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Abstract

Recently, quantum decision theory has achieved considerable success
as a new theory for providing a coherent account of a variety of di¤erent
empirical �ndings that appear paradoxical for traditional decision theory.
But critics argue that this success may simply mean that quantum theories
can ��t�better because they are more complex. To examine this issue, we
compared quantum models with traditional models using a Bayes factor,
which provides one of the most rigorous methods for evaluating models
with respect to accuracy and parsimony. For this comparison, we used a
large data set with a large number of conditions and subjects that exam-
ined a puzzling phenomenon called dynamic inconsistency � the failure
of decision makers to carry out their planned decisions. The results of
this model comparison supports the quantum model as compared to the
traditional model of decision making.

Keywords : Quantum probability, prospect theory, dynamic consis-
tency, interference e¤ects, Bayes factor.

Decision theorists are becoming increasingly concerned with the stochas-
tic nature of choice for decisions under risk and uncertainty (Busemeyer &
Townsend, 1993; Harless & Camerer, 1994; Hey & Orme, 1994; Loomes &
Sugden, 1995; Regenwetter, Dana, & Davis-Stober, 2010; Wilcox, 2011). What
is the fundamental source of this stochasticity? The most common explanation,
described early on by Becker, DeGroot, and Marschak (1963), is that either the
utilities or the subjective weights assigned to outcomes randomly vary across
choice occasions. These stochastic mechanisms are "classic" in nature � they
assume that at any moment of choice, speci�c utilities and speci�c weights are
realized, and the choice is determined by the realizations experienced at that
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moment. An alternative idea, described early by Luce (1959), is that choice
is intrinsically probabilistic. The latter idea has not been pursued very inten-
sively until recently, where several decision theorists have begun exploring "non
classical" quantum probabilistic models of choice (Busemeyer, Wang, Lambert-
Mogiliansky, 2009; Lambert-Mogiliansky, Zamir, Zwirn, 2009; Khrennikov and
Haven, 2009; Yukalov & Sornette, 2010). .
Quantum choice models were introduced to account for decision making

paradoxes that have resisted explanations by "classical" type of stochastic mod-
els (Pothos & Busemeyer, 2009). Perhaps quantum models succeed where classic
models fail simply because quantum models are more complex and have greater
model �tting �exibility (after all they are based on complex numbers). The
purpose of this paper is to examine this issue by comparing a classic type of
random utility model with a quantum model using Bayesian model comparison
methods (Berger, 1985). The model comparison is based on a large experiment
designed to examine dynamic inconsistency in choice among two stage gambles
(Barkan & Busemeyer, 2003). Dynamic consistency is a principle of decision
making required for backward induction when applied to decision trees. Dy-
namic consistency requires that a planned course of action for a future decision
is implemented as planned when that decision is �nally realized. Barkan and
Busemeyer (2003) observed systematic violations of dynamic consistency, and
they used a random utility version of prospect theory to account for these �nd-
ings. But more recently, Yukalov and Sornette (2010) argued that a quantum
theory can also account for these �ndings (Yulalov & Sornette, 2009). Therefore,
in this paper, two di¤erent types of models are proposed to explain these �nd-
ings: a random utility model based on prospect theory (Kahneman & Tversky,
1979) and a quantum decision model (Pothos and Busemeyer, 2009).
The paper is organized as follows. First we review the Barkan and Busemeyer

(2003) experimental methods and results. Second, we describe the two models
that are being compared. Third, we present �ts to the mean data for each model
to get a rough idea about how well each model accounts for the �ndings (but this
is not our main concern). Fourth, we present the results of the Bayesian model
comparison (which is our main concern). Finally, we draw some preliminary
conclusions from this model comparison analysis.

