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ABSTRACT.

I study the impact of ambiguity on insurance decisions and the optimality of insurance
contracts. My tractable approach allows me to study the interaction between risk and
ambiguity attitudes. When insurance decisions are made independently of other assets, for a
given increase in wealth, both risk and ambiguity attitudes interact in nontrivial ways to
determine the change of coinsurance demand. I derive sufficient conditions to guarantee that
the optimal coinsurance demand is decreasing in wealth. When a non-traded asset is
introduced, my model predicts behavior that is inconsistent with the classical portfolio theory
that assumes Subjective Expected Utility theory; however, it provides hints to a possible
solution of the under-diversification puzzle of households. I also identify conditions under
which more risk or ambiguity aversion decreases the demand for coinsurance. Additionally, I
show a counterexample to a classical result in insurance economics where an insurance contract
with straight deductible is dominated by a coinsurance contract. Finally, I find that a modified
Borch rule characterizes the optimal insurance contract with bilateral risk and ambiguity
attitudes and heterogeneity in beliefs.
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Ellsberg [1961] studied the distinction between risk and ambiguity and its relevance for

decision-making theory. He used a thought experiment to show that under certain situations

many reasonable people tend, even after reflection, not to comply with the Savage [1972]

postulates for subjective expected utility (SEU) theory.

Through his thought experiment, Ellsberg [1961] highlighted the importance of

ambiguity and attitudes towards it. Camerer and Weber [1992] and Halevy [2007] are examples

of studies that provide empirical evidence consistent with Ellsberg’s findings.

I answer the following questions: What is the impact of ambiguity on the optimal

coinsurance demand? Does this analysis change if the individual owns a non-tradable asset (e.g.,

Human capital)? What is the optimal insurance contract in the presence of ambiguity when

both the insurer and insured might be ambiguity averse? Does this analysis have implications

for portfolio theory?

A particular advantage of my approach is its tractability, which allows us to analyze the

interaction between risk and ambiguity attitudes. However, this comes at the cost of generality

because the approximation used to solve the problem is constructed to perform well in the

small. Since Pratt [1964] the notion of small risks is relatively well understood. However, the

concept of small ambiguity (or uncertainty)1 is less straightforward2 and is characterized by the

convergence of the reminder in the approximation used here. My approach might be of special

interest for experimental economics since the stakes and conditions in the laboratory are

appropriate to generate small risks and/or uncertainties.

A clear prediction of my model is that, for a given increase in risk aversion, ambiguity

averse individuals will increase their coinsurance demand less rapidly than ambiguity neutral

agents. The intuition is that higher ambiguity aversion makes a marginal increase in insurance

more valuable. Therefore, when risk aversion increases and more insurance is required to

reduce variance, a smaller increase in insurance is needed because the additional coverage
1I use ambiguity and uncertainty as equivalent terms. However, there are important subtle differences between

the two concepts but it is not the purpose of this study to describe the distinction between them. I follow the
customary approach in the recent literature and use the term ambiguity (e.g., Gollier [2009].

2For a discussion on uncertainty in the small please see Maccheroni, Marinacci and Ruffino [2011b].
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provides the double benefit of reducing risk and ambiguity.

Moreover, the response of the optimal coinsurance demand to changes in initial wealth

will depend on the attitudes towards risk and ambiguity. For instance, given an increase in

wealth, a subject with constant absolute risk aversion could still decrease her insurance demand

if she exhibits decreasing absolute ambiguity aversion. I derive sufficient conditions to

guarantee that the optimal coinsurance demand is decreasing in wealth.

A topic that is often overlooked in the analysis of insurance and portfolio choice is the

presence of non-traded assets, such as Human capital. Cochrane [2007, p. 78] claims that:

I have emphasized outside income [e.g., the return of human capital]..., even
though it is rarely discussed in the modern portfolio theory literature. I think
it’s the most important and most overlooked component of portfolio theory,
and that paying attention to it could change academic theory and the practice
of the money management industry in important ways.

Mayers and Smith [1983] were the first to emphasize the importance of studying insurance

decisions in the presence of traded and non-traded assets. Doherty and Schlesinger [1983] and

Doherty [1984] studied a similar problem where the insurance demand can be affected by a

background risk that is not insurable.

A non-traded asset introduces a new dimension to the insurance analysis under

ambiguity. An individual is able to “self-hedge” if she can compensate high losses with high

realizations of her non-traded human capital.

When ambiguity matters to a decision-maker and there exists a non-traded asset, an

increase in risk aversion may or may not increase the demand for insurance depending on the

incentives to “self hedge.” This result is a counterexample to the Pratt-Arrow result which

claims that higher risk aversion decreases the demand for the risky asset. This might happen

when a marginal increase in insurance also increases the variance of wealth. Hence, an

increment in risk aversion induces a reduction in the insurance demand. However, since an

insurance decision problem can be interpreted as a portfolio problem, there is a much deeper

result that has implications for portfolio theory and that drives this counterintuitive

comparative static for risk aversion.
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An important result is that, in the presence of ambiguity, the optimal risk-return

allocation will not always be located in the efficient part of the classical mean-variance frontier.

The reason is that high incentives to self-hedge create a trade-off between the risk and

ambiguity dimensions of wealth that a decision maker must solve. Thus, an individual could

appear to be “inefficient” from the perspective of classical portfolio analysis that assumes SEU

utility maximization, although such action is optimal in the presence of ambiguity. I show that

the counterintuitive comparative static for risk aversion that I described above can only arise

when the optimal choice of an ambiguity averse individual lies in the “inefficient” part of the

frontier.

A generalization of my model that includes traded assets, non-traded assets and

insurance can be an alternative explanation for the under-diversification puzzle of households.

The interaction of traded assets, non-traded assets and insurable assets, that can be each

ambiguous or not, can result in observed behavior that is “under-diversified” from a classical

perspective but optimal from a broader perspective. The main message is that deviations from

traditional portfolio theory can be explained by expanding the concept of portfolio to include

non-traded assets, to allow for preference representations that can explain attitudes towards

ambiguity.

A simple extension of my framework that includes a risky asset, an ambiguous asset

and risky income can rationalize “seemingly” irrational behavior. Massa and Simanov [2006]

found that swedish investors tend to hold stocks that are positively correlated with their labor

income, probably because these stocks are familiar to them, while wealthy individuals have a

greater tendency to pick stocks that can help hedging their labor income risk. Standard

explanations consider that wealthy investors are more sophisticated, while the observed

positively correlated portfolios are usually explained by “behavioral biases” such as

overconfidence, ignorance and familiarity. However, the simple model I propose suggests an

alternative explanation. First, people exhibit ambiguity aversion towards less familiar stocks,

which give them incentives to tilt their financial portfolio towards more familiar stocks, even if
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that sometimes means that the chosen portfolio is positively correlated with labor income.

Second, an individual with sufficiently high initial wealth can overcome aversion towards

ambiguity, just like a risk averter might diminish her aversion towards risk when wealth

increases, and change his choices from portfolios tilted towards the risky asset to allocations

that put more weight on the ambiguous asset.

In the last section I study the optimality of insurance contracts. First, I show that, in

contrast to the traditional result in Arrow [1971], an insurance contract with a straight

deductible may be dominated by an equivalent coinsurance contract if the decision-maker

owns a non-traded asset. Second, a modified Borch rule characterizes the optimal contract

when I allow for bilateral risk and ambiguity aversion and differences in beliefs. In particular, I

provide conditions under which the coinsurance schedule with bilateral risk and ambiguity

aversion is higher (or lower) than with bilateral ambiguity neutrality. When there is

heterogeneity in beliefs no sharp predictions can be made.

