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Abstract

We investigate how the choice of decision makers can be manipulated under the
presence of risk and uncertainty. Our analysis is based on the Quantum Decision The-
ory (QDT) previously introduced by the authors, which we generalize to the case of
decision makers that are members of a society. Similarly to the concept of a repre-
sentative agent in economics, the notion of a typical decision maker, representing the
average behavior within a given society, is introduced and characterized. QDT de-
scribes an agent’s choice as a probabilistic event occurring with a probability that is
the sum of a utility factor and of an attraction factor. The attraction factor embodies
subjective and unconscious dimensions in the mind of the decision maker. The most
efficient manipulation of decision making is realized by influencing the attraction fac-
tors of decision makers. This can be done in two ways. One method is to arrange in a
special way the payoff weights, which induces the required changes of values of attrac-
tion factors. We show that a variation of the payoff weights can inverse the attraction
factor values and reverse the decision preferences, even when the prospect utilities are
not changed. The second method of manipulation is by providing information to deci-
sion makers or by allowing consultations in the society. The attraction factors can be
either decreased, when decision makers obtain correct information, or increased, if the
delivered information is wrong. The variation of the attraction factors, induced by pos-
itive or negative information, can lead to the reversal of preferences. The methods of
manipulating decision making are illustrated by several experiments, whose outcomes
are compared quantitatively with the prediction of QDT.
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1 Introduction

How to manipulate decision choices made by separate decision makers as well as by societies
of many agents is an important and widely studied problem of psychology (Wilson and
Schooler 1991; Wilson et al. 2005; Gneezy et al. 2006; Norton et al. 2007; Payne et al. 2008;
Koehler and James 2009). This problem is important for a variety of practical applications
ranging from medicine (Polister 1989; O’Carrol 2003) to politics (Barber 1984; Gutmann
and Thompson 1996; Dryzek 2000; Chambers 2003; Hafer and Landa 2007). Numerous
articles are devoted to the effects of manipulation in economics, studying the influence of
different framing effects on product evaluation (Schul and Ganzach 1995; Armel et al. 2008;
Lerouge 2009), consumer response to price (Busemeyer and Townsend 1993; Heath et al.
1995; Busemeyer and Diedrich 2002; Armel and Rangel 2008), evaluation of retail outlets
(Kellaris et al. 1995), market advertizing (Keller 1991; Lee et al. 2009; Goldsmith and
Amir 2010), buying decisions (Qualls and Puto 1989; Gibbs 1997), perceptions of control
and efficacy (Koehler et al. 1994), distributive justice (Kinsey et al. 1991), performance
feedbacks (Hogarth et al. 1991), and so on.

In the present paper, we consider a mathematical model describing how decision makers
can be manipulated and how it would be possible to quantitatively evaluate the influence of
such a manipulation. For this purpose, we generalize the Quantum Decision Theory (QDT),
developed earlier by the authors (Yukalov and Sornette 2008, 2009a,b,c, 2010a,b, 2011) for
individual decision makers, to the case of decision makers in a society. This generalization is
formulated in Sec. 2. In experiments, one usually deals with large groups of decision makers
with different preferences. In order to compare theoretical results with experimental, we
introduce and characterize, in Sec. 3, the notion of typical social agents. In Sec. 4, we
explain how it is possible to manipulate the typical decision maker preference by varying the
arrangement of prospects. We formulate a criterion for the inversion of the attraction factor
leading to the inversion of preferences. In Sec. 5, the results, predicted by our approach, are
compared with several classical experiments, demonstrating good quantitative agreement.
In Sec. 6, we show how decision makers can be manipulated by providing them additional
either correct or wrong information. Section 7 concludes.

2 Quantum decision making in society

In this section, we generalize the QDT approach, whose detailed exposition can be found
in our previous publication (Yukalov and Sornette 2012), developed for individual decision
makers, to a society of many decision makers. We recall that the decision makers are not
quantum objects, but are usual humans. The techniques of quantum theory are employed
merely for taking into account the hidden variables, such as emotions and biases of decision
makers (Yukalov and Sornette 2011).