1 Barkan and Busemeyer (2003)

A two stage gambling paradigm was used to study dynamic consistency, which
was a modi�cation of the paradigm used by Tversky and Sha�r (1992) to study
the disjunction e¤ect. A total of 100 people participated and each person played
the 17 gambles involving real money shown in Table 1 twice. Each gamble had
an equal chance of producing a win or a loss. The columns labeled �win�and
�loss�indicate the money that could be won or lost for each gamble (one unit
was worth one cent) and the column labeled EV shows the expected value of
each gamble. For each gamble in Table 1, the person was forced to play the �rst
round, and then contingent on the outcome of the �rst round, they were given a

2



choice whether or not to play the second round with the same gamble. On each
trial the person was �rst asked to make a plan for the second play contingent on
each possible outcome of the �rst play. In other words, during the planning stage
they were asked two questions: "if you win the �rst play, do you plan to play the
second gamble? and "if you lose the �rst play, do you plan to play the second
gamble?" Following the plan, the outcome of the �rst gamble was revealed, and
then the person was given a �nal choice: decide again whether or not to play the
second gamble after observing the �rst play outcome. To incentivize both plan
and �nal choices, the computer randomly selected either the planned choice or
the �nal choice to determine the real monetary payo¤ for each trial. The �nal
payment for the trial was then shown to the person at the end of each trial.
Participants were paid by randomly selecting four problems from the entire set,
randomly selecting either their plan or �nal choice, and randomly selecting an
outcome for each gamble to determine the actual payment.
Table 1 displays the results obtained after averaging across the two repli-

cations for each person, and after averaging across all 100 participants. The
probability of planning to take the gamble is shown under the column labeled
"Plan." There was little or no di¤erence between the probabilities of taking the
gamble, contingent each planned outcome of the �rst gamble, and so the results
shown here are averaged across the two hypothetical outcomes during the plan.
See Barkan and Busemeyer (2003) for the complete results listed separately for
each contingent outcome. The probability of taking the gamble during the �nal
stage is shown under the column labeled �Final.� The columns under the label
"Gamble" display the amount to win and lose for each gamble. Changes in
probabilities down the rows of the Table show the e¤ect of the gamble payo¤s
on the probability of taking the gamble. The di¤erence between the planned and
�nal columns indicates a dynamic inconsistency e¤ect. Notice that following a
win (the �rst 4 columns), the probability of taking the gamble at the �nal stage
was always smaller than the probability of taking the gamble at the planning
stage. In other words, participants changed their minds and became more risk
averse after experiencing a win as compared to planning for a win. Notice that
following a loss (the last 4 columns), the probability of taking the gamble at the
�nal stage was always smaller than the probability of taking the gamble at the
planning stage. In other words, participants changed their minds and became
more risk seeking after experiencing a loss as compared to planning for a loss.
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Table 1: Barkan and Busemeyer (2003) Experiment
Gamble Win First Play Gamble Lose First Play

Win Loss Plan Final Win Loss Plan Final
200 220 0.46 0.34 80 100 0.36 0.44
180 200 0.45 0.35 100 120 0.47 0.63
200 200 0.59 0.51 100 100 0.63 0.64
120 100 0.70 0.62 200 180 0.57 0.69
140 100 0.62 0.54 160 140 0.68 0.69
200 140 0.63 0.53 200 160 0.67 0.72
200 120 0.74 0.68 160 100 0.65 0.73
200 100 0.79 0.70 180 100 0.68 0.80

200 100 .85 .82

2 Choice Models

2.1 Reference point change model

Barkan and Busemeyer (2003) accounted for these results by using a model
based on prospect theory originally proposed by Tversky and Sha�r (1992) to
account for the disjunction e¤ect. The essential idea is that the decision maker
ignores the planned wins or losses, but the decision maker is later a¤ected by
the experienced wins or losses. Ignoring the �rst stage outcome during the plan
but then later incorporating these outcome during the �nal decision causes a
change in the reference point of the utility function used for planned versus �nal
decisions.
Consider a generic gamble G that produces a win equal to xW or a loss equal

in magnitude to xL with equal probability. (The payo¤ amounts shown in Table
1 were �rst rescaled by dividing each payo¤ by 100 to convert to dollars.) In
prospect theory, the utility function for an outcome x is often represented by
a power function: u(x) = xa for x � 0 , and u(x) = �b � jxja for x < 0: The
parameter a is used to model risk aversion and it usually has a value between 0
and 1; the parameter b is used to model loss aversion and usually it has a value
greater than one.
During the planning stage, it is assumed that people ignore the planned

outcome of the �rst gamble and simply compute a utility for playing the second
gamble based solely on the payo¤s for the second gamble:

u(GjPlan) = (:50) � xaW � (:50) � b � xaL: (1)