To model individual preferences under ambiguity, I use the smooth ambiguity aversion

model axiomatized by Klibanoff, Marinacci and Mukerji [2005], KMM henceforth.3 They

derive a preference representation that allows for a separation of the perception of ambiguity

and attitudes towards it. Additionally, I adopt the quadratic approximation of the certainty

equivalent of the KMM representation derived by Maccheroni, Marinacci and Ruffino [2011a].

This is an extension to the ambiguity domain of the Arrow-Pratt approximation, which allows

for the model tractability I mentioned above. However, this may come at the cost of generality,

since what is necessary and sufficient in the “small” may only be necessary in a more general

setting (e.g., Eeckhoudt and Gollier [2000; p. 126]).

Some recent studies have examined the effect of ambiguity in insurance decisions and

portfolio choices. Ju and Miao [2012] and Collard et al. [2009] study a dynamic

infinite-horizon portfolio problem that allows for time-varying ambiguity and aversion

towards it. They find, numerically, that ambiguity aversion increases the equity premium.
3The KMM model is susceptible to the ambiguity aversion paradoxes developed by Machina [2009] and Epstein

[2010]; L’Haridon and Placido [2009] show data from an experiment supporting Machina’s paradoxes.

4



However, Gollier [2009] found, in a static portfolio choice problem, that these numerical

results rely on the particular calibration of the models. He identifies sufficient conditions

under which more ambiguity aversion increases the demand for the ambiguous asset.

Chebonnier and Gollier [2011] demonstrate that, in the KMM model, restrictions on risk and

ambiguity attitudes are sufficient to guarantee that any uncertain situation that is undesirable at

one wealth level is also undesirable at a lower wealth level. Nevertheless, they also show that

one has to impose restrictions on both risk and ambiguity attitudes, as well as on the

ambiguity structure, to guarantee that an increase in wealth will increase the demand of an

ambiguous asset. Finally, Alary, Gollier and Treich [2010] and Snow [2011] study the effect of

ambiguity on insurance decisions when they are made in isolation.

My tractable approach allows me to study in more depth the interactions between risk

and ambiguity attitudes and to provide sharp predictions. Also, I consider a more general

framework that models insurance decisions in the presence of other traded and non-traded

assets, as well as preference representations that are sensitive both to risk and ambiguity.

Section 2 presents my approach to model decisions under ambiguity and analyzes the

impact of ambiguity and attitudes towards it on the optimal coinsurance demand with and

without a non-traded asset. Section 3 studies the optimality of an insurance contract with a

straight deductible and the Borch rule when ambiguity matters to individuals. Section 4

concludes. Appendices show proofs of results and well-stablished results in the insurance

literature when SEU is assumed.

1. Modeling Ambiguity and Attitudes towards Ambiguity

Consider a decision maker (DM) with initial wealth W0 and random end-of-period

wealth W. Suppose the agent exhibits aversion towards risk, which is captured by a utility

function u(.), with u�(.) > 0 and u��(.) < 0.

The DM perceives W as ambiguous. This implies that, instead of having a unique

probability distribution for W, the subject behaves as if there is a bounded set of probability
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distributions, ∆, that are reasonably possible to her. Therefore, the DM is not able to commit

to only use a particular distribution in this set. On the contrary, for a SEU maximizer, the set

∆ will be a singleton.

Following KMM [2005], the individual has a subjective probability measure µ over ∆

that captures the ambiguity perceived by her. According to KMM, the preferences of an

individual that perceives wealth as ambiguous will have the following preference

representation:
�

∆
φ

��

S

u(W )dQ
�

dµ, (1)

where S is the state space of W , Q ∈ ∆ is a probability measure over S, and φ is a map from

reals to reals that captures attitudes towards ambiguity. If the subject perceives her future

wealth as ambiguous, and is averse to this situation, φ will be concave in the same fashion that

the preferences of a risk averse individual are represented by a concave utility function u(.). An

ambiguity loving (neutral) individual will have a convex (linear) φ, exactly parallel to the formal

characterization of risk attitudes. I focus on the case of ambiguity aversion and risk aversion.

In the KMM framework, an increase in ambiguity can be characterized as an increase

in the (subjective) variance of expected utility
�

S
u(W )dQ, which is a random variable with

subjective probability distribution µ. We can define a reduced compound probability

distribution according to Q̄ = �
∆ Qdµ(Q). An individual that is ambiguity neutral, which is

equivalent to behaving according to the postulates in Savage [1972], will maximize the SEU

derived from u(.) and Q̄.

To make the models tractable, I use the second-order approximation of the CE of the

KMM representation developed by Maccheroni, Marinacci and Ruffino [2011a], MMR

hereafter. This is an extension to the ambiguity domain of the Arrow-Pratt approximation,

where the risk and ambiguity premiums are characterized by the KMM preference

representation. This CE is defined by the following equation:

φ(u( �CE)) =
�

∆
φ

��

S

u(W )dQ
�

dµ (2)
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Define W = W0 + h, where h represents the variable component of the end-of-period wealth.

MMR approximate �CE with the following quadratic smooth ambiguity functional that maps

square integrable random variables to the reals:

�CE = W0 + E
Q̄

[h] − θ

2σ2
Q̄

(h) − γ

2σ2
µ
(E[h]) + R2(h) (3)

where

lim
t→0

R2(th)
t2 = 0. (4)

The first two terms correspond to the Arrow-Pratt approximation of the CE of an individual

that makes decisions according to the SEU defined by the compound probability distribution

Q̄ and utility function u(.). The term θ = −u
��(W0)

u�(W0) > 0 is the local measure of absolute risk

aversion. This reflects the risk aversion of an ambiguity neutral individual that behaves

consistently with the SEU theory.

The new, third term is an ambiguity premium. The term γ = u�(W0){−φ
��(u(W0))

φ�(u(W0)) } > 0

captures the degree of ambiguity aversion (MMR [2011a; p. 6]). The term σ2
µ
(E[h]) is the

measure of ambiguity around the variable component of wealth perceived by the individual. In

other words, it is the (subjective) variance of the expected value of h under probability measure

µ. This expected value varies because the individual allows each probability distribution Q in

∆ to be a possible candidate to estimate the expected value of h. Thus, in the finite case, there

are n possible values that E[h] can take, one for each probability distribution Qi ∈ ∆,

∀i : 1, ..., n. Finally, MMR [2011; p. 6] interpret σ2
µ
(E[h]) as “model uncertainty” because it

represents the possible deviations perceived by agents from a reference individual that

maximizes SEU according to distribution Q̄ and utility u(.).

The convergence notion of the reminder of the approximation, as described in

equation (4), defines the notion of “small” used here. The intuition is that the random

component of wealth must be small enough such that the end-of-period wealth is not very

different from initial wealth.
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MMR [2011a; p. 9] decompose ambiguous random variables into three orthogonal

components. They claim that for each h ∈ L2, there exist unique h̄ ∈ R, h∗ ∈ M , with

E
Q̄

[h∗] = 0 and h⊥ ∈ M⊥, such that h = h̄ + h∗ + h⊥, where

M = {h ∈ L2 : σ2
µ
(E[h]) = 0}.