Let us consider a society ofN agents who are decision makers. The agents are enumerated
by α = 1, 2, . . . , N . Each agent is characterized by a set {eαn : n = 1, 2, . . . , d} of d
elementary prospects that are represented by vectors |αn〉 in a Hilbert space. Different
elementary prospects are orthonormal to each other,

〈αm|αn〉 = δmn ,
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which symbolizes their mutual independence and incompatibility. The space of mind of an
α - decision maker is the Hilbert space

Hα ≡ Spann{|αn〉} . (1)

The dimension of this space of mind is d. The space of mind of the whole society is the
tensor product

H =

N
⊗

α=1

Hα , (2)

whose dimension is Nd.
An α - agent deliberates on deciding between L prospects forming a complete lattice

Lα ≡ {παj : j = 1, 2, . . . , L} . (3)

Each prospect παj is represented by a vector |παj〉 in the space of mind (1). The prospect
vectors do not need to be orthonormal, which implies that they are not necessarily incom-
patible.

The prospect operator
P̂ (παj) ≡ |παj〉〈παj | (4)

acts on the space of mind (1). The set of all these operators is analogous to the algebra of local
observables in quantum theory (von Neumann 1955). Respectively, the prospect probabilities
are defined as the expectation values of the prospect operators. The expectation values for
individual decision makers are given by averaging the prospect operators over a strategic
state of the decision maker (Yukalov and Sornette 2011), being a pure state represented by
a single vector.

However, for agents in a society, pure states of each agent, generally, do not exist, since
the society agents interact with each other by exchanging information. Moreover, the society
as a whole may not be completely isolated from the surrounding. Therefore the society state
has to be characterized by a statistical operator ρ̂ that is a non-negative normalized operator,

TrHρ̂ = 1 , (5)

where the trace operation is over the society space (2). Then the expectation values of the
prospect operators are given by the trace

p(παj) ≡ TrHρ̂P̂ (παj) , (6)

defining the probabilities of the corresponding prospects. This definition makes the basic
difference in calculating the prospect probabilities, as compared to the averaging over a single
strategic state for individual decision makers (Yukalov and Sornette 2012).

Quantity (6), by its construction, is non-negative and defines the prospect probabilities
under the normalization condition

L
∑

j=1

p(παj) = 1 , 0 ≤ p(παj) ≤ 1 . (7)
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Remembering that the prospect operator (4) acts on the space of mind (1) and introducing
the reduced statistical operator

ρ̂α ≡ TrH/Hα
ρ̂ ,

in which the trace is over the partial factor space

H/Hα ≡

N
⊗

β(6=α)

Hβ ,

makes it possible to rewrite the prospect probability (6) in the form

p(παj) = TrHα
ρ̂αP̂ (παj) , (8)

with the trace over the space of mind (1).
Expanding the prospect vectors over the elementary prospect basis, with introducing the

matrix elements

ραmn ≡ 〈αm|ρ̂α|αn〉 , Pmn(παj) ≡ 〈αm|P̂ (παj)|αn〉 , (9)

it is straightforward to get the prospect probability

p(παj) = f(παj) + q(παj) , (10)

consisting of two terms. The first term, called the utility factor,

f(παj) =
∑

n

ραnnPnn(παj) , (11)

describes the classical objective probability, showing how the considered prospect is useful
for the decision maker. While the second term, called the attraction factor,

q(παj) =
∑

m6=n

ραmnPnm(παj) , (12)

characterizes the subjective influence of subconscious feelings, emotions, and biases and
shows to what extent the prospect is attractive for the decision maker.

By its definition, the utility factor (11) is non-negative,

0 ≤ f(παj) ≤ 1 , (13)

and also it is normalized,
L
∑

j=1

f(παj) = 1 , (14)

representing the classical objective probability. In the case, when the prospect utilities
U(παj) can be evaluated by means of the classical utility theory, the utility factor takes the
form

f(παj) =
U(παj)

∑

j U(παj)
. (15)
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The attraction factor (12), by its definition, varies in the range

−1 ≤ q(παj) ≤ 1 . (16)

An important property of the attraction factor, following from conditions (7) and (14), is
the alternation property

L
∑

j=1

q(παj) = 0 . (17)

It is worth mentioning that the attraction factor comes into play only for composite
prospects experiencing mutual interference (Yukalov and Sornette 2011). But for elementary
prospects, it does not occur, being identically zero:

q(eαn) = 0 .