The choice for the plan is based on the comparison of the utility of gambling on
the second play to status quo (a zero outcome), DP = u(GjPlan)� 0:
Following the experience of a win, the person includes the win from the �rst

gamble into the evaluation of the payo¤s for the second gamble and uses the
following utility function

u(GjWin) = (:50) � (xW + xW )
a + (:50) � (xW � xL)a; if (xW � xL) > 0 (2)

u(GjWin) = (:50) � (xW + xW )
a � (:50) � b � j(xW � xL)ja ; if (xW � xL) < 0:
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The choice after experiencing a win is based on the comparison of the utility of
gambling again on the second play to the utility of keeping the amount of the
win from the �rst gamble, DW = u(GjWin)� xaW .
Following the experience of a loss, the person includes the loss from the �rst

gamble into the evaluation of the payo¤s for the second gamble and uses the
following utility function

u(GjLoss) = (:50) � (xW � xL)a � (:50) � b � (xL + xL)a; if (xW � xL) > 0 (3)

u(GjLoss) = �(:50) � b � j(xW � xL)ja � (:50) � b � (xL + xL)a; if (xW � xL) < 0

The choice after experiencing a loss is based on the comparison of the utility of
gambling again on the second play to the utility of keeping the amount of the
loss from the �rst gamble, DL = u(GjLoss)� (�b � xaL).
Essentially the reference point for evaluating gains and losses changes in this

model. For example, during the plan, the possibility of losing 100 on the second
gamble is evaluated as a loss (because any payo¤below zero is considered a loss).
But after �nding out that $200 was won on the �rst play, then the possibility of
losing 100 on the second play is evaluated as a reduced gain (any payo¤ below
�200 is now considered a loss). In short, dynamic inconsistency arises from the
use of di¤erent utility functions, de�ned by di¤erent reference points, for plans
versus �nal decisions.
So far, this model is deterministic and cannot produce choice probabilities.

To convert these utilities into probabilities, it is common to assume an extreme
value random utility type of model (McFadden, 1981). Under this assumption,
the choice probabilities are determined by a logistic probability distribution
function, which produces the following probabilities to play the second gamble
for each of the three conditions:

p(T jPlan) =
1

1 + e�
�DP

p(T jWin) =
1

1 + e�
�DW

p(T jLoss) =
1

1 + e�
�DL
:

where 
 is a parameter that adjusts the sensitivity of choice probability to the
utility of the gamble.
This model has three free parameters (a; b; 
) that were �t to the 34 mean

data points in Table 1 (17 plan probabilities and 17 �nal probabilities). The best
�tting parameters (minimizing sum of squared error) are a = :8683, b = :9223,
and 
 = 2:6980: The loss aversion parameter b is less than one (less sensitivity to
losses), even though it is theoretically expected to be greater than one (greater
sensitivity to losses). The model produced an R2 = :7745 and an adjusted
R2 = :7599.
We also �t a model that allowed the decision weight to change for gains

and losses. In this case, we replaced the :50 probability of a win with a decision
weight parameter w; and the decision weight for the probability of a loss equaled
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(1�w): The best �tting four parameters were a = :8533; b = :9960; 
 = 2:4681
and w = :5227; and this model produced R2 = :7982 and an adjusted R2 =
:7780:

2.2 Quantum decision model

The quantum model used to account for the dynamic inconsistency e¤ect is the
same model that was previously developed by Pothos and Busemeyer (2009)
to account for the disjunction e¤ect. The essential idea is that the decision
maker uses a consistent utility function for plans and �nal decisions and always
incorporates the outcomes from the �rst stage into the decision for the second
stage. The planned decision di¤ers from the �nal decision, because the plan is
based on a superposition over possible �rst stage outcomes that will be faced
during the �nal stage.
The two stage game involves a set of four mutually exclusive and exhaus-

tive outcomes fWT;WR;LT;LRg where for example WT symbolizes the event
�win the �rst stage� and �take the second stage gamble,� and LR represents
the event �lose the �rst stage� and �reject the second stage gamble.� These
four events correspond to four mutually exclusive and exhaustive basis states
fjWT i; jWRi; jLT i; jLRig : The four basis states are represented in the quan-
tum model as four orthonormal basis vectors that span a four dimensional vector
space. The state of the decision maker is a superposition over these four ortho-
normal basis states.

j i =  WT � jWT i+  WR � jWRi+  LT � jLT i+  LR � jLRi;
jj j i jj2 = 1:

The initial state is represented by a 4� 1 matrix  I containing elements  ij
i = W;L and j = T;R which is the amplitude distribution over the four basis
states. Initially, during the planning stage, an equal distribution is assumed
so that  I has elements  ij = 1=2 for all four entries. The state following
experience of a win is updated to  W which has 1=

p
2 in the �rst two entries

and zeros in the second two. The state following experience of a loss is updated
to  L which has 1=

p
2 in the last two entries and zeros in the �rst two entries.