Define σ2
Q̄

(h) = σ2
Q̄

(h∗) + σ2
Q̄

(h⊥) and σ2
µ
(E[h]) = σ2

µ
(E[h⊥]). Further, h̄ is the risk-free

component of random variable h, h∗ is a fair risky gamble (i.e., a gamble with zero expected

payoff ) and h⊥ is its residual ambiguous component. MMR [2011a] show three possible

configurations of a random variable. First, a gamble represented by random variable h is

risk-free if and only if h∗ = h⊥ = 0. Second, it is risky and unambiguous if and only if

h = h̄ + h⊥, because σ2
Q̄

(h) = σ2
Q̄

(h∗) and σ2
µ
(E[h⊥]) = 0. Finally, the gamble is ambiguous if

and only if h∗ and h⊥ different from zero.

There are several advantages of the approach to modelling ambiguity aversion used

here. KMM [2005, p. 1868] claim that their representation allows for a separation of ambiguity

and attitudes towards it, which provides a theoretical basis for undertaking comparative statics

of ambiguity. Additionally, by adopting the MMR approximation, the KMM model becomes

tractable and comparable to previous literature using the de Arrow-Pratt approximation, of

course at the cost of generality that any approximation is exposed to.

2. Insurance Choices under Ambiguity

In this section I develop a model of coinsurance demand when the DM perceives the

potential loss as ambiguous with and without a non-traded asset. I evaluate the robustness of

some standard results in the insurance literature that assumes SEU, namely:4

1. Full coverage is optimal if coinsurance is available at a fair price. This is the Mossin

Theorem developed in Mossin [1968]. Smith [1968] found similar results, thus I refer to

this result as the Mossin-Smith Theorem.
4See Appendices B and C for the detailed derivation of the following results.
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2. An increase in the degree of risk aversion will lead to an increase in the optimal

demand for insurance at all levels of wealth. This result is a direct consequence of a

standard result independently derived by Pratt [1964; p. 136] and Arrow [1963], thus I

refer to it as the Pratt-Arrow result. They showed that an increase in absolute risk

aversion decreases the demand for a risky asset. This would imply that a risk averse

agent will demand more insurance to cover the loss than another individual that is less

risk averse.5

3. If a subject exhibits decreasing absolute risk aversion (DARA), the optimal coinsurance

demand decreases when initial wealth increases because her risk tolerance increases.

Similar intuitive arguments can be made about CARA and IARA. However,

Schlesinger [2000, p. 136] warns that “each of these conditions [DARA, CARA and

IARA] is shown to be sufficient for the comparative-static effects[...], though not

necessary."

4. The introduction of a non-traded asset, such as human capital, can significantly change

some of the standard results. Mayers and Smith [1983] were the first to emphasize the

importance of studying insurance decisions in the presence of traded and non-traded

assets. Doherty [1984; p. 209] showed that the Mossin-Smith theorem only holds if the

covariance between the non-traded asset and the insurable loss is negative. Following

the terminology in Mayers and Smith [1983; p. 308], this covariance represents the

individual’s incentives to “self-insure". The sign of this covariance makes the insurance

demand lower, equal or higher than in the absence of the non-traded asset. However, I

prefer to use the term “self-hedging” to avoid confusion with the usage of

“self-insurance” in the literature.6 The intuition is that even if the insurance premium

is fair, the DM might still not be willing to fully insure if she can compensate high
5In the context of insurance, the risky asset would be the retained loss. Thus, more insurance would translate

into a lower exposure to the risky asset.
6Schlesinger [2000; p. 139] defines self-insurance as a mechanism that “lowers the financial severity of any loss

that occurs".
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losses with high realizations of her human capital. However, if the covariance is

negative, the individual might want to fully insure if a health shock negatively affects

her productivity, which would undermine her human capital. Finally, the introduction

of a risky non-traded asset does not affect the Arrow-Pratt result.

I now turn to check the robustness of these results when ambiguity matters to individuals.

A. Model for Coinsurance Demand under Ambiguity

Consider a DM with initial wealth W0 and exposed to a potential loss h that she

perceives as ambiguous. Assume she is ambiguity averse. Thus, she behaves as if there is a

bounded set ∆ of possible probability distributions of h, with probability measure µ over that

set. If the DM was ambiguity neutral, the compound probability distribution Q̄ would be the

only element in ∆. This is the case of a subject that complies with the postulates in Savage

[1972] and behaves as if she maximizes the SEU defined by probability distribution Q̄ and

utility function u(.). MMR’s orthogonal decomposition of ambiguous acts implies that

h = E
Q̄

[h] + h∗ + h⊥, with h∗ ∈ M and h⊥ ∈ M⊥.

There is a risk neutral and ambiguity neutral insurer that is willing to offer the DM a

coinsurance contract7 that covers a fraction α ∈ (0, 1] of losses and in exchange for a premium

π per unit of insurance. I assume that the insurer shares with the DM the same (compound)

probability distribution Q̄ of h and calculates the premium per unit of insurance according to

π = (1 + m)E
Q̄

[h], where m ≥ 0 is the insurance loading that does not include any ambiguity

charge. It is restrictive to assume that the insurer is both risk and ambiguity neutral and shares

with the DM the compound distribution Q̄. However, section 3 studies deviations from these

restrictive assumptions.

If the DM buys insurance, her ambiguous end-of-period wealth is

W = W0 − h − απ + αh. I assume that the DM’s preferences have a KMM representation with
7I focus in this section only on coinsurance contracts and deal later with the optimality of this type of contract

and aversion towards ambiguity of the insurer.
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concave functions u(.) and φ(.) which, respectively, represent her aversion towards risk and

ambiguity. Consequently, her maximization problem is:

max
α

�

∆
φ

��

S

u(W )dQ
�

dµ (5)

subject to: W = W0 − h − απ + αh

Using the MMR quadratic approximation, this problem can be approximated by:

max
α

E
Q̄

[W ] − θ

2σ2
Q̄

(W ) − γ

2σ2
µ
(E[W ]) (6)

subject to: W = W0 − h − απ + αh

where θ and γ capture the degree of aversion towards risk and ambiguity, respectively.

The definition of the end-of-period wealth, the insurance premium and the tripartite

decomposition of h imply the following:

E
Q̄

[W ] = W0 − E
Q̄

[h] − α(1 + m)E
Q̄

[h] + αE
Q̄

[h] = W0 − (1 + αm)E
Q̄

[h]

σ2
Q̄

(W ) = (1 − α)2σ2
Q̄

(h) = (1 − α)2[σ2
Q̄

(h∗) + σ2
Q̄

(h⊥)], and

σ2
Q̄

(E[W ]) = (1 − α)2σ2
Q̄

(E[h⊥])

Substituting the restriction into the objective function and differentiating with respect

to α, the first order condition is:

[α] : − mE
Q̄

[h] − θ

2{2(1 − α)(−1)[σ2
Q̄

(h∗) + σ2
Q̄

(h⊥)]}

− γ

2
�
2(1 − α)(−1)σ2

µ
(E[h⊥])

�
= 0

(7)

The optimal demand for coinsurance is:8

αM1∗
amb

= 1 −
mE

Q̄
[h]

θ[σ2
Q̄

(h∗) + σ2
Q̄

(h⊥)] + γσ2
µ
(E[h⊥]) (8)

8The second order condition is satisfied.

11



To facilitate comparison, I assume that a DM that faces only risk (i.e., σ2
µ
(E[h⊥]) = 0),

uses an objective distribution that is equal to the compound distribution Q̄ to make choices.