Having defined the prospect probabilities, the prospects become naturally ordered. A
prospect πα1 is said to be preferred to a prospect πα2 if and only if

p(πα1) > p(πα2) (πα1 > πα2) . (18)

The prospects πα1 and πα2 are indifferent if and only if

p(πα1) = p(πα2) (πα1 = πα2) . (19)

And the prospect πα1 is preferred or indifferent to πα2 if

p(πα1) ≥ p(πα2) (πα1 ≥ πα2) . (20)

A prospect π∗
α that corresponds to the maximal probability

p(π∗
α) = max

j
p(παj)

is called optimal.

3 Typical behavior of social agents

Let all agents in a society confront the same prospect lattice (3), with the same prospects
πα = παj . The agents composing the society are different individuals and their decisions,
even related to the same set of prospects, can vary, producing different probabilities p(παj).

The society as a whole can be characterized by the average probability

p(πj) ≡
1

N

N
∑

α=1

p(παj) , (21)

averaged over all society members, which describes the typical behavior of agents. In view
of expression (10), the typical probability (21) reads as

p(πj) = f(πj) + q(πj) , (22)
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with the typical utility factor

f(πj) ≡
1

N

N
∑

α=1

f(παj) (23)

and typical attraction factor

q(πj) ≡
1

N

N
∑

α=1

q(παj) . (24)

Because of Eqs. (13) and (14), the typical utility factor, describing the objective proba-
bility, satisfies the conditions

L
∑

j=1

f(πj) = 1 , 0 ≤ f(πj) ≤ 1 . (25)

In the case when it is defined by the prospect utilities as in Eq. (15), it reduces to the
expression

f(πj) =
U(πj)

∑

j U(πj)
, (26)

where we take into account that objective utilities are invariant with respect to agents, so
that U(παj) = U(πj).

The attraction factor, generally, is not invariant with respect to different decision makers,
but, owing to Eqs. (16) and (17), it preserves the conditions

L
∑

j=1

q(πj) = 0 , −1 ≤ q(πj) ≤ 1 . (27)

Moreover, assuming that the attraction factor for different decision makers is a random
quantity, with its modulus |q(πj)| varying in the interval [0, 1], one can show (Yukalov and
Sornette 2011) that it satisfies the quarter law

1

L

L
∑

j=1

|q(πj)| =
1

4
. (28)

In this way, each prospect is evaluated by the society with respect to two points, its
utility and its attractiveness. A prospect πi is more useful than πj , if f(πi) > f(πj). And a
prospect πi is more attractive than πj , if q(πi) > q(πj). Therefore, a prospect can be more
useful, but not preferred, being less attractive. As follows from expression (22), a prospect
π1 is preferred to a prospect π2, in the sense of definition (18), when

p(π1) > p(π2) (π1 > π2) ,

if and only if the inequality

f(π1)− f(π2) > q(π2)− q(π1) (29)

holds true.
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Actually, the comparison of theory with experiment is meaningful only for a sufficiently
large pool of decision makers, when the general typical features can be defined. When, in such
a large society, the number of agents choosing a prospect πj is Nj , then the experimentally
observed fraction

pexp(πj) ≡
Nj

N
(30)

provides the aggregate frequentist definition of probability that should be compared with
the theoretical value (22).

4 Manipulation by reversing attraction factors

In the prospect probability (22), the first term (23) is an objectively defined quantity char-
acterizing the prospect utility. It would, of course, be possible to change the society choice
by varying the utility of prospects. This, however, is not what is called manipulation, but it
is just an objective shift of preferences caused by the varying prospect utilities.

Under manipulation, one understands the possibility of essentially changing the decision
maker choice merely by influencing the attractiveness of the considered prospects, without
essentially varying their utilities. This means that these are the attraction factors that are
to be manipulated.

4.1 Prospect probabilities for binary lattices

The most often and illustrative case is the choice between two prospects forming a binary
lattice

L = {π1, π2} . (31)

Suppose that the prospect π1 is more attractive than π2, which means that

q(π1) > q(π2) .