Evaluation of the payo¤s causes the initial state  I to be "rotated" by a
unitary operator U into �nal states used to make a choice about taking or
rejecting the second stage gamble:

 F = U �  I
U = exp

�
�i � �

2
� (H1 +H2)

�
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where

H1 =

2666664
hWp
1+h2W

1p
1+h2W

0 0

1p
1+h2W

�hWp
1+h2W

0 0

0 0 hLp
1+h2L

1p
1+h2L

0 0 1p
1+h2L

�hLp
1+h2L

3777775 ; H2 =
�
p
2

2664
1 0 1 0
0 �1 0 1
1 0 �1 0
0 1 0 1

3775 :

The upper right corner of H1 is de�ned by the payo¤s given a win; and the bot-
tom right corner of H1 is de�ned by the payo¤s given a loss (this is described in
more detail below). The matrix H2 aligns beliefs and actions by amplifying the
potentials for statesWT;LR and and attenuating potentials for statesWR;LT:
The parameter 
 is a free parameter that allow changes in beliefs during the
decision process.
The utilities for taking the gamble are mapped into the parameters hW and

hL in H1, and the latter must be scaled between �1 to +1: To accomplish this,
the parameter hW used to de�ne H1 is de�ned as

hW =
2

1 + e�DW
� 1;

where DW is de�ned by Equation 2. The parameter hL used to de�ne H2 is
de�ned as

hL =
2

1 + e�DL
� 1;

where DL is de�ned by Equation 3.
The projection matrix M = diag [1; 0; 1; 0] is used to map states into the

response for taking the gamble on the second stage. The probability of planning
to take the second stage gamble equals

p(T jPlan) = jjM � U �  I jj2: (4)

The probability of taking the second stage game following the experience of a
win equals

p(T jWin) = jjM � U �  W jj2: (5)

The probability of taking the second stage game following the experience of a
loss equals

p(T jLoss) = jjM � U �  Ljj2: (6)

In sum, this quantum model has only three parameters: a and b are used
to determine the utilities in Equations 2 and 3 in the same way as used in the
reference point change model; the third is the parameter 
 for changing beliefs
to align with actions. These three parameters were �t to the 17� 2 = 34 data
points in Table 1, and the best �tting parameters (minimizing sum of squared
error) are a = :7101; b = 2:5424; and 
 = �4:4034: The risk aversion parameter
is a bit below one as expected, and the loss parameter b exceeds one, as it should
be. The model produced an R2 = :8234 and an adjusted R2 = :8120:
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If we force 
 = 0; then the quantum model is no longer produces �quantum
like�interference e¤ects. Instead, the choice probability for the plan is an equal
weight average of the two choice probabilities produced after either winning or
losing the �rst stage: p(T jplan) = (:50) � p(T jWin) + (:50) � p(T jloss); where
p(T jWin) is de�ned by Equation 5 with 
 = 0 and p(T jloss) is de�ned by
Equation 6 with c = 0: This model was �t to the results in Table 1 by using
only two parameters a and b for the quantum model (with 
 = 0), and it
produced an R2 = :7854 and an adjusted R2 = :7787 which still falls below the
adjusted R2 for the three parameter quantum model, and so the 
 parameter is
making a useful contribution in this application.
Finally we also �t a model that allowed the decision weight to change for

gains and losses. In this case, we replaced the :50 probability of a win with a
parameter w; and the probability of a loss equaled (1 � w): The best �tting
four parameters were a = :8205; b = 2:5280; 
 = �4:3739; w = :5141; and the
model produced and R2 = :8328 and an adjusted R2 = :8160:
In summary, comparing the two key models on the basis of �tting the means,

we �nd that the quantum model produced a :05 increase in R-square over the
traditional reference point model when the two models were �t using the same
number of parameters. However, controlling number of parameters does not
guarantee equal model complexity. Therefore a Bayesian analysis was performed
to provide a more rigorous model comparison.
There is one other curious �nding concerning the R-square as a function

of the 
 parameter obtained from the quantum model. Figure 1 plots the R-
square as a function of 
:As can be seen in this �gure, the R-square function
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Figure 1: R-square �t to means for the quantum model plotted as a function of
the gamma parameter

has a damped oscillation pattern. It deeps deep down around (but not exactly)
at zero, and then rises and oscillates around a reasonably high value as the
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parameter goes to extreme values.