Under these conditions, the optimal insurance demand is defined by:

αM1∗
risk

= 1 −
mE

Q̄
[h]

θ[σ2
Q̄

(h∗) + σ2
Q̄

(h⊥)] (9)

Alternatively, we can also interpret equation (9) in the light of a risk averse but

ambiguity neutral individual. In the KMM framework, this agent is equivalent to a DM with

the SEU preference representation given by utility u(.) and reduced compound distribution Q̄.

Comparative Statics of Risk and Ambiguity Attitudes

The Mossin-Smith theorem is robust to the introduction of ambiguity, because

αM1∗
amb

= 1 if and only if m = 0. This can easily be seen from the definition of αM1∗
amb

. Alary,

Gollier and Treich [2010; p. 9] found a similar result.

Moreover, in the presence of ambiguity and ambiguity aversion, the direction of the

Pratt-Arrow result is not affected, so an increase in risk aversion increases the insurance

demand. Nevertheless, as we will see in the next section, this result may not hold in the

presence of a non-traded asset. Assuming m > 0 such that αM1∗
amb

∈ (0, 1), the following

derivative proves this statement:

∂αM1∗
amb

∂θ
= mE

Q̄
[h]

{θσ2
Q̄

(h) + γσ2
µ
(E[h⊥])}2 [σ2

Q̄
(h)] > 0 (10)

with σ2
Q̄

(h) = σ2
Q̄

(h∗) + σ2
Q̄

(h⊥).

However, there is a second order difference with respect to the baseline model with

only risk. The response of the insurance demand of an ambiguity averse agent to marginal

increases in risk aversion is lower than that of an ambiguity neutral agent (i.e.,

0 <
∂α

M1∗
amb
∂θ

<
∂α

M1∗
risk
∂θ

), ceteris paribus. More generally, higher ambiguity aversion decreases the

response of the insurance demand to higher risk aversion, i.e. ∂
2
α

M1∗
amb

∂θ∂γ
< 0. This implies that
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ambiguity averse individuals will increase insurance when risk aversion is higher, but at a

slower rate than less ambiguity averse agents.

The intuition of this counterintuitive result is as follows. In the first order condition of

the DM’s maximization problem, the first term is the marginal cost of increasing insurance

demand and the other two are the marginal benefits of reducing risk and ambiguity:

−mE
Q̄

[h]
� �� �
Marginal cost

+ θ{(1 − α)[σ2
Q̄

(h∗) + σ2
Q̄

(h⊥)]}
� �� �

Risk reduction marginal benefit

+ γ
�
(1 − α)σ2

µ
(E[h⊥])

�

� �� �
Ambiguity reduction marginal benefit

= 0

Higher ambiguity aversion makes a marginal increase in insurance more valuable.

Therefore, when risk aversion increases and more insurance is required to reduce variance, a

smaller increase in insurance is needed when ambiguity aversion is higher because the

additional coverage provides the double benefit of reducing risk and ambiguity.9

Moreover, given a level of risk aversion and subjective probability Q̄, an ambiguity

averse agent will demand more (co)insurance at the optimum than an ambiguity neutral

individual (i.e., αM1∗
amb

> αM1∗
risk

). Alary, Gollier and Treich [2010; p. 12] showed that this is a

general result for two states of nature. My tractable framework allows us to derive a “local”

version of this result: An increase in absolute ambiguity aversion increases the optimal insurance

demand. The following derivative proves this proposition:

∂αM1∗
amb

∂γ
= mE

Q̄
[h]

{θσ2
Q̄

(h) + γσ2
µ
(E[h⊥])}2 [σ2

µ
(E[h⊥])] > 0 (11)

The Effects of Changes in Initial Wealth

It is usually assumed that people become less risk averse as they get wealthier. There

are two important definitions of decreasing aversion in the economic literature. The first

definition states that, in the portfolio choice problem with one safe and one risky assets, the
9This is a prediction that could be tested in the laboratory. If one is able to identify risk and ambiguity attitudes,

then one could rank individuals according to risk aversion. The prediction above says that, an observed increase
in risk aversion from θ1 to θ2 should increase more the insurance demand in the group of ambiguity neutral
individuals than in the group of ambiguity averse agents.
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optimal demand for the risky asset is increasing in wealth (Arrow [1963]; Pratt [1964; p. 136]).

The second definition states that an individual has “decreasing aversion if any risk that is

undesirable at some specific wealth level is also undesirable at all smaller wealth levels”

(Cherbonnier and Gollier [ 2011; p. 1]). In the expected utility model both definitions of

decreasing aversion are equivalent. A necessary and sufficient condition for this equivalency to

hold is that the utility function u exhibits decreasing absolute risk aversion. One would expect

that a similar condition would hold in the presence of ambiguity.

However, Chebonnier and Gollier [2011; p. 18] show, in a general setting of the KMM

model, that the equivalency of the two definitions above does not hold in general. They

demonstrate that restrictions on risk and ambiguity attitudes are sufficient to guarantee that

any uncertain situation that is undesirable at one wealth level is also undesirable at a lower

wealth level. Nevertheless, they show that one has to impose restrictions on both risk and

ambiguity attitudes, as well as on the ambiguity structure, to guarantee that an increase in

wealth will increase the demand of an ambiguous asset.

Since there is a close relationship between the portfolio choice and the coinsurance

choice problems (see Schlesinger [2000; p. 135]), the results in Chebonnier and Gollier [2011]

also apply to the choice of the optimal coinsurance rate.

I show below that in the “small,” in the spirit of Pratt [1964] and as discussed by MMR

[2011b], restrictions on risk and ambiguity attitudes are sufficient to guarantee that the optimal

coinsurance demand is decreasing in wealth. This discrepancy between the small and the large

is not uncommon.10

In the expected utility model, individual’s risk preferences are represented by u and

exhibit DARA if and only if −u��(x)/u�(x) is decreasing in x. Similarly, ambiguity attitudes in

the KMM model exhibit decreasing absolute ambiguity aversion (DAAA) if −φ��(z)/φ�(z) is

decreasing in z. The following definition characterizes this property for any function as
10For instance, in the classical expected utility model, “a necessary and sufficient condition for any pure small

background risk to reduce the optimal exposure to other risks... is just necessary if one wants the comparative
statics property to hold for any risk” (Eeckhoudt and Gollier [2000; p. 126]).
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decreasing concavity.

Definition 1 (Cherbonnier and Gollier [2011; p. 3]): A function f : R → R satisfies

(weak) Decreasing Concavity (DC) if −f �/f �� is non-increasing.

A fact that I will use in the proposition below is that σ2
Q̄

(h) > σ2
µ
(E[h]) (see Lemma 1

in Appendix A). This means that the subjective variance of E[h], the measure of ambiguity in

MMR [2010], is always going to be smaller than the subjective variance of h calculated with the

compound distribution Q̄.11

An important component of the KMM model is the function v = φ ◦ u. In fact, one of

the key assumptions in KMM [2004; p. 1855] is that subjects behave according to SEU, derived

from v and µ, when they are presented with second order acts.12 We are now ready to state the

first proposition.

Proposition 1: Assume m > 0. An increase in the initial wealth level W0 reduces the

optimal insurance demand if u and v = φ ◦ u satisfy DC.

Proof. See Appendix A.

