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1 Introduction

This paper introduces a kernel operator that (1) transforms probability domains, and (2)

generates sample paths for confidence representation initiated by convex random source sets

of priors induced by ambiguity. It also provides several applications of the results. The oper-

ator is motivated by compensating probability factors generated by deviations of a subjective

probability measure from an equivalent martingale measure. See Harrison and Kreps (1979)

and Sundaram (1997) for equivalent martingale measures, and (Fellner, 1961, pg. 672) for

compensating probabilities. The magnitude of deviations are controlled by the curvature

of probability weighting functions. See Wu and Gonzalez (1996); Gonzalez and Wu (1999).

Our behavioural theory extends Tversky and Wakker (1995) who characterized the shape of

probability weighting functions as being dispositive of the impact of an event. For example,

they considered the steepness of a classic inverse S-shaped probability weighting function

(PWF) near its endpoints. And introduced the concept of bounded subadditivity to explain

the phenomenon of an impact event in which a subject transforms impossibility into possibil-

ity, and possibility into certainty, in regions near the extremes of the PWF. That event makes

a possibility more or less likely in the ”middle” portion of the PWF. This paper introduces

an operator or kernel function (that depends on a PWF) that shows how Tversky-Wakker

subjects transforms probability domains. For instance, it shows how a subject transforms

loss probability domain into hope of gain to explain risk seeking behaviour. And how gain

probability domain is transformed into fear of loss to explain risk aversion. It extends the

literature by showing how the operator also generates sample paths for confidence. In par-

ticular, in Lemma 2.3 below, we show how loss aversion is akin to a Langevin type frictional

force that induce mean reversion in behaviour typically modeled by Ornstein-Uhlenbeck

processes.

More recent, Abdellaoui et al. (2011) introduced a model in which they treated sources of
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uncertainty as an algebra of events. In particular, they posited: ”The function wS , carrying

subjective probabilities to decision weights, is called the source function”. And they state

unequivocally that source functions ”represent deviations from rational behavior”. They

also report that a rich variety of ambiguous attitudes were found between and within person.

Almost all of those results, or a reasonable facsimile of them, are predicted by our model.

Here, the source of uncertainty is reflected by a convex random set of prior probabilities for

unknown states. Theoretically, these random source sets are comprised of elementary events.

So they are consistent with ”sources of uncertainty as algebra of events”. We address that

issue in Lemma 2.1 which establishes a nexus between algebra of events, ambiguity, and our

convex random source set of priors. In subsection 3.2 in this paper, we introduce Lemma

3.2 which shows how our confidence kernel, induced by ambiguous random set or priors,

extends ”source functions” to decision weights. Specifically, our confidence kernel is based

on the area under the ”source function” or probability weighting function/curve adjusted

for loss gain probability spread relative to an equivalent martingale measure. So it naturally

extends the source function approach to ambiguity. By contrast, extant confidence indexes

are survey driven, ie, Shiller (2000) and Manski (2004); or derived from comparatively ad hoc

computer driven principal components analysis, ie, Baker and Wurgler (2007). To the best

of our knowledge the confidence operator, and sample path representation for confidence

introduced in this paper are new1. In Corollary 2.6 we also make the case for the use

of conjugate priors as a mechanism for reducing discrepancy in the Gilboa and Schmeidler

(1989) set of priors. In the sequel we provide several applications for our theory, and conduct

a simple weak hypothesis test which upheld the source set hypothesis.

The rest of the paper proceeds as follows. In section 2 we introduce our model. In

1We also note that the approach taken in this paper is distinguished from extant models of ambi-
guity introduced by the Italian school or otherwise. See eg, Klibanoff et al. (2005) (smooth ambiguity);
Maccheroni et al. (2006) (variational model of that captures ambiguity); Cerreia-Vioglio et al. (2011) (un-
certainty averse preferences); Cerreia-Vioglio et al. (2011) (rational model of ambiguity without certainty
independence and uncertainty aversion)

4



section 3 we use a simple example to explain our theory, and provide several applications

of our theory ranging from constructing confidence preferences, simulation, programmed

trading, the role of confidence in bubbles, crashes and volatility in financial markets. We

conclude with perspectives for further research in section 4.

2 The Model

Specifically, let p∗ be a fixed point probability that separates loss and gain domains; and let

Pℓ , [0, p∗] and Pg , (p∗, 1] be loss and gain probability domains as indicated. So that the

entire domain is P = Pℓ ∪ Pg. Let w(p) be a probability weighting function (PWF), and p

be an equivalent martingale measure. The confidence index from loss to gain domain is a

real valued mapping defined by

K : Pℓ × Pg → [−1, 1] (1)

K(pℓ, pg) =

∫ pg

pℓ

[w(p)− p]dp =

∫ pg

pℓ

w(p)dp−
1

2
(p2g − p

2
ℓ), (pℓ, pg) ∈ Pℓ × Pg (2)

We note that that kernel can be transformed even further so that it is singular at the fixed

point p∗ as follows:

K̂(pℓ, pg) =
K(pℓ, pg)

pg − pℓ
=

1

pg − pℓ

∫ pg

pℓ

w(p)dp−
1

2
(pg + pℓ) (3)

The kernel accommodates any Lebesgue integrable PWF compared to any linear probability

scheme. See e.g., Prelec (1998) and Luce (2001) for axioms on PWF, and Machina (1982)

for linear probability schemes. Evidently, K̂ is an averaging operator induced by K. The

estimation characteristics of these kernels are outside the scope of this paper. The interested

reader is referred to the exposition in Stein (2010). Let T be a partially ordered index set

on probability domains, and Tℓ and Tg be subsets of T for indexed loss and indexed gain
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probabilities, respectively. So that

T = Tℓ ∪ Tg (4)

For example, for ℓ ∈ Tℓ and g ∈ Tg if ℓ = 1, . . . , m; g = 1, . . . , r the index T gives rise

to a m × r matrix operator K = [K(pℓ, pg)]. The “adjoint matrix” K∗ = [K∗(pg, pℓ)] =

−[K(pℓ, pg)]
T . So K transforms gain domain into loss domain–implying fear of loss, or risk

aversion, for prior probability pℓ. While K∗ is an Euclidean motion that transforms loss

domain into hope of gain from risk seeking for prior gain probability pg. Thus, K
∗ captures

Yaari (1987) ”reversal of the roles of probabilities and payments”, ie, the preference reversal

phenomenon in gambles first reported by Lichtenstein and Slovic (1973). Moreover, K and

K∗ are generated (in part) by prior probability beliefs consistent with Gilboa and Schmeidler

(1989). If Vg and Vℓ are gain loss domains, respectively, then: K : Vg → Vℓ and K
∗ : Vℓ → Vg.

Let f = {(x1, p1), . . . , (xn, pn)} be a lottery in which outcome x has associated probability p

of occurrence and n = m + r. By rank ordering outcomes relative to a reference point, the

probability distribution (p1, . . . , pn) is ineluctably separated by p∗. Thus, our index allows

us to produce a numerical score for a subject’s confidence transformation of loss and or gain

domains accordingly.

2.1 Stochastic confidence kernel induced by random domains

We now introduce the following:

Definition 2.1 (Stochastic kernel). Let M = Mℓ ∪Mg be a space of loss gain probability

measures; S be the σ-field of Borel subsets of M , and µ be a measure on M . The sub-σ

fields S|Mℓ
, S|Mg

are the restrictions to loss and gain domains. A stochastic kernel K is a

real [complex] valued mapping K :M ×M → Y such that for point p ∈M and a set B ∈ S

it has the properties: (i) for p fixed it is a distribution in B; and (ii) for B fixed it is a Baire

function in x.
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Remark 2.1. This definition is adapted from (Feller, 1970, pg. 221).