According to the alternation property (27), we have

q(π1) = −q(π2). (32)

Then, taking into account the quarter law (28), we can estimate the attraction factor q(π1)
as 1/4, while the attraction factor q(π2) as −1/4. Keeping in mind that a probability, by
its meaning, lies in the interval [0, 1], the prospect probabilities can be evaluated by the
formulas

p(π1) = Ret[0,1]

{

f(π1) +
1

4

}

, p(π2) = Ret[0,1]

{

f(π2)−
1

4

}

, (33)

where the retract function

Ret[0,1]{z} ≡







0, z < 0
z, 0 ≤ z ≤ 1
1, z > 1

is employed.
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4.2 Definition of more attractive prospects

Formulas (33) could be used for evaluating the prospect probabilities of the binary lattice
(31). The sole thing that is left for the straightforward application of these formulas to
concrete cases is a practical rule allowing one to distinguish the prospects as more and less
attractive. Being based on the notion of aversion to uncertainty and risk, or ambiguity aver-
sion (Gollier 2001; Sornette 2003; Malevergne and Sornette 2006; Abdellaoui et al 2011a,b),
it is possible to define as more attractive the prospect that provides more certain gain, hence,
more uncertain loss (Yukalov and Sornette 2011). However, it is necessary to specify what
does mean to be ”more certain”.

Let us consider two prospects

π1 = {xn, p1(xn)} , π2 = {x′
n, p2(x

′
n)} , (34)

characterized by the sets of payoffs {xn} and {x′
n} and the corresponding payoff weights, or

probabilities, obeying the normalization conditions

∑

n

p1(xn) = 1 ,
∑

n

p2(x
′
n) = 1 .

Let the largest payoffs of each prospect be denoted as

xmax ≡ max
n

{xn} , x′
max ≡ max

n
{x′

n} . (35)

Suppose that the maximal payoff of the first prospect is larger than that of the second
prospect:

xmax > x′
max, (36)

so that the utility factor of the first prospect be slightly greater than or equal to that of the
second prospect:

f(π1) ≥ f(π2) , |f(π1)− f(π2)| ≪ 1 . (37)

And let the payoff x′
max be more probable than xmax, so that the related payoff weights

would satisfy the inequality
p1(xmax) < p2(x

′
max) . (38)

Thus, the first prospect provides a larger possible payoff than the second prospect, but with
a smaller payoff weight. Then, which of the prospects is more attractive?

Deciding on this problem, we have to resort to the known empirical fact, showing that
people typically pay more attention to payoff weights that are larger than some critical value
pc and pay less attention to the weights that are smaller than this critical value (Kahneman
and Tversky 1979; Tversky and Kahneman 1992; van de Kuilen 2007). It is natural to
associate this critical value with 1/2, since it is with respect to this value people usually
name the probability as being high or low. In line with this experimental observation, we
suggest the following simple criterion.

One-half criterion. Among the two prospects defined above that are characterized by
(37), the first prospect is less attractive, if the weight of the largest payoff of the second
prospect is larger than one-half:

p2(x
′
max) >

1

2
, (39)
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which leads to
q(π1) < q(π2) . (40)

Then, the probability p(π1) that the first project is chosen becomes p(π1) ≡ f(π1) + q(π1) =
f(π1) − q(π2), by the alternation property (27) simplifying into (32) for two prospects,
which must compared with probability p(π2) that the second project is chosen, given by
p(π2) = f(π2)+ q(π2). This shows mathematically how a prospect with smaller utility factor
can be actually preferred due to a large attraction factor associated with a probability of the
largest payoff greater than 1/2. In contrast, the first prospect is more attractive when the
weight of the largest payoff of the second prospect is smaller than one-half:

p2(x
′
max) <

1

2
, (41)

which leads to
q(π1) > q(π2) . (42)

In the following subsection, we show that this criterion allows us to quantitatively predict
the results of experiments. At the same time, this criterion gives a key of how it is possible
to manipulate human decisions by arranging the prospects in such a way that would lead to
the attraction reversal, and, consequently, to the preference reversal.