3 Bayesian model comparison

3.0.1 Log likelihood for each person

The Bayesian model comparison was computed separately for each participant
using the 33 choice trials observed by that person. On each trial, a gamble
was presented and the person made both a plan for an outcome and a �nal
choice after observing that same outcome. For person i on trial t we observe a
data pattern Xi (t) = [xTT (t) ; xTR (t) ; xRT (t) ; xRR (t)] de�ned by xij (t) = 1
if event (i; j) occurs and otherwise zero, where TT is the event "planned to
take gamble and �nally did take the gamble," TR is the event "planned to take
gamble but changed and �nally rejected gamble." RT is the event "planned to
reject the gamble but changed and �nally did take the gamble�" and RR is the
event "planned to reject gamble and �nally did reject the gamble."
Two allow for possible dependencies between a pair of choices within a single

trial, an additional memory recall parameter was included in each model. For
both models, it was assumed that there is some probability m; 0 � m � 1 that
the person simply recalls and repeats the planned choice for the �nal choice, and
there is some probability 1 �m that the person forgets or ignores the planned
choice when making the �nal choice. After including this memory parameter,
the prediction for each event becomes

pTT = p(T jplan) � (m � 1 + (1�m) � p(T jfinal))
pTR = p(T jplan) � (1�m) � p(Rjfinal)
pRT = p(Rjplan) � (1�m) � p(T jfinal)
pRR = p(Rjplan) � (m � 1 + (1�m) � p(Rjfinal))

Using these de�nitions for each model, the log likelihood function for the 33
trials from a single person can be expressed as

lnL (Xi (t)) =
X

xjk (t) � ln (pjk)

lnL (Xi) =
33X
i=1

lnL (Xi (t)) :

3.1 Grid analysis of log likelihood function

Each model has four parameters � = (a; b;m; 
) ; a risk aversion parameter, a
loss aversion parameter, a memory parameter, and a choice model parameter.
The �rst three parameters were common across both models and they only
di¤er with respect to the fourth parameter. We used a �ne grid of 41 points per
parameter. We compared this grid of 41 points with a less �ne grid using only
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21 points per parameter, and there was no meaningful di¤erence between the
�nal Bayes factors using these two grids, and so we concluded that 41 points
was more than su¢ cient.

a 2 [:400; :425; :::; :875; :90; :925; :::; 1:375; 1:40] ;

b 2 [:50; :55; :::; 1:45; 1:50; 1:55; :::2:45; 2:50] ;

m 2 [:000; :025; :::; :475; :500; :525; :::; :975; 1:00] ;


 2 [0; :10; :::; 1:90; 2:0; 2:10; :::3:90; 4:0] ; (reference point)


 2 [�5:00;�4:75; :::;�:25; 0:00; :25; :::; 4:75; 5:00] : (quantum)

This grid generated 414 = 2; 825; 761 combinations, and we evaluated the log
likelihood function for each model at each combination. These ranges were
chosen on the basis of past �ts of these models. The risk aversion parameter
ranges from risk aversion to risk seeking; the loss aversion parameter ranges
across loss insensitivity to loss sensitivity; and the memory parameter ranges
from no recall to perfect recall. These ranges were used for both models and
so they do not di¤er on these three parameters. The only parameter for which
the models di¤er is the choice parameter 
 : it ranges across random choice to
almost deterministic choice for the reference point model; and it ranges from
positive to negative values for the quantum model.
Once again, a surprising feature was noted with regard to the log likelihood

function of the quantum model that is important to point out. Figure 2 plots
the log likelihood for the quantum model when the parameter 
 varies across a
wide range of values. As can be seen in the �gure, the log likelihood function
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Figure 2: Log likelihood plotted as a function of gamma. Top panel is averaged
across all participants and bottom panel shows one example person.

once again has the form of a damped oscillation, and this is true both for the
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average across participants as well as for individual participants.