�

2.1.1 Random set topology for ambiguity

Like (Tversky and Wakker, 1995, pg. 1258), we assume that a state ω occurs but a subject is

uncertain about which one. For example, given a sample space or set of states of nature Ω, if

Bg ∈ S|Mg
, and B̃ℓ = {pℓ| pℓ : Ω→ Mℓ}, then K(pℓ(ω), Bg) is a stochastic kernel controlled

by the random set of priors B̃ℓ. This is functionally equivalent to Chateaunerf and Faro

(2012) fuzzy set of priors. See Zadeh (1968). Given a function f (not the lottery above) in

the domain D(K) of K, we have the random integral equation

Cpℓ(pg, ω) = Cpℓ(ω)(pg) = (Kf)(pℓ, ω) =

∫

Bg

K(pℓ, ω, y)f(y)µ(dy), pg ∈ Bg (5)

Thus Cpℓ(pg, ω) is the transformation of f ∈ D(K) into a distribution or trajectory over

Bg anchored at pℓ(ω). In keeping with Abdellaoui et al. (2011) source function theory2, we

state the following

Lemma 2.1 (Algebra of convex random set of priors).

Mℓ is an algebra of the convex random set of priors B̃ℓ such that if B̃ℓ,k, k = 1, . . . , m is a

finite cover for Mℓ, then

Mℓ =
(

m
⋃

k=1

B̃ℓ,k

)

⋂

B̃ℓ (6)

Proof. See (Gikhman and Skorokhod, 1969, pp. 41-42).

The intuition of the lemma, in which pℓ ∈ B̃ℓ ⇒ pℓ ∈ Mℓ, is as follows. Each [unobserved]

covering set B̃ℓ,k contains an elementary event of interest to our subject. In effect, the

2Fedel et al. (2011) also introduced algebras of events to characterize probabilistic reasoning. But their
context is different from Abdellaoui et al. (2011).
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covering sets are like the balls that cover Ellsberg (1961) urn. In the simplest case, if the

covering sets B̃ℓ,k were disjoint, then at most [s]he could surmise the existence of an index

k0, say, such that pℓ ∈ B̃ℓ ∩ B̃ℓ,k0. In which case, we have a [random] prior probability

pℓ0 = P{B̃ℓ ∩ B̃ℓ,k0}. However, [s]he does not know k0 so [s]he is faced with ambiguity. If

the covering sets are not disjoint, then pℓ lies in several covering sets. So we have a subset

of unknown indexes k0, k1, . . . , km for the possible covering sets in which pℓ lies. A subject

endowed with Machina and Schmeidler (1992) probabilistic sophistication may opt to use

entropy methods to discern a prior distribution.

2.2 Sample function from field of confidence

With the foregoing definition of ambiguity in mind, we proceed as follows.

Definition 2.2 (Random field of confidence and term structure).

Let (Ω,F , P ) be a probability space, M = Mℓ ∪ Mg be a space of loss gain probability

measures, and K : M × M → Y be a kernel function with range in Y . Thus we write

(P, ω) ≡ P (ω) ∈ M . Let Y be the σ field of Borel subsets of Y . Let K be F measurable

for every point (pℓ(ω), pg(ω)). For Bg ⊆ Mg, and a convex set of prior loss probabilities

B̃ℓ = {pℓ| pℓ : Ω→Mℓ}, define the confidence function, with respect to a measure π on M

C
pℓ
ℓ (pg, ω) = (Kf)(pℓ, ω) =

∫

pg∈Bg

K((pℓ, ω), pg)f(pg)π(dpg), g ∈ {1, . . . , r} (7)

For some set E ∈ Y we have Cpℓ
ℓ (pg, ω) ∈ E. For g = 1, . . . , r let µ1,...,r be a measure on Y r

such that the joint distribution on the probability measure space (Y r,Yr, µ1,...,r) is given by

P{ω;Cpℓ
ℓ (p1, ω) ∈ E, . . . , C

pℓ
ℓ (pr, ω) ∈ E} = µ1,...,r(E

r) (8)

Then (Ω,F , P ), {Cpℓ
ℓ (pg, ω)} is a random field representation of the measure µ1,...,r. Moreover,
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C
pℓ
ℓ (pg, ω), ℓ = 1, . . . , m is a ”term structure” field relative to the ”term” pg. The same

definitions hold for the kernel function K∗ = −KT , Bℓ ⊆ Mℓ, the convex set of prior gain

probabilities B̃g = {pg| pg : Ω→Mg}, and h ∈ D(K
∗) for

C∗pg
g (pℓ, ω) = (K∗h)(pg, ω) =

∫

pℓ∈Bℓ

K∗(pℓ, (pg, ω))h(pℓ)π(dpℓ), ℓ ∈ {1, . . . , m} (9)

Whereupon C
∗pg
g (pℓ, ω), g = 1, . . . , r is a ”term structure” field relative to the ”term” pℓ.

�

Remark 2.2. This definition is motivated by (Gikhman and Skorokhod, 1969, pp. 107-108).

Equations (7) and (9) are random integral equations of Volterra type of the first kind with

random initial value. See (Bharucha-Reid, 1972, pp. 135, 140, 148).

�

In Definition 2.2 above, Cpℓ
ℓ (pg, ω) is a sample function3 from the space of confidence trajec-

tories over gain probability domains–for given prior loss probability pℓ in the random source

set B̃ℓ(ω). We state the following

Theorem 2.2 (Confidence Representation). Let M be the space of probability measures; S

be the σ-field of Borel subsets of M ; π be a measure on M ; and I(ω) = [p̂(ω), p] ⊆ M be a

random interval domain induced by a random prior probability p̂(ω) attributable to ambiguity

aversion. Let (Ω,F , P ) be a probability space, and

C(p, ω) = (Kf)(p, ω) =

∫

I(ω)

K(p, y)f(y)µ(dy)

be a mean-square continuous (in p) sample function from a random field of confidence in

3Chateauneuf and Faro (2009) introduced a ”confidence function” that is different from ours.
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Hilbert space L2(M,S, π). The confidence kernel K(p, y) is defined on I(ω)× I(ω). Let

Σ(p1, p2) = E[C(p1, ω)C(p2, ω)| F ] =

∫

I(ω)

C(p1, ω)C̄(p2, ω)dP (ω) a.s. P

be the covariance function of C, where C̄ is the complex conjugate in the event C is a

complex function for inner products on L2. Let {ξn(ω)}
∞
n=1 be an orthogonal sequence of

F-measureable random variables such that E[|ξn(ω)|
2| F ] = λn where λn is an eigenvalue of

Σ(p1, p2), with corresponding eigenfunction φ(p). Then we have

C(p, ω) =

∞
∑

n=1

ξn(ω)φ(p, ω) a.s P (10)

Proof. See Appendix A.

Remark 2.3. A similar representation is given in (Bharucha-Reid, 1972, pp. 145-146). Except
there, the initial value for the integral domain is not random, and the covariance function and
eigenvalues λ′n pertain to f in the domain D(K), in the representation C(p, ω) = (Kf)(p, ω)
in which case

C(p, ω) =
∞
∑

n=1

√

λ′nψn(ω)φn(p) (11)

and f has a similar representation for some function ψn(p) ∈ D(K).