Proposition 1 implies that, in the “small,” restrictions on risk and ambiguity attitudes

of the KMM model are sufficient to guarantee that the optimal coinsurance demand under

ambiguity is decreasing in wealth. No additional restrictions on the ambiguity structure are

needed, like the ones imposed by Cherbonnier and Gollier [2011] in a general setting, to obtain

the desired comparative static.13

11This is easily seen in a simple example. Suppose h ∈ {0, 100}, and the probability distribution could be either
{.25, .75} or {.75, .25}. Also assume that the subjective weights over these distributions are such that µ1 = µ2 = .5.
Then, σ

2
Q̄

(h) = 2500 > 625 = σ
2
µ
(E[h]).

12The Ellsberg thought experiment can be represented by a second order urn that is ambiguous to subjects and
that defines the possible configurations of the first order urn used to illustrate the Ellsberg paradox. A bet on the
second order urn is a second order act.

13This result is potentially important for possible experimental applications attempting to test the predictions of
models under ambiguity like the ones in this study. An experimenter trying to test such a model under ambiguity
in the “small” will have to identify risk and ambiguity attitudes, as well as the perceived ambiguity, but does not
have to control for the structure of ambiguity to test certain theoretical predictions.

15



B. Model for Coinsurance Demand in the Presence of Ambiguity and a Non-traded Asset

Suppose that the DM faces the same insurance decision as before, except that the

individual owns a non-tradable and uninsurable asset (e.g., human capital) with risky return H

that might be correlated with the loss. I argue that it could be reasonable to assume that

subjects have a better idea about the uncertainty of their human capital, thus treating it as risk;

meanwhile they may have ambiguous information about events that can negatively affect their

health such as a genetic chronic disease. Although it is a fair question to ask if people perceive

human capital as risky or ambiguous, this choice is more for expositional purposes since it

allows us to study the potential trade-offs that agents might face in the presence of both risk

and ambiguity.

As before, the risk and ambiguity neutral insurer offers coinsurance α ∈ (0, 1] and

charges an insurance premium π = (1 + m)E
Q̄

[h]. Consequently, the ambiguous end-of-period

wealth is W = W0 + H − h − απ + αh. The MMR orthogonal decomposition implies that

h = E
Q̄

[h] + h∗ + h⊥ and H = E
Q̄

[H] + H∗. Thus the maximization problem is:

max
α

E
Q̄

[W ] − θ

2σ2
Q̄

(W ) − γ

2σ2
µ
(E[W ]) (12)

where

E
Q̄

[W ] = W0 + E
Q̄

[H] − (1 + αm)E
Q̄

[h]

σ2
Q̄

(W ) = σ2
Q̄

(H∗) + (1 − α)2[σ2
Q̄

(h∗) + σ2
Q̄

(h⊥)] − 2(1 − α)cov
Q̄

(H∗, h∗)

σ2
µ
(E[W ]) = (1 − α)2σ2

µ
(E[h⊥])

The covariance between H and h is defined as cov
Q̄

(H∗, h∗), because the ambiguous

component of the loss (h⊥) is orthogonal to the elements of set M (the set of risky and risk-free

gambles). The joint probability distribution Q̄ is the DM’s best estimate to model the process

driving the movements of H and h. The ambiguity of h implies that the DM behaves as if there

were many joint distributions Qi. The interpretation of this ambiguous situation is that the

individual behaves as if he was sure about the marginal distribution in the direction of H , but is
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unsure about the marginal distribution of h. The distribution Q̄ is the DM’s best estimate of

the joint distribution that is calculated by taking the average over the reasonably possible joint

distributions with respect to a probability measure µ. The perceived ambiguity in the

end-of-period wealth arises from h⊥, and is captured by σ2
µ
(E[h⊥]).

Taking the derivative with respect to α, the first order condition is:

[α] : − mE
Q̄

[h] − θ

2{2(1 − α)(−1)[σ2
Q̄

(h∗) + σ2
Q̄

(h⊥)] − 2(−1)cov
Q̄

(H∗, h∗)}

− γ

2{2(1 − α)(−1)σ2
µ
(E[h⊥])} = 0

(13)

The optimal demand for insurance is:

αM2∗
amb

= 1 −
mE

Q̄
[h]

θσ2
Q̄

(h) + γσ2
µ
(E[h⊥]) −

cov
Q̄

(H∗, h∗)
σ2

Q̄
(h) + γ

θ
σ2

µ
(E[h⊥]) (14)

where σ2
Q̄

(h) = σ2
Q̄

(h∗) + σ2
Q̄

(h⊥).

For comparison purposes, an ambiguity neutral but risk averse DM that has a

subjective distribution Q̄, will exhibit an optimal insurance demand defined by:

αM2∗
risk

= 1 −
mE

Q̄
[h]

θσ2
Q̄

(h) −
cov

Q̄
(H∗, h∗)

σ2
Q̄

(h) (15)

Comparative Statics of Risk and Ambiguity Attitudes

The optimality of full insurance is not qualitatively changed by the introduction of

ambiguity and a non-traded asset. As shown by Doherty [1984], the Mossin-Smith theorem

holds only if cov
Q̄

(H∗, h∗) ≤ 0. However, there is a quantitative difference that I explain in the

next paragraph.

Given the same level of risk aversion and subjective probability distribution Q̄, an

ambiguity averse agent will demand more (co)insurance at the optimum than an ambiguity

neutral individual, because αM2∗
amb

> αM2∗
risk

. The inclusion of a non-traded asset does not change

significantly a similar result shown by Alary, Gollier and Treich [2010; p. 12]. They show that,
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for two states of nature and given risk aversion, an ambiguity averse agent demands more

insurance than an ambiguity neutral person when insurance decisions are modeled in isolation.

However, depending on the sign and level of covariance, the optimal demand αM2∗
amb

can be

smaller, equal or greater than αM1∗
amb

and/or αM1∗
risk

. Finally, as the next proposition shows, my

tractable model allows us to derive a “local” version of the comparative static of ambiguity

attitudes.

Proposition 2: In the presence of ambiguity and aversion towards it, if the incentives

to self-hedge, represented by cov
Q̄

(H∗, h∗), are low (high) enough, more ambiguity aversion

decreases (increases) the optimal demand for insurance.

Proof.

∂αM2∗
amb

∂γ
= −

mE
Q̄

[h][−σ2
Q̄

(h⊥)]
[θσ2

Q̄
(h) + γσ2

µ
(E[h⊥])]2 −



−
cov

Q̄
(H∗, h∗)

�
σ

2
µ(E[h⊥])

θ

�

σ2
Q̄

(h) + γ

θ
σ2

µ
(E[h⊥])]2





=
[mE

Q̄
[h] + θcov

Q̄
(H∗, h∗)]σ2

µ
(E[h⊥])

[θσ2
Q̄

(h) + γσ2
µ
(E[h⊥])]2

Define a threshold covariance κM2∗
H,h;γ = −mEQ̄[h]

θ
. Therefore,

∂αM2∗
amb

∂γ
=






< 0, if cov
Q̄

(H∗, h∗) < κM2∗
H,h;γ

= 0, if cov
Q̄

(H∗, h∗) = κM2∗
H,h;γ

> 0, if cov
Q̄

(H∗, h∗) > κM2∗
H,h;γ

(16)

�

The optimal demand αM2∗
amb

is always greater than one whenever cov
Q̄

(H∗, h∗) < κM2∗
H,h;γ .