3.2 Prior distributions

Two di¤erent prior distributions were examined: a uniform and a normal dis-
tribution. The uniform distribution assigned equal probability to each grid
combination point (see Figure 3). For the normal prior, we assumed indepen-
dent normal distributions for each parameter (see Figure 4). The prior for the
risk aversion parameter was normally distributed around a mean of .90 (slight
risk aversion) and a standard deviation of .25. The prior for the loss aversion
parameter was normally distributed around a mean of 1.25 (slight loss aversion)
and a standard deviation equal to .25. The memory parameter was normally
distributed around a mean of .50 and a standard deviation equal to .25. The
prior for the gamma parameter for the reference point model was normally dis-
tributed around a mean of 1.5 (producing a reasonable S-shape function) and
a standard deviation equal to .75. The prior for the gamma parameter for the
quantum model was normally distributed around a mean of zero with a standard
deviation equal to 5.

3.3 Bayes factor

The Bayes factor was computed for each model by �rst computing the expected
likelihood for each model, which is a weighted average of all the likelihoods
with a weight for each likelihood, w (�i) ; determined by the prior probability
assigned to that likelihood. The Bayes factor for each person equals the ratio
of the expected likelihoods.

pm (Xij�i) = exp (lnL (Xij�i))
pm (Xi) = E [pm (Xij�i)] =

X
�

w (�i) � pm (Xij�i)

BFi =
pQ (Xi)

pP (Xi)
:

Figures 3 and 4 display the relative frequency distributions for the log of
the Bayes factor produced by the uniform and normal priors, respectively. The
sum of the log Bayes factors for the uniform distribution equals 243 and 90%
of the participants produced log Bayes factors greater than zero favoring the
quantum model. The sum of the log Bayes factors for the normal distribution
equals 208 and 83% of the participants produced log Bayes factors greater than
zero favoring the quantum model. In sum, using a Bayes factor to compare
models, the conclusion from both a uniform and a normal prior distribution is
that the Bayes factor favors the quantum model.
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Figure 3: Uniform prior and Bayes factor distribution produced by this prior.
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Figure 4: Normal prior and distribution of the Bayes factor produced by this
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4 Conclusions

This article began by introducing two di¤erent views for understanding the sto-
chastic nature of human choice behavior under risk and uncertainty. One is a
"classical" view that choices for the same pair of risky options vary across oc-
casions because either the utility function or the probability weighting function
changes across occasions. From this view, choice on each occasion is a deter-
ministic function of the values sampled on that occasion for either the utility
function or the probability weighting function. If we new the realized values of
these functions at a particular occasion, we could perfectly predict the choice at
that moment. Another viewpoint is that choice is intrinsically probabilistic, and
it is impossible to perfectly predict the choice at any moment. The latter view
is consistent with a quantum view of probabilistic choice. Quantum models
have been proposed recently to account for some paradoxical �ndings that have
resisted explanations by "classic" models. But perhaps this success simply re-
sults from extra �exibility obtained by using quantum probabilities? The main
purpose of this paper is to evaluate this question using rigorous Bayesian model
comparison methods to compare a traditional reference point change model to
a quantum decision model using data from a large experiment investigating
dynamic inconsistency by Barkan and Busemeyer (2003).
Both the reference point model and the quantum model share the same

number of free parameters. Both models were initially �t to the mean data
using simple least square methods (3 parameters were used to �t 34 means).
Both models �t the means reasonably well, but the quantum model produced
a 5% improvement in R-square over the reference point model. However this
might re�ect more �exibility of the quantum model. To perform the Bayesian
comparison, a Bayes factor was computed separately for each participant using
two di¤erent prior distributions over the parameters: a uniform and a normal
prior. The Bayes factor overwhelmingly favored the quantum model over the
reference point model.
Of course, it is much too soon to conclude that the quantum model is superior

to the reference point model. The models need to be compared using other data
sets from various other experiments. Even within the same data set, various
other prior distributions need to be examined. But the surprising lesson learned
from this model comparison exercise was that contrary to expectations, the
quantum model did so well, and one cannot jump to the conclusion that it
succeeds over traditional models only because it is more �exible.
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