5 Illustration of preference reversal by examples

Here we consider several examples of experiments described by Kahneman and Tversky
(1979). In these experiments, the total number of decision makers was about or smaller
than one hundred, and the corresponding statistical errors were around 10%−12%. Decision
makers had to choose between two prospects having the properties as those discussed above.
Payoff were counted in monetary units, say in thousands of schekels, francs, or dollars. The
kind of monetary units has no influence on the relative quantities, such as utility factors and
prospect probabilities. Calculating the utility factors, we use, for simplicity, a linear utility
function.

Example 1. One chooses between the prospects

π1 = {2.5, 0.33 | 2.4, 0.66 | 0, 0.01} , π2 = {2.4, 1} .

Using definition (26) gives the utility factors

f(π1) = 0.501, f(π2) = 0.499 .

To obtain these numbers, we have used

f(π1) =
U(π1)

U(π1) + U(π2)
, f(π2) =

U(π2)

U(π1) + U(π2)
,

with
U(π1) = 2.5× 0.33 + 2.4× 0.66 + 0× 0.01 , U(π2) = 2.4 .
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Since p2(x
′
max) = 1 > 0.5, the first prospect is less attractive, as follows from the one-half

criterion. Then, q(π1) can be estimated as −1/4, while q(π2), as 1/4. Thus, we get the
prospect probabilities

p(π1) = 0.251, p(π2) = 0.749 .

In experiments, it was found that

pexp(π1) = 0.18, pexp(π2) = 0.82 ,

which, within the experimental accuracy, coincides with the theoretical prediction.

Example 2. One considers the prospects

π1 = {2.5, 0.33 | 0, 0.67} , π2 = {2.4, 0.34 | 0, 0.66} .

The utility factors are practically the same as in the previous example:

f(π1) = 0.503, f(π2) = 0.497 .

But now, because p2(x
′
max) = 0.34 < 0.5, the first prospect becomes more attractive, which

gives the prospect probabilities

p(π1) = 0.753, p(π2) = 0.247 .

Again, this is in agreement with the experimental values

pexp(π1) = 0.83, pexp(π2) = 0.17 ,

being in the corridor of statistical errors.
Comparing the examples 1 and 2, we see that a change in the distribution of payoff

weights, under the same payoffs, has lead to the reversal of the attraction factors and, as a
result, to the preference reversal.

Example 3. The prospects are

π1 = {4, 0.8 | 0, 0.2} , π2 = {3, 1} .

The utility factors (26) become

f(π1) = 0.516, f(π2) = 0.484 .

As far as p2(x
′
max) = 1 > 0.5, the second prospect is more attractive. Then, we have the

prospect probabilities
p(π1) = 0.266, p(π2) = 0.734 ,

which agree well with the empirical results

pexp(π1) = 0.2, pexp(π2) = 0.8 .

Example 4. The prospects

π1 = {4, 0.2 | 0, 0.8} , π2 = {3, 0.25 | 0, 0.75}
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have the same payoffs and the same utility factors

f(π1) = 0.516, f(π2) = 0.484 ,

as in the previous case. But now p2(x
′
max) = 0.25 < 0.5. Hence the first prospect is more

attractive. This gives the prospect probabilities

p(π1) = 0.766, p(π2) = 0.234 ,

with the reverse preference, as compared to Example 3. The experimental results

pexp(π1) = 0.65, pexp(π2) = 0.35

are in agreement with the theoretical prediction.

Example 5. For the prospects

π1 = {6, 0.45 | 0, 0.55} , π2 = {3, 0.9 | 0, 0.1} ,

the utility factors are equal,

f(π1) = 0.5, f(π2) = 0.5 .

Owing to p2(x
′
max) = 0.9 > 0.5, the second prospect is more attractive. Then

p(π1) = 0.25, p(π2) = 0.75 .

The experimental results

pexp(π1) = 0.14, pexp(π2) = 0.86 ,

within the statistical errors of 12%, agree with the theoretical prediction.

Example 6. The prospects

π1 = {6, 0.001 | 0, 0.999} , π2 = {3, 0.002 | 0, 0.998}

lead to the same utility factors

f(π1) = 0.5, f(π2) = 0.5 ,

as in the previous example. However, now p2(x
′
max) = 0.002 < 0.5 together with x′

max <
xmax, which makes the second prospect less attractive. As a result, the prospect preference
reverses, as compared to Example 5, with the prospect probabilities

p(π1) = 0.75, p(π2) = 0.25 .