If the supply of insurance is restricted to [0, 1], then we would only observe that ∂α
M2∗
amb

∂γ
≥ 0.

This is consistent with Alary, Gollier and Treich [2010] who found that the demand for

insurance is increasing in ambiguity aversion when the insurance decisions are made in

isolation. However, if the agent is allowed to own a non-traded asset, to have an insurance
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demand greater than one and cov
Q̄

(H∗, h∗) < κM2∗
H,h;γ , she will reduce her demand for insurance

when ambiguity aversion increases.

Gollier [2009] found that under certain conditions more ambiguity aversion can

increase the demand for the ambiguous asset. We can infer that if my model is framed in a

portfolio choice context without restrictions on the asset demand, the incentives to “self-hedge”

may constitute a rationale different from Gollier [2009] to explain why more ambiguity

aversion might increase the demand for the uncertain asset.

An important result is that the introduction of ambiguity and a non-traded asset may

contradict the Pratt-Arrow result that insurance demand increases with risk aversion. I state

the result in the following proposition and explain its rationale in the next section.

Proposition 3: When ambiguity matters to the individual, an increase in risk aversion

may or may not increase the demand for insurance depending on the incentives to “self hedge”

created by cov(H∗, h∗).

Proof: The derivative of the optimal insurance demand with respect to the absolute risk

aversion coefficient is given by:

∂αM2∗
amb

∂θ
= −



−
mE

Q̄
[h] × [σ2

Q̄
(h∗) + σ2

Q̄
(h⊥)]

[θ[σ2
Q̄

(h∗) + σ2
Q̄

(h⊥)] + γσ2
µ
(E[h⊥])]2





−



−
cov

Q̄
(H∗, h∗) ×

�
−γ×σ

2
µ(E[h⊥])

θ2

�

[[σ2
Q̄

(h∗) + σ2
Q̄

(h⊥)] + γ

θ
σ2

µ
(E[h⊥])]2





=
mE

Q̄
[h] × [σ2

Q̄
(h∗) + σ2

Q̄
(h⊥)] − γcov

Q̄
(H∗, h∗)σ2

µ
(E[h⊥])

[θ[σ2
Q̄

(h∗) + σ2
Q̄

(h⊥)] + γσ2
µ
(E[h⊥])]2

(17)

Define a threshold covariance κM2∗
H,h;θ = mEQ̄[h]

γ
×

σ
2
Q̄

(h∗)+σ
2
Q̄

(h⊥)
σ2

µ(E[h⊥]) . Therefore,

∂αM2∗
amb

∂θ
=






> 0, if cov
Q̄

(H∗, h∗) < κM2∗
H,h;θ

= 0, if cov
Q̄

(H∗, h∗) = κM2∗
H,h;θ

< 0, if cov
Q̄

(H∗, h∗) > κM2∗
H,h;θ

(18)
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In the limit, when the agent behaves as a SEU-maximizer, we obtain the Pratt-Arrow

result because the optimal insurance demand will be non-decreasing in risk aversion. When the

ambiguity averse agent converges to an SEU-maximizer (γ → 0) or ambiguity disappears

(σ2
µ
(E[h⊥]) → 0), the threshold κM2∗

H,h;θ will never be reached for variables with finite covariance.

Thus, we would only observe that ∂α
M2∗
amb
∂θ

> 0. However, proposition 3 shows an exception to

Pratt-Arrow result that arises when ambiguity and a non-traded asset are present. The rationale

of this counterintuitive result, which I explain in the next section, relies on possible trade-offs

between risk and ambiguity that the DM must solve.

A Trade-off between Risk and Ambiguity: Are Subjects Behaving “Inefficiently”?

The Pratt-Arrow result with only risk, or with ambiguity but with a SEU-maximizer,

implies that more risk aversion increases the insurance demand because the lower variance that

higher risk aversion demands can always be met with more insurance. In Proposition 3 I

showed that if ambiguity matters to the agent and there is a non-traded asset, more risk

aversion does not always increase the insurance demand. The reason is that in this environment

the lower variance of wealth required by an increase in risk aversion is not necessarily achieved

through more insurance if the incentives to self-hedge are high enough.

The source for this counterintuitive result is that the DM might have to face a potential

trade-off between risk and ambiguity that depends on the incentives to self-hedge. This can

induce the subject to behave as if she was choosing voluntarily a risk allocation that is

“inefficient” from a SEU perspective. However, this allocation might be optimal once

ambiguity is taken into account. I explain below the origin of the risk-ambiguity trade-off by

expressing the insurance problem in the form of a portfolio problem. This will allows me to

draw some possible implications of my results to the theory of portfolio.

The insurance decision problem can be interpreted as a portfolio problem (Schlesinger

[2000; p. 135]), since a higher (lower) demand for insurance is equivalent to a lower (higher)
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demand for the risky asset. Therefore, I can define a mean-variance frontier, in the same spirit

as the financial literature, by finding the locus of {σ2
Q̄

(W (α)), EQ[W (α)]} pairs generated by

every value α ∈ [0, 1]. Define α∗
MinV ar

= 1 − cov(H∗
,h

∗)
σ

2
Q̄

(h) as the insurance level that provides the

wealth with minimum variance.14 Moreover, suppose that α∗
MinV ar

∈ (0, 1), which is

guaranteed by cov(H∗, h∗) ∈ (0, σ2
Q̄

(h)).

The efficient (inefficient) portion of the mean-variance frontier is usually defined as the

set of mean-variance allocations that offer the highest (lowest) expected wealth at a given level

of risk. In my framework, the efficient (inefficient) part of the frontier is defined as the set of

{σ2
Q̄

(W (α)), EQ[W (α)]} pairs where
d σ

2
Q̄

(W (α))
d EQ̄[W (α)] > (<)0 (See Lemma 2 in the Appendix A).

Definition 2: The mean-variance allocation {σ2
Q̄

(W (α)), EQ[W (α)]} will be located

on the SEU-efficient (SEU-inefficient) part of the frontier whenever the insurance demand

α < α∗
MinV ar

(α > α∗
MinV ar

).

I refer to the efficient (inefficient) region as the SEU-efficient (SEU-inefficient) part of the

frontier. This emphasizes the fact that a subject, who would appear inefficient in the light of

SEU theory, might optimally choose such an allocation to deal both with risk and ambiguity. I

show below that this is the case under certain conditions.

Proposition 4: Assume that the loss h is ambiguous and the non-traded asset H is

risky. An ambiguity neutral agent will choose an optimal mean-variance allocation that will be

located on the SEU-efficient region of the frontier.

This proposition is obvious since a subject that does not care about ambiguity and

behaves according to Savage [1972], will choose an allocation that maximizes expected wealth

given a certain level of variance.

Proof. According to definition 2, the optimal allocation

{σ2
Q̄

(W (αM3∗
risk

)), E
Q̄

[W (αM3∗
risk

)]} induced by αM2∗
risk

will be located on the efficient part of the

frontier because:

αM2∗
risk

= 1 − mEQ̄[h]
θσ

2
Q̄

(h) − covQ̄(H∗
,h

∗)
σ

2
Q̄

(h) < 1 − cov(H∗
,h

∗)
σ

2
Q̄

(h) = α∗
MinV ar

14This is easily found by minimizing σ
2
Q̄

(W ) with respect to α.
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Figure 1: Portfolio Problem Interpretation of a Simple Insurance Decision. Parametric assumptions: θ = γ = 2, σ
2
Q̄

(h∗) + σ
2
Q̄

(h⊥) =
σ

2
µ(E[h⊥]) = 1, W0 = 1000, covQ̄(H∗

, h
∗) = 0.3, m = .01, EQ̄[H] = 100 and EQ̄[h] = 5. The isocurve contains the {σ

2
Q̄

(W ), EQ[W ]}
pairs that make the individual indifferent to the optimal allocation which is determined by the tangency with the mean-variance frontier.