�

Figure 1 on page 11 depicts a sample function from the random field of confidence over the

random interval I(ω) = [pℓ(ω), pg]. The initial confidence level Cpℓ
ℓ (pLg ) over gain domains

starts at the lowest level for gain probability pLg moving from left to right. By contrast,

Figure 2 depicts a sample function over the random interval I(ω) = [pℓ, pg(ω]. It starts at

C
pg
g (pHℓ ) from the highest level for loss probability pHℓ moving from right to left. Notice that

the orientation of C
pg
g (pHℓ ) is equivalent to a clockwise rotation of Cpℓ

ℓ (pLg ) and a reversal of

direction–according to the confidence operation K∗ = −KT . The shaded regions overlap the
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Figure 1: Confidence Trajectory
From Loss Over Gain Domain
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Figure 2: Confidence Trajectory
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Gilboa and Schmeidler (1989) convex set of prior probabilities that determine the starting

point for each trajectory. See also, (Feller, 1970, pp. 270-271). Moreover, notice the opposing

pull or ”force” in the loss direction. This is similar to the Langevin equation for Brownian

motion of a particle with friction. It identifies loss aversion as t6he source of mean reversion

in confidence and the popularity of Ornstein-Uhlenbeck processes in modeling behaviour in

mathematical finance. See e.g. (Karatzas and Shreve, 1991, pg. 358).

Lemma 2.3 (Mean reversion in confidence). The source of mean reversion in sample paths

for confidence is mean reversion.

�

For the purpose of empirical exposition in this note, in the sequel we consider the strong

but simple case where the kernel K is deterministic, π is Lebesgue measure, and f(pg) = 1

and h(pℓ) = 1 in (7) and (9).
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2.3 Average confidence over Gilboa-Schmeilder convex priors

One immediate consequence of Theorem 2.2 is how to characterize expected confidence over

a convex random set of priors. Relying on Jensen’s Inequality, see (Feller, 1970, pp. 153-154),

we begin with the familiar setup

E[Cx(ω)(p)] = E[(Kf)(x(ω))] = E[

∫ y

x(ω)

K(x, z)f(z)dz] (12)

K(x(ω), z) =

∫ z

x(ω)

(w(p)− p)dp = [W (z)−W (x(ω))]−
1

2
[y2 − x(ω)2] (13)

Evaluation of E[K(x(ω), z] requires us to compute the following

E[W (x(ω))] ≥W [E(x(ω))] (14)

by Jensen’s Inequality for W convex in loss domain. Conversely, for W concave in gain

domain

E[W (x(ω))] ≤W [E(x(ω))] (15)

E[x(ω)2] 6=
(

E[x(ω)]
)2

(16)

Equations (14) and (15) plainly show that the ”source function” W retains its general in-

verted S-shape popularized in the literature. However, the relationship in (16) indicates that

equality between the kernel of the average, and the average of the kernel, does not hold in

general. In fact, equality holds only if x(ω) = constant. A result with probability zero in

the context of Lebesgue measure, and our hypothesis of random convex priors. This implies

Lemma 2.4. Let K(x(ω), y) be a random confidence kernel. Then

E[K(x(ω), y] 6= K(E[x(ω)], y) (17)
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�

Proposition 2.5 (Average across and within confidence levels).

Let [Cx(ω)(p)] = [(Kf)(x(ω))] be the sample function of a random field of confidence with

source x(ω). Let E[x(ω)] be the expected source. If E[Cx(ω)(p)] is average confidence path

across confidence levels, and CE[x(ω)](p) is average confidence path generated from within

Gilboa-Schmeilder source sets, then

E[Cx(ω)(p)] 6= CE[x(ω)](p) (18)

�

Proof. Apply Lemma 2.4 to (12).

Corollary 2.6 (The case for conjugate priors: Approximate average confidence).

If E[x(ω)2] is small, then E[Cx(ω)(p)] ≈ CE[x(ω)](p).

�

This implies that unless variance within and between source is small, an estimation

strategy of using the average ”source” to generate a sample function for a random field of

confidence, will not yield good approximations to the average path for that sample function.

Theoretically, this discrepancy can be reduced by the use of conjugate priors. See e.g.

(DeGroot, 1970, pg. 159).

3 Applications

In this section we provide six applications for our operator. The first, explains the con-

struction of our confidence field via a heuristic example. The second, is based on operations

that transform Von Neuman Morgenstern (VNM) utility over loss/gain probability domains
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to characterize confident preferences. See (Von Neumann and Morgenstern, 1953, pg. 617).

The third, is based on a simulation of our model to generate deterministic confidence paths

for the identity function the confidence kernel domain. Fourth, we construct a trading al-

gorithm motivated by the maxmin program implied by Gilboa and Schmeidler (1989). It

provides a confidence based explanation for trading behavior of financial professionals re-

ported in Abdellaoui et al. (2012). Fifth, we characterize the role of confidence in bubbles

and crashes in large financial markets. Sixth, we tested our source set theory by estimating

confidence betas across and within source sets derived from using CBOE VIX to split Gallup

Economic Confidence Data into source sets.

3.1 Construction of confidence field

Let eg ∈ D(K) and ǫǫǫℓ ∈ D(K∗) be the vector valued identity function in the domain of K

and K∗, respectively. In effect, eg is a r × 1 basis vector for gain domain with 1 in the g-th

location and 0 otherwise, g = 1, . . . , r. So that Ir = [e1 . . . er] is a r × r identity matrix.

Similarly, the derived basis for loss domain is defined

ǫǫǫi(ej) =















0 i 6= j

1 i = j

i = 1, . . . , m (19)

Thus we generate a dual basis for loss domains. So that I∗m = [ǫǫǫ1 . . . ǫǫǫm] is a m×m identity

matrix. For example, let zzz = [z1 . . . zr]T , where T stands for transpose, be a column vector

that represents the coordinates of a vector valued function in D(K). We write

zzz = z1e1 + . . .+ zrer (20)

= Irzzz (column notation) = zzzT Ir (row notation) (21)
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with respect to the basis in gain domain. By the same token, we expand the operator K in

vector notation to get the matrix

K = [kkk.1 . . . kkk.r] (22)

where kkk.j, j = 1, . . . , r is a m× 1 column vector such that

kkkT.j = [k1j k2j . . . kmj ] (23)

However, the i-th row of K is given by

kkki. = [ki1 ki2 . . . kir], i = 1, . . . , m (24)

which runs through r-dimentional gain domain. Thus, the operation

C
†
ℓ = KIr = [kkkT1. kkk

T
2. . . . kkk

T
m.]

T (25)

generates m-rows of 1 × r vectors. The ℓ-th row corresponds to the ”projection” of initial

loss probability pℓ over gain domain. It is a ”basis field” for that initial loss probability, since

it was generated by the identity matrix Ir in a manner consistent with the ”resolution” of a

vector in (21). A similar analysis shows that C∗†
g = K∗I∗m generates r-rows of 1×m vectors.

The g-th row corresponds to the ”projection” of initial gain probability pg over loss domain.