The experimental data
pexp(π1) = 0.73, pexp(π2) = 0.27

practically coincide with the theoretical prediction, again demonstrating the preference re-
versal.
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In the above examples, we have considered prospects that are characterized by different
gains. The treatment of prospects, involving losses, is a separate problem. Strictly speaking,
in real life, in order to lose something, it is in general the case that one possesses a wealth
no less than the loss. However, there are also examples of negative wealth, associated with
debts that are larger than present equity. For a firm, this leads in general to bankruptcy.
Rationally, agents should also default on their debts, if they can, a situation that often
but not always occurs, as for instance exemplified by the many cases of negative equity of
homeowners in the USA (Bhutta et al., 2010) and Great Britain (Hellebrandt et al. 2009)
following the real estate price collapse and financial crisis1. Thus, in general, we should
expect that the prospect probabilities depend on the initial richness of decision makers. But
in the laboratory experiments, one usually considers artificial situations, with imaginary or
unrealistic small losses, when the starting assets are not important. The real and imaginary
losses are rather different things and are to be treated differently. However these delicate
problems are out of the scope of the present paper.

Our aim has been to demonstrate the fact that, under the same utility, by appropriately
arranging the payoff weights, it is possible to realize the reversal of the attraction factors
and, as a result, the reversal of decision preferences.

6 Manipulation by varying available information

The standard setup of studying decision making in the laboratory is when decision makers are
assumed to give responses without consulting each other and without looking for additional
information. However, in a number of experimental studies, it has been found that decisions
can essentially change when the agents are allowed to consult with each other, increasing by
this their mutual information (Charness and Rabin 2002; Blinder and Morgan 2005; Cooper
and Kagel 2005; Charness et al. 2007a,b; Chen and Li 2009; Charness et al. 2010), or when
they can get additional information learning from their own experience (Kühberger et al.
2001).

When the objective parts of the prospect probabilities are assumed to remain invariant,
the influence on decision making of the obtained information can be realized by varying the
attraction factors. Therefore, we have to understand how the latter vary with respect to the
change of information available to decision makers.

Let us denote by µ the measure of information available to a decision maker. This measure
can be defined according to one of the known ways of measuring information (Arndt 2004).
Decision making depends on the amount of this information and varies with the variation of
the latter (Dong et al. 2008).

Generalizing the consideration of Sec. 2, we take into account that the society state,
represented by the statistical operator ρ̂(µ), depends on the available information µ. The
prospect probabilities of an α - agent take the form

p(παj , µ) = TrHρ̂(µ)P̂ (παj) , (43)

1The Wall Street Journal reported on 24 Nov. 2009 that 10.7 U.S. million households, or 23% of home-
owners with mortgage, had negative equity, according to the First American Home CoreLogic, a real-estate
information company based in Santa Ana, California (http://s.wsj.net/public/resources/documents/
info-NEGATIVE_EQUITY_0911.html)
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where all notations are the same as in Sec. 2.
The variation of the society state with information can be described by the information

evolution operator Û(µ), so that

ρ̂(µ) = Û(µ)ρ̂Û+(µ) , (44)

where
ρ̂(0) = ρ̂ . (45)

As before, the society state is normalized, such that

TrHρ̂(µ) = 1 . (46)

The initial condition (43) yields

Û(0) = 1̂H , (47)

with 1̂H being the unity operator on space (2). And the normalization condition (44) requires
that the evolution operator be a unitary operator:

Û+(µ)Û(µ) = 1̂H . (48)

These properties make it possible to represent the evolution operator as

Û(µ) = e−iĤµ , (49)

where Ĥ, acting on space (2), is called the evolution generator.
The general form of the evolution generator can be written as the sum of the terms acting

on each of the decision makers in the society and the term characterizing the decision makers
interactions:

Ĥ =
N
⊕

α=1

Ĥα + Ĥint , (50)

where Ĥα acts on space (1) and Ĥint, on space (2).
The agents of the society are considered as separate individuals who, though interacting

with each other, do not loose their personal identities and are able to take individual deci-
sions. In mathematical language, this means that agents are quasi-isolated (Yukalov 2012;
Yukalov and Sornette, 2012). The mathematical formulation of the quasi-isolation state
reads as the commutation condition