Figure 1 shows the optimal mean variance allocation induced by the optimal insurance

demand of a SEU maximizer. In the particular parametrization used to construct the figure,

this optimal demand is αM2∗
risk

= 67.5% (see the tangency of the isocurve and the mean-variance

frontier). Remember that, according to definition 2, a mean-variance allocation will be

SEU-efficient if the optimal insurance demand is less than the coinsurance demand that

provides minimum variance, which is α∗
MinV ar

= 70% in Figure 1. Although it is still possible

in this example for the DM to choose an insurance coverage above α∗
MinV ar

, she will not do it

so because there is still an attainable allocation (in the SEU-efficient part of the frontier) that

provides higher expected return for the same variance. Finally, if cov(H∗, h∗) < 0 then

α∗
MinV ar

= 100%, provided the insurer only offers coinsurance α ∈ (0, 1]; as a consequence all

mean-variance allocations induced by α ∈ (0, 1] will be located in the SEU-efficient region of

the frontier.
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In the presence of ambiguity, the optimal risk-return allocation will not always be

located in the efficient part of the frontier because high incentives to self-hedge (i.e.,

cov(H∗, h∗) > κM2∗
H,h;θ) create a trade-off between the variance and ambiguity of wealth. Thus,

the individual would appear to be “SEU-inefficient”, however such action is optimal in the

presence of the ambiguity dimension.

Proposition 5. Suppose that an ambiguity and risk averse agent is exposed to an

ambiguous loss h and owns a risky non-traded asset H . Whenever the incentives to “self-hedge”

are high (low) enough, i.e., cov
Q̄

(H∗, h∗) > (<)κM2∗
H,h;θ, the optimal mean-variance allocation

{σ2
Q̄

(W (αM4∗
amb

)), E
Q̄

[W (αM2∗
amb

)]} induced by αM2∗
amb

will be located on the SEU-inefficient

(SEU-efficient) part of the frontier. More formally,

d σ2
Q̄

(W (α))
d E

Q̄
[W (α)]

����
α=α

M2∗
amb

=






> 0, if cov
Q̄

(H∗, h∗) < κM2∗
H,h;θ

= 0, if cov
Q̄

(H∗, h∗) = κM2∗
H,h;θ

< 0, if cov
Q̄

(H∗, h∗) > κM2∗
H,h;θ

(19)

where κM2∗
H,h;θ = mEQ̄[h]

γ
×

σ
2
Q̄

(h∗)+σ
2
Q̄

(h⊥)
σ2

µ(E[h⊥]) > 0.

Proof. See Appendix A.

To prove the proposition I show that the position of the SEU-efficient mean-variance

allocation on the frontier depends on the incentives to “self-hedge” by comparing the optimal

insurance demand with α∗
MinV ar

.

When the incentives to self-hedge are high enough (cov(H∗, h∗) > κM2∗
H,h;θ), the optimal

risk-return allocation of an ambiguity averse individual will be located on the SEU-inefficient

part of the frontier, because αM2∗
amb

> α∗
MinV ar

. The individual would appear to be

SEU-inefficient because she will buy more insurance than a SEU-maximizer would buy in the

same situation. However, in the presence of ambiguity and aversion towards it, this

“additional” demand for insurance is optimal.

Figure 2 shows an example of an optimal allocation that is seemingly SEU-inefficient
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but completely optimal when the ambiguity domain is taken into account. According to

definition 2, the optimal insurance demand αM2∗
amb

= 83.8% (see tangency of isocurve and

mean-variance frontier) would be SEU-inefficent because it is greater than αMinV ar = 70%.

However, one has to take into account the ambiguity dimension.

Figure 2: Optimal Choice in the Risky Domain in the Presence of Ambiguity. Parametric assumptions: θ = γ = 2, σ
2
Q̄

(h∗) + σ
2
Q̄

(h⊥) =
σ

2
µ(E[h⊥]) = 1, W0 = 1000, covQ̄(H∗

, h
∗) = 0.3, m = .01, EQ̄[H] = 100 and EQ̄[h] = 5.

Figure 3 shows the “mean-ambiguity” frontier that a subject faces in the presence of

ambiguity as well as the isocurve that contains the optimal mean-ambiguity allocation

{σ2
µ
(W (αM2∗

amb
), E

Q̄
[W (αM2∗

amb
)]}. If the individual was an SEU-maximizer, she would exhibit an

insurance demand of αM2∗
risk

= 67.5%. However, she would have to bear more ambiguity

(σ2
µ
(W (αM2∗

risk
)) = 0.11) than she would be willing to accept if she was ambiguity averse (

σ2
µ
(W (αM2∗

amb
)) = 0.03). Thus, when incentives to self-hedge are high (cov

Q̄
(H∗, h∗) > κM2∗

H,h;θ), the

ambiguity averse individual will demand a level of insurance that seems excessive from an

classical SEU perspective in order to reduced ambiguity to the desired level.

The exhibited SEU-inefficient type of behavior that I just described arises from a

trade-off between risk and ambiguity that the DM must resolve. The intuition is that under
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Figure 3: Optimal Choice in the Ambiguity Domain. Parametric assumptions: θ = γ = 2, σ
2
Q̄

(h∗) + σ
2
Q̄

(h⊥) = σ
2
µ(E[h⊥]) = 1, W0 =

1000, covQ̄(H∗
, h

∗) = 0.3, m = .01, EQ̄[H] = 100 and EQ̄[h] = 5.

certain conditions, more insurance does not necessarily reduce variance and ambiguity at the

same time. Figure 4 shows the locus of risk/ambiguity {σ2
Q̄

(W ), σ2
µ
(EQ[W ])} pairs that are

attainable for any given level of insurance demand α ∈ [0, 1]. An increase in the coinsurance

demand moves the DM from right to left in the figure. For instance, Figure 4 emphasizes at the

top right corner the case where the DM does not insure at all (α = 0) and at the lower left

corner the case when the DM is fully insured (α = 1).

The parametrization for the example in the Figure 4 was carefully chosen to exemplify

the situation in which it is not always possible to reduce variance and ambiguity at the same

time. This is represented by the non-monotonicity of the curve in Figure 4. The first part of

the curve that is decreasing indicates that more insurance decreases ambiguity but increases

variance. The part of the figure that is increasing indicates that buying more insurance

decreases both ambiguity and variance in that region. The non-monotonicity is present only

when cov
Q̄

(H∗, h∗) > 0;15 however, its mere presence does not imply that a DM will exhibit a
15It is easily shown that the curve defined by the locus of the {σ

2
Q̄

(W ), σ
2
µ
(EQ[W ])} pairs is non-monotonic if
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SEU-inefficient type of behavior. We need the stronger condition that

cov
Q̄

(H∗, h∗) > κM2∗
H,h;θ > 0, identified in proposition 5. Therefore, a DM will behave as if she

was SEU-inefficient, but optimally if ambiguity is taken into account, when the incentives to

self-hedge are sufficiently high.