It is a ”basis field” for initial gain probability. In the context of the notation that follows,

the ”basis matrices” are C†
ℓ = [Cp1

T

1 . . . Cpm
T

m ]T and C∗†
g = [C∗p1T

1 . . . C∗prT

r ]T . In order to

isolate the deterministic confidence ”basis field” effect we did not randomize the matrices. For

example, for loss priors that would require a process equivalent to pℓ(ω) = pℓ + η(ω) where,
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for some variance σ2, random draws are taken according to η ∼ (0, σ2). Whereupon C†
ℓ (ω)

and C∗†
g (ω) would be random matrices containing the configurations of sample functions of

random fields of confidence generated by randomized priors. That analysis is outside the

scope of this paper. Even so, the deterministic confidence fields capture the gist of the

domain transformation(s) as indicated below. By way of illustration, consider the 2 × 3

Figure 3: Example of basis field orientation

a 

b 

c 

d 

e 

f 

Confidence 

 Index 

Indexed domain 0 

Basis field 

matrix K, where m = 2 measures for loss and r = 3 measures for gain, correspond to a

6-point [indexed] probability domain such that

K =







a b c

d e f






K∗ = −KT =













−a −d

−b −e

−c −f













(26)

Figure 3 on page 16 depicts the orientation of the confidence basis field. There, we depict

the two paths generated by K:
−→
abc and

−→
def , as being downward sloping from left to right.

These are the basis field generated over [indexed] gain domain (not shown on horizontal

axis) for two prior loss probabilities pℓ1 and pℓ2 , say. They represent risk seeking over losses.

By contrast, K∗ = −KT generates three paths:
−→
ad,
−→
be,
−→
cf . They are upward sloping from
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left to right. That orientation was obtained by reversing the direction of
−→
abc and

−→
def to

←−
abc

and
←−
def , and then rotating clockwise. These are the basis fields generated for three prior

gain probabilities pg1, pg2, pg3, say. They represent ”preference reversal” from risk seeking.

Vizly, risk aversion over gain domain.

3.2 Confidence preferences

In what follows we introduce a functional representation for confidence induced preferences.

Suppose that P and Q are probability measures that belong the the space M of probability

measures such that the confidence operator K(P,Q) is meaningful on M × M . That is,

K is defined on subsets MP and MQ of M . Let µ be a decomposable measure on M , and

V (P ) be an abstract utility function defined on P . Classic VNM utility posits that if P is a

probability measure over a suitable space X , then

U(P ) =

∫

x∈X

u(x)dP (x) (27)

However, in the context of our theory

V P (Q) = (KU)(P ) =

∫

MQ

K(P,Q)U(Q)µ(dQ) (28)

=

∫

MQ

K(P,Q)

(
∫

x∈X

u(x)dQ(x)

)

µ(dQ) (29)

The nature of the product measure for P × Q ∈ M × M and Fubini’s Theorem, see

(Gikhman and Skorokhod, 1969, pg. 97), allows us to write the foregoing as

V P (Q) =

∫

MQ

∫

x∈X

K(P,Q(x))u(x)Q(dx)µ(dQ) (30)
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Thus V P (Q) is the confidence adjusted VNM utility function. Our theory suggests that if P

is in loss probability domain, and Q is in gain probability domain, then our subject is risk

seeking over losses in hope of gain. Thus, µ = µ+ is the hope of gain measure. In which

case, the confidence adjusted VNM utility function V P (Q) is convex for given P . And we

should rewrite (30) as:

V P (Q) =

∫

MQ

∫

x∈X

K∗(P,Q(x))u(x)Q(dx)µ+(dQ) (31)

Recall that K∗ is the adjoint of K so it induces the measure µ = µ−. So by the same token,

we can write

V Q(P ) =

∫

MP

∫

x∈X

K(P (x), Q)u(x)P (dx)µ−(dP ) (32)

According to our theory, because Q corresponds to gain probability, our subject is risk

averse for given Q in fear of loss. Thus, the induced fear of loss measure is µ−, and V Q(P ) is

concave for given Q. It is in effect an affine transformation of VNM. Equation 31 and (32)

suggest that µ has a classic Hahn decomposition consistent with a Radon measure on M .

See (Gikhman and Skorokhod, 1969, pg. 47) and (Edwards, 1965, pg. 178). In which case

we just proved the following

Proposition 3.1 (Confidence induced decomposition of measures). The confidence opera-

tions K and K∗ induce a decomposable measure on probability domain M .

�

The confidence operations above transform VNM utility into (Tversky and Kahneman,

1992, pg. 303) value functions, and operationalize Yaari (1987) duality theory. In fact,

following Tversky and Kahneman, let f = (xi, Ai), i = 1, . . . , n be a prospect over disjoint

events Ai with probability distribution characterized by p(Ai) = pi. So (xi, pi) is a simple

lottery. (Tversky and Kahneman, 1992, pg. 301) proposed the following scheme for decision
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weights (πi) derived from operations on a probability weighting function w decomposed over

gains w+ and losses w−. Rank xi in increasing order so that it is dichotomized by a reference

value. Positive outcomes are associated with +, and negative outcomes by −. Neutral

outcomes by 0. So that for a given value function v over X we have

π+
n = w+(pn), π−

−m = w−(p−m) (33)

π+
i = w+

( n
∑

s=i

ps

)

− w+

( n
∑

s=i+1

ps

)

, 0 ≤ i ≤ n− 1 (34)

π−
i = w−

( i
∑

r=−m

pr

)

− w−

( i−1
∑

r=−m

pr

)

, −(m− 1) ≤ i ≤ 0 (35)

V (f+) =
n
∑

i=0

π+
i v(xi) (36)

V (f−) =

0
∑

i=−m

π−
i v(xi) (37)

In the context of our model, let Π− and Π+ be the decision weights distribution for negative

and positive outcomes, respectively. We claim that there exists some kernel K̃(Π−,Π+) such

that, assuming X is continuous, and using notation analogous to that for VNM utility

V Π−

(Π+) = V (f+) = (K̃v)(f+) =

∫

x∈X

K̃(Π−,Π+(x))v(x)Π+(dx) (38)

V Π+

(Π−) = V (f−) = (K̃v)(f−) =

∫

x∈X

K̃(Π−(x),Π+)v(x)Π−(dx) (39)

We summarize the above in the form of a

Lemma 3.2 (Confident decision operations).

Let f = (X,A) be a prospect with outcome space X and discrete partition A, and P be a prob-

ability distribution over X. Let v : X → R be a real valued value function defined on X. Let

Π− and Π+ be the distribution of decision weights over negative and positive outcomes, re-

spectively, obtained by Tversky and Kahneman (1992) decision weighting operations. There
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exists a confident decision operator K̃ defined on Π− × Π+ such that the value functional

over f is given by

V (f) = (K̃v)(f) (40)

�

Remark 3.1. We note that Chateauneuf and Faro (2009) introduced a functional represen-

tation for confidence based on utility over acts–controlled by a confidence function defined

on a level set of priors. Our functional is distinguished because it is predicated on decision

weights, and the confidence operator introduced in this paper.

3.3 Model Simulation

To test the predictions of our theory, a sample of 30-probabilities were generated by sep-

arating the unit interval [0, 1] into 29-evenly spaced subintervals. Including endpoints, we

produce n = 30 observations. Thus, the fixed point probability p∗ = 0.34 separated the

interval into m = [np∗] = 10 loss probabilities, and r = 20 gain probabilities. So we were

able to generate 20 confidence index measures for each loss probability pℓ by letting gain

probabilities pg run through gain domain. Similarly, we generated 10 confidence measures

for each gain probability pg by letting loss probabilities pℓ run through loss domain. This

procedure generated a “term structure” for a confidence field as indicated in Figure 4 for K,

and Figure 5 for K∗ on page 22.