[

Ĥα

⊗

1̂H , Ĥint

]

= 0 . (51)

Similarly to Sec. 3, assuming that all agents are confronted with the same prospect
lattice, we introduce the notion of a typical agent, whose decisions are described by the
average prospect probabilities

p(πj , µ) =
1

N

N
∑

α=1

p(παj , µ) . (52)
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The property of quasi-isolation (49) makes it possible to show (Yukalov and Sornette 2012)
that the prospect probabilities (50) acquire the form

p(πj , µ) = f(πj) + q(πj , µ) , (53)

similar to Eq. (22). Here, the first term is the utility factor that is the same as in Eqs. (23)
and (26). The second term is the attraction factor that can be represented as

q(πj, µ) = q(πj)D(µ) , (54)

where
q(πj) = q(πj , 0) (55)

is the attraction factor at the initial state, when no additional information has yet been
consumed, and D(µ) is a decoherence factor. The name of the latter comes from the fact
that, technically, the attraction factor appears under the interference of composite prospects
(Yukalov and Sornette 2011). Decoherence implies that the interference effects fade away,
so that the prospect probabilities tend to their classical values defined by the utility factors.
In other words, this means (Yukalov and Sornette 2012) that

lim
µ→∞

p(πj , µ) = f(πj) . (56)

Treating the agent interactions as a scattering process over random scatterers with the width
µc in the Lorentzian distribution (Yukalov and Sornette 2012), we have

D(µ) = exp

(

−
µ

µc

)

. (57)

The meaning of µc is the amount of information required for the exponential reduction of
the attraction factors.

The dependence of the attraction factors on the available information suggests that it is
admissible to vary these factors by regulating the amount of information. Respectively, by
varying the attraction factors, it is possible to manipulate decisions. For instance, suppose
that, at µ = 0, the prospect π1 is preferred to π2. By providing additional information, one
can reduce the attraction factors according to Eq. (55), as a result of which the preference
can be reversed, with the prospect π2 becoming preferable to π1.

In a series of experimental studies, it has been found that decisions essentially change,
when the agents are allowed to consult with each other, increasing by this their mutual
information (Charness and Rabin 2002; Blinder and Morgan 2005; Cooper and Kagel 2005;
Charness et al. 2007a,b; Chen and Li 2009; Charness et al. 2010), or when they can get
additional information learning from their own experience (Kühberger et al. 2001).

Note that it is possible to provide correct information as well as incorrect one, confusing
decision makers and forcing them to accept the desired decision. The effect, similar to
providing negative information, can be achieved if decision makers are asked to deliberate
concentrating of the uncertainty contained in the considered prospects (Waroquier et al.
2010).
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7 Conclusion

We have studied how the choice of decision makers can be manipulated under the presence of
risk and uncertainty. Our analysis is based on the Quantum Decision Theory that has been
previously developed for individual decision makers. We have suggested a generalization of
the theory to the case of decision makers that are members of a society. The social decision
makers interact with each other by exchanging information. The notion of a typical decision
maker, representing the average society behavior, has been introduced and characterized.

Under the given utility of prospects, the typical behavior of agents can be manipulated.
The manipulation of decision making is realized by influencing the attraction factor of de-
cision makers. This can be done in two ways. One method is to arrange the payoff weights
so as to induce the required changes of values of the attraction factors. The variation of the
payoff weights can invert the attraction factor values and reverse the decision preferences.
The second method of manipulation is by providing information to decision makers or by
allowing consultations between the agents of the society. The attraction factors can be either
decreased, when decision makers obtain correct information, or increased, if the delivered
information is wrong. The variation of the attraction factors, induced by positive or negative
information, can lead to the reversal of preferences. The methods of manipulating decision
making are illustrated by several experiments.

The possibility of manipulating decision makers is, of course, not a novelty. What is prin-
cipally new in the present paper is the mathematical description of the process allowing for
quantitative predictions. By treating several concrete decision problems, we have illustrated
that our theory yields theoretical predictions that, within experimental accuracy, coincide
with empirical results.
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