek) = 1:

Proof of Proposition 4.5 First note that the case � = 1 is proved by Theorem 2.1 in

Eichberger, Grant, and Kelsey (2005). If � = 0 a similar argument will establish the result.

Thus we may assume � 6= 0; 1:

2)1 Condition (2) implies that we may de�ne a probability distribution over the partition

E1; :::; EK by setting qk = � (Ek) for 1 6 k 6 K: Lemma A.2 implies that for A � S; � (A) =PK
k=1 � (A \ Ek) =

PK
k=1 qk�k (A \ Ek) ; where �k is a capacity on Ek de�ned by �k (B) =

�(B)
qk

for B � Ek. Thus � =
PK
k=1 qk [��k + (1� �) ��k] ; which implies that � is an PAJP capacity.

Hence we may apply Proposition 4.1 to deduce that the GBU update of � conditional on Ek is

�k = ��k (A) + (1� �) ��k (A) :

Suppose that bk 2 A (Ek) is preferred to ak conditional on Ek; for 1 6 k 6 K: Then

Z
u (bk) d�k >

Z
u (ak) d�k; for 1 6 k 6 K; (18)

with at least one strict inequality. De�ne b 2 A (S) ; by b (s) = bk (s) if s 2 Ek; for 1 6 k 6 K:

We shall show that b is preferred to a in the �rst period, which implies dynamic consistency.

Let the range of a (i.e. the set of outcomes generated by act a) be denoted by fx1; :::; xmg

where the outcomes have been numbered so that, u (x1) > u (x2) > ::: > u (xm) : Also de�ne

Ai = fs 2 S : a (s) 2 fx1; :::; xigg : From the de�nition of the Choquet integral:R
u (a) d� = u(x1)�(A1) +

Pm
i=2 u(xi) [� (Ai)� � (Ai�1)]

= u(x1) [�� (A1) + (1� �) �� (A1)]

+
Pm
i=2 u(xi) [�� (Ai) + (1� �) �� (Ai)� �� (Ai�1)� (1� �) �� (Ai�1)] :

By Lemma A.2 this may be rewritten asPK
k=1 u(x1) [�� (A1 \ Ek) + (1� �) �� (A1 \ Ek)]

+
PK
k=1

Pm
i=2 u(xi) [�� (Ai \ Ek) + (1� �) �� (Ai \ Ek)� �� (Ai�1 \ Ek)� (1� �) �� (Ai�1 \ Ek)]

=
PK
k=1

R
u (aEk) d�k: Similarly

R
u (b) d� =

PK
k=1

R
u (bk) d�k:

Thus
R
u (b) d� >

R
u (a) d�; which implies that act a could not be chosen in the �rst period.

It follows that the decision-maker is dynamically consistent.
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1)2 Suppose that the decision-maker is dynamically consistent. Consider �rst the case

K = 2: Since the partition is non-trivial, we may �nd events, A;B;C; and D such that, E1 =

A [B; E2 = C [D; where A \B = C \D = ?: Consider acts a; b; c; e; f and g as described in

the following table:

E1 E2

A B C D

a 1 1 1 1

b 1 1 � 0

c 0 0 1 1

e 0 0 � 0

f � � 1 1

g � � � 0

We can ensure that acts with these values exist by appropriately normalizing the utility

function, (recall that X is convex). Note that
R
a1d�1 =

R
b1d�1;

R
c1d�1 =

R
e1d�1;

R
f1d�1 =R

g1d�1;
R
a2d�2 =

R
c2d�2 =

R
f2d�2 and

R
b2d�2 =

R
e2d�2 =

R
g2d�2: By continuity and

strong monotonicity we may choose � so that
R
a2d�2 =

R
b2d�2: Since � 6= 1; � > 1: Dynamic

consistency then implies that a � b; c � e and f � g: By evaluating the Choquet integrals we

�nd: 1 = (� � 1) � (C) + � (E1 [ C) ; � (E2) = �� (C) and �� (E1 [ C) = �� (E1) + 1� � (E1) :

Hence � (E1 [ C) = 1� (� � 1) � (C) = 1� ��1
� � (E2) ;

�� (E1) + 1� � (E1) = � � (� � 1) � (E2) ;

1� � = (1� �) � (E1) + (1� �) � (E2), � (E1) + � (E2) = 1:

Thus �� (E1) + (1� �) �� (E1) + �� (E2) + (1� �) �� (E2) = 1:

Expanding �� (E1) + (1� �)� (1� �)� (E2) + �� (E2) + (1� �)� (1� �)� (E1) = 1;

or (1� 2�)�(1� 2�)� (E2)�(1� 2�)� (E1) = 0: Since � 6= 1
2 , this implies � (E1)+� (E2) = 1:

The general case can be established as follows. If
PK
k=1 �(Ek) < 1; then we can apply the

above argument to F1 = E1 and F2 =
[

E2ET ;E 6=E1
to deduce that dynamic consistency implies

� (F1)+� (F2) = 1. By repeated application of this result we may deduce that
PK
k=1 � (Ek) = 1:
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