In Figure 4 on page 22, the highest curve, Loss1, corresponds to the deterministic con-

fidence trajectory Cpℓ
ℓ=1(pg). It represents the evolution of confidence when prior loss prob-

ability pℓ=1 ∈ Bℓ is as close to zero as possible. In that case, our subject is overconfident

when faced with small probability of loss–as indicated by the positive value of the index.

As the prior probability of loss increases, confidence wanes. Thus, from Gain11 (by abuse

of notation this corresponds to the index g = 11 ∈ Tg) onwards our subject becomes under
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confident and loss averse. The lower confidence curves are based on higher initial values for

prior loss probabilities. So if our subject begins the process with less confidence [or fear],

then it carries over throughout the process. For example, at Loss10, ie, C
pℓ
ℓ=10(pg) our sub-

ject begins with little or no confidence, ie, prior loss probability is pℓ=10 ∈ Bℓ, and becomes

fearful of losing Gain4 at index g = 11. By contrast, Figure 5 on page 22 depicts the trans-

formation of loss domain into hope of gain. There, our subject is risk seeking over losses.

In fact, for prior gain probability pg=11 ∈ Bg, when faced with the possibility of Gain11, ie,

C
∗pg
g=11(pℓ), onwards, our subject is overconfident over the entire loss domain indexed by Tℓ.

So the curves in Figure 4 and Figure 5 indicate a “momentum factor” for confidence levels

predicated on the convex set of prior probabilities Bℓ and Bg. That is, for transformation

matrix K, higher confidence induced by small prior probability of loss in Bℓ serves as a con-

fidence builder. This carries over deeper in gain domains before risk aversion kicks in and

subjects become under confident and fearful. By the same token, for transformation matrix

K∗ we have overconfidence and hope induced by relatively small probability of gain in Bg.

Therefore, the distribution of prior loss [gain] probabilities is a predictor of the evolution of

confidence paths.

3.4 A confidence based program trading algorithm

In Figure 6 the convex region of feasible trades is enclosed by the dark red pseudo demand

and supply lines and the x-axis. There, in the spirit of Gilboa and Schmeidler (1989) we can

apply eight minimax, maximin, minimin, maximax criteria over the curves whose indexes’

coincide with that of their respective generating prior(s). For example, for pseudo-demand
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Figure 4: Confidence Motivated
Psuedo Demand

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Term Structure of Confidence: Loss to Gain Domains

Loss1

Loss2

Loss3

Loss4

Loss5

Loss6

Loss7

Loss8

Loss9

Loss10

Figure 5: Confidence Motivated
Psuedo Supply
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Figure 6: Confidence Motivated
Psuedo Supply and Demand Equilib-
ria
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(d), and pseudo supply (s), we have

C
minimax, d
ℓ = min

ℓ
max

g
C

pℓ
ℓ (pg) (41)

C
maximin, d
ℓ = max

ℓ
min
g
C

pℓ
ℓ (pg) (42)

C
minimin, d
ℓ = min

ℓ
min
g
C

pℓ
ℓ (pg) (43)

C
maximax, d
ℓ = max

ℓ
max

g
C

pℓ
ℓ (pg) (44)

Cminimax, s
g = min

g
max

ℓ
C∗pg

g (pℓ) (45)

Cmaximin, s
g = max

g
min
ℓ
C∗pg

g (pℓ) (46)

Cminimin, s
g = min

g
min
ℓ
C∗pg

g (pℓ) (47)

Cmaximax, s
g = max

g
max

ℓ
C∗pg

g (pℓ) (48)

The intersection of these curves represent the feasible trading points. See e.g., the nodes in

Figure 3 on page 16. For example a simple coherent program reads:

A CONFIDENCE BASED TRADE ALGORITHM

IF

{

(Cminimax, d
ℓ = Cminimax, s

g ) or (Cmaximin, d
ℓ = Cmaximin, s

g ) or

(Cminimin, d
ℓ = Cminimin, s

g ) or (Cmaximax, d
ℓ = Cmaximax, s

g )
}

THEN
{

Confidence coherent and market equilibrium
}

BEGIN
{

Do not trade
}

END
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ELSE
{

Confidence incoherent
}

BEGIN

IF
{

no feasible trade
}

THEN
{

stop
}

ELSE
{

implement arbitrage strategy
}

BEGIN

Let decompose source set S :=
⋃N

i=1Ai

Let feasible arbitrage bound := η, and Ci ∈ Ai

Let χA be an indicator, select C̄ = 1
N

∑N

i=1CiχAi
(Ci)

IF |CiχAi
(Ci)− C̄| > η

THEN
{

trade accordingly
}

END

END

Of necessity, there are
(

4
1

)

×
(

4
1

)

= 16 possibilities to consider. Assuming that each of

the 4 confidence coherent trades are feasible multiple equilibria, the other 12-possibilities

suggest the existence or either arbitrage trading or no trade possibilities. (Hill, 2010, pg. 28)

also presents a confidence based model different from ours in which an investor employs a

program based on probability judgments. We note that even though our program implies the

existence of incomplete markets, our ”confidence coherence” approach is distinguished from

Artzner et al. (1999) whose interest lie in coherent measures of risk. See also, Fedel et al.

(2011).

Our model also has implications for asset pricing because it explains the trajectory and

sensitivity of momentum strategies relative to prior probabilities, i.e. starting dates. For

instance, Moskowitz et al. (2012) conducted a study in which they describe a purported

”time series momentum” asset pricing anomaly as follows:
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[W]e find that the correlations of time series momentum strategies across asset
classes are larger than the correlation of the asset classes themselves. This sug-
gests a stronger common component to time series momentum across different
assets than is present among the asset themselves. Such a correlation structure
is not addressed by existing behavioral models.

Undeniably, Proposition 2.5 provides a ”behavioral model[]” explanation for the seeming

asset pricing anomaly. The ”across asset class correlation” is our E[Cx(ω)(p)]. It is tanta-

mount to averaging across asset classes. By comparison, the ”within asset class correlation”

is our CE[x(ω)](p). In effect, Moskowitz et al. (2012) trading strategy is sensitive to ”source

sets”. In the context of our model, their set of asset classes is a ”source set” in which each

class is accompanied by a different prior. Consequently, the within and across average is

different. In fact, Maymin et al. (2011) conducted a study, and Monte Carlo experiments

which plainly show that Moskowitz et al. (2012) momentum strategy is sensitive to start

date, i.ee. priors.

3.5 Market Sentiment: hope, fear, bubbles, and crashes

If we think of our subjects as players in financial markets, then one admissible interpretation

of Figure 6, is that when confidence levels are high, investors are not very risk averse. So they

are on higher downward sloping [pseudo demand] confidence paths, i.e. demand for credit

is high. 4. Suppliers of credit for this veritable “irrational exuberance” are unable to satisfy

demand on their current [pseudo supply] confidence path. So there is a structural shift to

the left onto higher [pseudo supply] confidence curve, i.e. interest rates go up in response to

increased demand for credit. It should be noted that the lowest level demand side confidence

curves do not intersect with any upward sloping curves. That scenario represents credit

rationing–investors whose confidence level is so low, and risk aversion is so high, that they

opt out of the credit market because their demands are be met. Cf. Stiglitz and Weiss

4The analysis that follow is distinguished from Rigotti et al. (2008).
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(1981). When there is a decrease in confidence, the confidence curves shift to the right. The

foregoing scenario is reflected in Figure 7 which depicts Gallup Monthly Confidence Index

data obtained from surveys for the period 2000-2007. That index is computed from the

formula5:

GDECIndex =

1

2
×

(

%Survey economic condition rated
[

(Excellent + Good
)

− Poor)
]

+%Survey economic condition rated
(

GettingBetter −GettingWorse
)

)

(49)

The index has a theoretical range [−100, 100]. There, positive numbers represent over

confidence and negative numbers under confidence. The slope of the confidence trajectory

over varying time ranges depict a term structure for confidence. In our model, the time index

is replaced by indexed loss/gain probabilities. So we have a term structure for our confidence

field. See Goldstein (2000). Perhaps most important, Gallup’s index in (49) contain the

component parts of Tversky and Wakker (1995) impact event which turns possibility into

certainty; impossibility into possibility; versus a possibility more or less likely. Specifically,

”Excellent + Good” implies ”Certainty”; ”Poor” implies ”Impossibility”; ”Getting Better”

and ”Getting Worse” are ”possibility more or less likely” events. In effect, the GDECI is

based on a subjective probability measure based on bounded subadditivity.

In practice, the scenario above takes place in a stochastic environment depicted by

Figure 7. To see this analytically, letM be the space of all probability measures; Ω be a

sample space; S and F the σ-field of Borel measureable subsets of Mand Ω, resp. and π

be a Levy-Prokhorov metric. See (Dudley, 2002, pg. 394). So that (M ×M,S × S, π) is

5See http://www.gallup.com/poll/123323/Understanding-Gallup-Economic-Measures.aspx. Last vitited
4/29/2012.
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a Levy-Prokhorov measure space. The Levy-Prokhorov metric is a measure of the distance

between two probability measures6. So it captures impact events of the type in (49). On

some ambient space, assume that prior loss probabilities are randomized on some convex set

B ∈ S, from loss to gain domains (and vice versa for gain to loss domain). This assumption

is consistent with a subject’s response to ambiguity aversion in the sense of Ellsberg (1961),

and the proposed maximin program in Gilboa and Schmeidler (1989). Thus, we modify

Definition 2.2 to account for a generalized sample function from the Markov random field

of confidence, see Kinderman and Snell (1980) generated by prior beliefs. To that end, we

have pg ∈ Bg, and in particular pℓ(ω) ≡ (pℓ, ω) ∈ B̃ℓ × Ω. By abuse of notation, the sample

function Cpℓ
ℓ (pg, ω) ≡ C

pℓ(ω)
ℓ (pg) over gain probability domain is, in its most general form

C
pℓ
ℓ (pg, ω) =

∫ pg∈B

pℓ(ω)

K(pℓ(ω), pg ∈ Bg)µ(dpg)

=

∫ pg∈B

pℓ(ω)

w(p)π(dp)− δ{π(pℓ(ω), pg)| (pℓ(ω), pg) ∈ B̃ℓ × Bg}, B̃ℓ × Bg ∈ S2

(50)

where µ is a measure on gain [loss] probability domain, δ{π(pℓ(ω), pg)| B̃ℓ × Bg} is some

function of the Levy-Prokhorov metric for loss-gain measures on B̃ℓ×Bg. A similar relation

holds for sample functions C
∗pg
g (pℓ, ω) of random fields from gain to loss domains. The

measureable Tversky and Wakker (1995) impact events in loss and gain domains are:

Aℓ = {ω| ω ∈ p
−1
ℓ (B̃ℓ) ⊆ Ω} ∈ F (51)

Ag = {ω| ω ∈ p
−1
g (B̃g) ⊆ Ω} ∈ F (52)

Consider an “animal spirit” ω ∈ Ω in a large market of size N = m + r with aggregate

pseudo demand DN,ℓ(K(ω)) and aggregate pseudo supply SN,g(K
∗(ω)) to be defined below.

According to our model, the elementary Tversky-Wakker event ω ∈ Aℓ ∩ Ag is perceived

6A recent paper by Hill (2010) introduced a metric on probability spaces to characterize probability
judgments. We leave the implementation of that for another day.
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differently in loss and gain domains. If pjℓ(ω) is the random prior loss probability for the j-th

subject, and pkg(ω) the random prior gain probability for the k-th [adjoint] subject, then we

have

DN,ℓ(K(ω)) =
m
∑

j=1

C
p
j
ℓ

ℓ (pjg, ω) ∼ OD
p (a(m)). ω ∈ Aℓ (53)

SN,g(K
∗(ω)) =

r
∑

k=1

C
∗pkg
g (pkℓ , ω) ∼ OS

p (b(r)), ω ∈ Ag (54)

where OD
p (a(m)), OS

p (b(r)) are probabilistic growth rates, for [slow varying] functions a(m)

and b(r); pi(·) is i-th personal probability. If DN,ℓ(K(ω)) = SN,g(K
∗(ω)) in equilibrium, but

OD
p (a(m)) ≫ OS

p (b(r)) , then aggregate demand is growing much faster than supply. So we

have an eventual bubble. We summarize this in the following

Proposition 3.3 (Almost sure bubbles and crashes). Assume that confidence levels are

ergodic. So that according to Birkhoff-Khinchin ergodic theorem there exist a limiting confi-

dence trajectory Ĉ. Let DN,ℓ(K(ω)) and SN,g(K
∗(ω)) be aggregate demand and supply for an

elementary Tversky-Wakker impact event ω. Then the probability that there will be bubbles

and crashes induced by confidence levels in excess of that consistent with market equilibrium,

for some η > 0, is given by

P{lim sup
N

|DN,ℓ(K(ω))− SN,g(K
∗(ω))| > η} = 1 a.s (55)

�

Proof. See Appendix B.

Given sufficient time, another elementary Tversky-Waker elementary event or “animal

spirit” ω0 ∈ Ω causes confidence to wane. So the [asymmetric] growth rates are reversed–

demand growth is much lower than supply–and the market crashes to where OD
p (a(m)) ≪
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OS
p (b(r)). The fluctuations of positive and negative growth rates, suggest that our relatively

simple model is able to capture stylized facts about bubbles and crashes. Thus, confidence

growth should be a policy control variable. In fact, consistent with our theory, the steep

downward slope of the confidence trajectory which began in early 2007 in Figure 7 predicted

the Great Recession which began around mid-2007.

3.6 Confidence source sets and VIX induced confidence beta

In this subsection we conduct a weak test of the source set hypothesis by using pseudo techni-

cal analysis of two popular time series for confidence: the Gallup Daily Economic Confidence

Index (GDECI) and the Chicago Board of Exchange (CBOE) VIX daily series. There is solid

theoretical and empirical reasons for the selection of these series evidence by Fox et al. (1996)

(option traders exhibit bounded subadditivity) and Lemmon and Portniaguina (2006) (con-

sumer confidence forecast small stocks but not variations in time series momentum). The

GEDCI is computed from survey response as indicated by the formula in (49) which sounds

like Tversky and Wakker (1995) impact event. VIX is computed from implied volatility for

a sample of option prices, and it measures the market’s expectation of near term volatility

or uncertainty. See e.g. Chicago Board of Exchange (2009) for details on formula. Gallup

did not report daily confidence index measures before 20087. So our comparison with CBOE

VIX daily series is limited to the post 2008 period between 2008:1:12–2012:03:28

Figure 8 on page 30 depicts the VIX daily close with basis field orientation for confidence

paths. Undeniably, those paths mimic the predictions of our theory. We conducted an eyeball

test by cross plotting GDECI vs. VIX and roughly identified two confidence regimes in the

data. See Figure 9. We attribute those to Source Sets A and B which we extrapolated and

plotted in Figure 10 and Figure 11. Source Set A represents the period between 20008:03:13–

2009:09:17 which lies in the core of the global financial crisis, and Great Recession, in capital

7Private communication from Zach Bikus.

29



Figure 8: CBOE VIX Daily–Market
Uncertainty
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Figure 9: Gallup Daily Economic
Confidence Index vs. VIX: Source
Set (A ∪B)
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Figure 10: Gallup Daily Economic
Confidence Index vs. VIX: Source
Set A

y = -0.2225x - 44.101

R² = 0.0899

-70

-60

-50

-40

-30

-20

-10

0

0 10 20 30 40 50 60 70 80 90

C
o

n
fi

d
e

n
ce

 in
d

e
x

VIX

Source Set A: GDECI vs. VIX

Figure 11: Gallup Daily Economic
Confidence Index vs. VIX: Source
Set B
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markets. A period of great uncertainty or ambiguity in the context of our model. Source

Set B represents the period 2009:09:18–2012:03:28. Evidently, agents in the economy were

relatively less uncertain even though there was still ambiguity. We stated and tested the

null hypothesis implied by Proposition 2.5 as follows:

HYPOTHESIS

H0H0H0 : E[C
x(ω)(y)| x(ω) ∈ Source Set(A ∪ B)]

= CE(x(ω)(y)| x(ω) ∈ {Source Set(A) ∪ Source Set(B)}

(56)

HaHaHa : H0H0H0 not true (57)

Here, x(ω) is a random ”source” (in our case an unobserved prior probability induced by

ambiguity) in the sets indicated for projection of confidence over y. We ran a simple linear

regression of VIX on GEDCI (denoted as CONF) as a proxy for the average confidence

path across Source Set (A ∪ B). In effect VIX is an instrumental variable for y. A similar

regression was run within Source Set A and Source Set B8. To wit, CONF (source)(V IX) is

8These erstwhile ”source functions” are different from that in Abdellaoui et al. (2011). The latter is based
on representation of probability weighting functions.
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our instrument or measure for Cx(ω)(y). The results are reported as follows:

CONFA∪B = −23.7920
(0.9203)

− 0.4946
(0.0324)

VIXA∪B, R2 = 0.1903, SSE = 142505.2, nA∪B = 1069

(58)

CONFA = −44.1011
(1.3104)

− 0.2225
(0.0386)

VIXA, R2 = 0.0899, SSE = 43588.95, nA = 383

(59)

CONFB = −22.5088
(0.3020)

− 0.2594
(0.7212)

VIXB, R2 = 0.0974, SSE = 17307.76, nB = 686

(60)

The equations show that even though confidence beta and R2 for Source Set A and Source

Set B appear similar 9, Source Set A appears dissimilar to Source Set (A∪B). For example,

approximately 9% of the variability in confidence levels is explained by VIX within each

of source sets A and B, according to (59) and (60). By contrast, 20% of the variability in

confidence is explained by VIX across source sets (A ∪ B) in (58). Source Set A represents

a period of comparative uncertainty or ambiguity evidenced by its relatively large intercept

term αA = −44.1011 and higher dispersion SSE. Thus, reflecting a comparatively high prior

probability of loss xA = pAℓ ≫ xB = pBℓ and diffusion of confidence–consistent with response

to the financial crisis in 2008 reflected in Source Set A data for 20008:03:13–2009:09:17, and

the market crash predictions of Proposition 3.3. In order to test H0 in (56) we employ the

Chow-Test, see Chow (1960), explained in (Kmenta, 1986, pg. 421), whose statistic is given

by
(SSEA∪B−SSEA−SSEB)

K

(SSEA+SSEB)
nA+nB−2K

∼ FK, nA+nB−2K (61)

9There is a subset of Source Set B, vizly the period 2008:1:2–2008:03:12, which generated the confidence
beta pricing equation

CONFsubsetB = −16.278
(7.3474)

− 0.7011
(0.2835)

VIXsubsetB , R2 = 0.1152, n = 49, F = 6.1173, SSE = 849.1184

That may explain the discrepancy between (60) and (59).
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There, K = 2 is the number of parameters in each equation. The computed statistic is

F = 434.8265 with (2, 1065) degrees of freedom. Thus p ≪ 0.01 and we reject H0 on the

grounds that the ”sources” or priors in Source Set A and Source Set B are not drawn from

the same distribution.

Another useful exercise is comparison of relative confidence betas:

βA

βB
= 0.86

βA

βA∪B
= 0.45

βB

βA∪B
= 0.52 (62)

Roughly, the relative confidence beta (0.86) for Source Set A and Source Set B is larger

than the relative beta for each source set across Source Set A ∪ B. The relative betas are

an implicit comparison of the growth in confidence. Thus, subjects in Source Set A started

with a much higher prior loss probability implied by CONFA(V IX) in (59). Consequently,

they were comparatively less risk seeking than subjects in Source Set B which supports a

steeper slope βB. Recall that the vertical intercept in the basis field example illustrated in

Figure 3 on page 16, as well as Figure 4 on page 22, correspond to initial value for prior loss

probability pℓ. By the same token, slope comparison show there is more risk seeking in the

market reflected by βA∪B supported by Source Set A ∪ B, compared to βA, βB in Source

Sets A and B. Even though subjects in Source Set B started with a prior loss probability

close to the market as evidenced by the intercept terms in (60) and (58). Whether these

relative confidence betas could explain so called beta arbitrage in asset pricing theory is left

to be seen. See e.g. Frazzini and Pedersen (2010).

4 Conclusion

We introduced a confidence kernel operator which establish a nexus between the multiple

prior, and source function paradigms in decision theory. Further, the operator generates
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a field of confidence paths that mimic popular confidence indexes. So our model extends

the solution space for confidence to integral equations and operator theory. Preliminary re-

search in progress suggests that heteroskedasticity correction models for volatility clustering

in econometrics mimic inverse confidence operations. So the confidence kernel operator may

provide a “new” mechanism for heteroskedasticity correction by virtue of its data trans-

forming mechanism. Cf. (Kmenta, 1986, pg. 280). Thus, we are able to answer questions

like what preference functions in the domain of confidence kernels generate an observed

confidence path. Additional research questions include but is not limited to whether our

model can explain ”butterfly effects” in confidence arising from small perturbation of prior

probabilities.

A Proof of Theorem 2.2

This proof extends (Gikhman and Skorokhod, 1969, Thm. 2, pg. 189) to account for the

probabilistic nature of the random domain I(ω) ⊆ M . Let λn and φn(p) be the n-th eigen-

value and corresponding eigenfunction of Σ(p1, p2). By definition Σ(·) is positive definite.

Without loss of generality let π(dp) be Lebesgue measure on M . According to Mercer’s

Theorem, see (Reisz and Sz.-Nagy, 1956, pg. 245) and (Loève, 1978, pg. 144) we can write

Σ(p1, p2) =

∞
∑

n=1

λnφn(p1)φ̄n(p2), λn > 0 ∀n (63)

λnφn(p1) = E
[

∫

I(ω)

Σ(p1, y)φn(y)dy
∣

∣

∣
F
]

, E
[

∫

I(ω)

φm(p)φ̄n(p)dp
∣

∣

∣
F
]

= δm,n (64)
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where I(ω) is the random domain of definition for φn, and δm,n is Kronecker’s delta. Define

ξn(ω) =

∫

I(ω)

C(p, ω)φ̄n(p)dp (65)

E[ξn(ω)ξ̄m(ω)] = E[ξn(ω)ξ̄m(ω)]| F ] (66)

= E
[

∫

I(ω)

∫

I(ω)

Σ(p1, p2, ω)φn(p1, ω)φ̄m(p2, ω)dp1dp2

]
∣

∣

∣
F
]

= λnδm,n (67)

C(p, ω)ξn(ω) =

∫

I(ω)

Σ(p, y, )φn(y)dy = λn(ω)φn(p, ω); a.s. P (68)

The latter representation introduces a probabilistic component to the proof which necessi-

tated the ensuing modification. Consider the following probabilistic expansion based on the

component parts above

E
[
∣

∣

∣
C(p, ω)−

N
∑

n=1

ξn(ω)φn(p, ω)
∣

∣

∣

2 ∣
∣

∣
F
]

(69)

= E
[

Σ(p, p)− 2
N
∑

n=1

C(p, ω)ξn(ω)φ̄n(p, ω) +
N
∑

n=1

λn(ω)|φn(p, ω)|
2
]

(70)

= E
[

Σ(p, p)−
N
∑

n=1

λn(ω)|φn(p, ω)|
2
]

(71)

Let χA′

N
be the characteristic function of an event A′, and for ǫN (ω) > 0 sufficiently large

define the random set

A′
N =

{

ω
∣

∣

∣

∣

∣

∣
Σ(p, p)−

N
∑

n=1

λn(ω)|φn(p, ω)|
2
∣

∣

∣
≥ ǫN(ω)

}

, E[χA′

N
] = P (A′

N) (72)
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According to Parseval’s Identity in L2, see e.g. (Yosida, 1960, pg. 91), we have

‖Σ(p, p)‖2 = lim
N→∞

E
[

N
∑

n=1

λn(ω)|φn(p, ω)|
2
]

(73)

Let ǫN(ω) =
∞
∑

j=N+1

λj(ω)|φn(p, ω)|
2, so that ǫN(ω) ↓ 0 (74)

Without loss of generality, assign E[ξn(ω)] = 0. So that {ξn(ω)}
∞
n=1 is an iid mean zero

sequence with finite second moments. That facilitates application of our results. By con-

struction C(p, ω) ∈ C[0, 1] and Σ is bounded and continuous in p. By virtue of the classic sup-

norm ‖f‖ = supx |f(x)|, f ∈ C[0, 1], and the induced metric ̺C(f, g) = supx |f(x) − g(x)|

on C[0, 1], according to Theorem 1 in (Gikhman and Skorokhod, 1969, pp. 449-450), we have

lim
N→∞

sup
N

sup
|p−p̄|→0

P
{
∣

∣

∣
Σ(p, p)−

N
∑

n=1

λn(ω)|φn(p̄, ω)|
2
∣

∣

∣
> ǫN(ω)

}

= 0 (75)

Thus we get a weaker result Σ(p, p) ∈ L(M,S, π). By absolute continuity of Σ(p, p) on L, we

apply Kolmogorov’s Inequality in L2 ⊂ L, and the probabilistic continuity criterion above

to get

lim
N→∞

P (A′
N) =

limN→∞E
{
∣

∣

∣
Σ(p, p)−

∑N

n=1 λn(ω)|φn(p, ω)|
2
∣

∣

∣

2

> ǫN(ω)
}

ǫ2N (ω)
= 0 (76)

So that lim
N→∞

N
∑

n=1

E[λn(ω)|φn(p, ω)|
2| F ] = Σ(p, p) a.s. P (77)

By definition of P (A′) in (72) and the result in (77), all of which is based on the incipient

expansion in (69), we retrieve the desired result

C(p, ω) = lim
N→∞

N
∑

n=1

ξn(ω)φn(p, ω) a.s. P (78)
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B Proof of Proposition 3.3

For notational convenience let

a(N) = max{OD
p (a(m)), OS

p (b(r))} (79)

C i
ℓ(ω) = C

pi
ℓ

ℓ (pig, ω) (80)

C∗i
g (ω) = C

∗pig
g (piℓ, ω) (81)

Now expand the summands to account for any ”surplus” demand or supply, and to account

fo the fact that C can take positive or negative values.

a(N)−1
∣

∣

∣
DN,ℓ(K(ω))− SN,g(K

∗(ω))
∣

∣

∣
= a(N)−1

∣

∣

∣

∣

∣

min(m,r)
∑

i=1

(C i
ℓ − C

i
g)

+

max(m,r)
∑

s=min(m,r)+1

(

max
{

0,
|Cs

ℓ (ω)|+ Cs
ℓ (ω)

2

}

+min
{

0,
|Cs

ℓ (ω)| − C
s
ℓ (ω)

2

}

)

+

max(m,r)
∑

u=min(m,r)+1

(

max
{

0,
|C∗u

g (ω)|+ C∗u
g (ω)

2

}

+min
{

0,
|C∗u

g (ω)| − C∗u
g (ω)

2

}

)
∣

∣

∣

∣

∣

(82)

≤ a(N)−1

min(m,r)
∑

i=1

|C i
ℓ − C

∗i
g |+

+

max(m,r)
∑

s=min(m,r)+1

∣

∣

∣

∣

∣

(

max
{

0,
|Cs

ℓ (ω)|+ Cs
ℓ (ω)

2

}

+min
{

0,
|Cs

ℓ (ω)| − C
s
ℓ (ω)

2

}

)
∣

∣

∣

∣

∣

+

max(m,r)
∑

u=min(m,r)+1

∣

∣

∣

∣

∣

(

max
{

0,
|C∗u

g (ω)|+ C∗u
g (ω)

2

}

+min
{

0,
|C∗u

g (ω)| − C∗u
g (ω)

2

}

)
∣

∣

∣

∣

∣

(83)

Let I1(N), I2(N), I3(N) be the value of the summands above in order. Assuming

that supply and demand are satisfied where the curves intersect ie, 0 ≤ |C i
ℓ − C∗i

g | ≤ H ,
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then according to (79), the growth of a(N) exceeds that of the summand for I1(N) when

|C i
ℓ − C

∗i
g | = 0 for countably many i. So we have

lim
N→∞

a(N)−1I1(N) = 0 (84)

lim
N→∞

a(N)−1{I2(N) + I3(N)} = c0 > 0 (85)

According to ergodic theory, see e.g. Birkhoff-Khinchine Theorem, (Gikhman and Skorokhod,

1969, pg. 127), the last equation implies that either a(N)−1I2(N) = Ĉ and a(N)−1I3(N) = 0

or vice versa where Ĉ is the limiting confidence trajectory. In which case we have from

Chebychev’s inequality

P lim sup
N→∞

{

a(N)−1|DN,ℓ(K(ω))− SN,g(K
∗(ω))| > η

}

(86)

≤
E
[

a(N)−1
∣

∣DN,ℓ(K(ω))− SN,g(K
∗(ω))

∣

∣

2
]

η2
(87)

=
E[Ĉ2]

η2
(88)

Since η is arbitrary, choose η = |E[Ĉ]| and the proof is done.

�

Remark B.1. The proof also follows from application of Borel-Cantelli Lemma to the tail

events described above.
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