Figure 4: Risk/Ambiguity Trade-off and Optimal Choice. Parametric assumptions: θ = γ = 2, σ
2
Q̄

(h∗) + σ
2
Q̄

(h⊥) = σ
2
µ(E[h⊥]) =

1�
W0 = 1000, covQ̄(H∗

, h
∗) = 0.3, m = .01, EQ̄[H] = 100 and EQ̄[h] = 5. The figure shows the {σ

2
Q̄

(W ), σ
2
µ(EQ[W ])} pairs that can

be achieved for any value of coinsurance demand α ∈ [0, 1]. Three cases are emphasized in the figure: (i) α = 1, (ii) α = α
M2∗
amb = .8375, and

(iii) α = 0.

What is the intuition for ∂α
M2∗
amb
∂θ

< 0?

I can finally give a more comprehensive explanation for the intuitive result that more

risk aversion might reduce the coinsurance demand in the presence of ambiguity and a

non-traded asset. Proposition 3 and 5 show, respectively, that the same condition

(cov
Q̄

(H∗, h∗) < κM2∗
H,h;θ) is needed for ∂α

M2∗
amb
∂θ

to be positive and the optimal mean-variance

cov
Q̄

(H∗
, h

∗) > 0. This is done by noting that
dσ

2
Q̄

(W )
dσ2

µ(EQ[W ]) = 1
σ2

µ(EQ[W ])

�
σ

2
Q̄

(W ) − covQ̄(H
∗

,h
∗)

(1−α)

�
. The compara-

tive static
dσ

2
Q̄

(W )
dσ2

µ(EQ[W ]) is greater than 0 for any α ∈ [0, 1] if cov
Q̄

(H∗
, h

∗) < 0. If this covariance was positive, there

is always a given coinsurance demand for which
dσ

2
Q̄

(W )
dσ2

µ(EQ[W ]) is negative.

26



allocation to be on the SEU-efficient part of the frontier. The intuition is that in the

SEU-efficient part of the frontier the lower variance required by higher risk aversion can be

achieved by buying more insurance. This is possible because in this region of the frontier the

variance of wealth is decreasing in the insurance demand α.16

Nevertheless, when the optimal risk-return allocation is in the SEU-inefficient part of

the frontier, more risk aversion will decrease the demand for insurance. The reason is that the

reduction in variance required by higher risk aversion cannot be met through more insurance

under these conditions. When the individual buys more insurance, she reduces the variance of

loss h she is exposed to, i.e., (1 − α)2σ2
Q̄

(h). However, she also affects the self-hedging

possibilities because more insurance reduces the effective covariance she actually faces, i.e.,

(1 − α)cov(H∗, h∗).

When the optimal insurance demand is sufficiently high, such that αM2∗
amb

> α∗
MinV ar

, a

marginal increase in insurance also increases the variance of wealth because the reduction in

self-hedging possibilities outweighs the reduction in the variance of h. Under these conditions,

buying more insurance would increase the variance of wealth. Hence, an increment in risk

aversion induces a reduction in the insurance demand. In the example shown in Figure 3,

increasing the parameter of absolute risk aversion from 2 to 3 will decrease the optimal

insurance demand from 83.8% to 81%.

Finally, one could assume that the subject perceives both the non-traded asset and the

loss as ambiguous. Suppose the measure µ is a subjective joint distribution of beliefs about H

and h and covµ(E[H⊥], E[h⊥]) represents the incentives to self-hedge in the ambiguity domain.

One can infer that it is possible to have similar versions of proposition 4 and 6 for the

ambiguity domain. The bottom line is that that incentives to self-hedge are very important to

insurance and asset demand both in the risk and ambiguity domain.

16 ∂σ
2
Q̄

(W )
∂α

= −2(1 − α)σ2
Q̄

(h) + 2cov(H∗
, h

∗) < 0, if α < α
∗
MinV ar

= 1 − cov(H
∗

,h
∗)

σ
2
Q̄

(h) . By proposition 5,

α
M2∗
amb

< αMinV ar if cov
Q̄

(H∗
, h

∗) < κ
M2∗
H,h;θ. Thus, the variance of wealth is decreasing in the optimal insurance

demand (i.e.,
∂σ

2
Q̄

(W )
∂α

��
α=α

M2∗
amb

< 0) whenever cov
Q̄

(H∗
, h

∗) < κ
M2∗
H,h;θ.
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Trade-offs between Risk and Ambiguity in Portfolio Choice Problems

Cochrane [2007; p. 49] claims that in the multifactor efficient portfolio model

developed by Fama [1996] “typical investors do not hold mean-variance efficient portfolios...

[t]hey are willing to give up some mean-variance efficiency in return for a portfolio that hedges

the state variable innovations.” My model resembles the most simple case of such a model with

one asset and one non-traded asset that plays the role of a factor. Proposition 5 suggests that

there exist conditions under which ambiguity induces the subject to choose a SEU-inefficient

mean-variance allocation that even takes into account the covariance of the factor with the

other assets.

There is literature documenting the (SEU-)inefficiency in household portfolio and

studying its source (e.g., Benartzi [ 2001]; Polkovnichenko [2005]; Goetzmann and Kumar

[2008]). Typically, these studies propose a myriad of behavioral explanations for the

under-diversification of portfolios like familiarity bias, ignorance, overconfidence,

informational frictions, subjective beliefs and alternative preferences representations (e.g.

Rank-Dependent utility theory).

However, there is limited research on the presence of non-traded assets as another

possible explanation for the “seemingly” observed under-diversified portfolios, probably due to

the difficulty of getting detailed data on households. Massa and Simonov [2006] study a unique

data set of Swedish investors where they can identify various components of income, wealth

and demographic characteristics. Massa and Simonov [2006; p. 661 and 667] find evidence that

a wide range of investors do not hedge neither their financial assets nor their labor and

entrepreneurial income (i.e., returns of non-traded assets). They conclude that familiarity, the

tendency to invest in stocks that are geographically or professionally close to them, or that

have been held for a long period, affects investors’ hedging behavior and induces them to

behave inefficiently from a classical SEU perspective. In particular, Massa and Simonov [2006]

find that people tend to choose portfolio allocations that are positively correlated with their

labor income. However, individuals with greater wealth tend to pick asset allocations that are
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more in the lines of traditional portfolio theory. Another explanation within the SEU model is

that the subjective beliefs that investors use to make portfolio choices are different from the

ones used by researchers to define their notion of efficiency. The explanation below also

depends on subjective beliefs but departs from the SEU framework.

The issue of familiarity has a long tradition in experimental economics and was

originally studied in contexts with ambiguity. Heath and Tversky [1991] and Fox and Tversky

[1995] present experimental evidence in which they claim that subjects tend to prefer (or to

avoid) ambiguous prospects for which they feel they are more (less) familiar. This familiarity

interpretation was introduced as an explanation to typical behavior under ambiguity.

However, many of the familiarity interpretations can be formalized in terms of attitudes

towards ambiguity. In fact, studies such as Myung [2009] provide evidence to support the claim

that ambiguity aversion is related to the equity market home bias paradox and Boyle et al.

[2012] model the trade-offs between familiarity (modeled as attitudes towards ambiguity) and

diversification.

A generalization of my model that includes traded assets, non-traded assets and

insurance can offer an alternative explanation to the under-diversification puzzle of households.

Intuitively, the interaction of traded assets, non-traded assets and insurable assets, that can each

be ambiguous or not, can result in observed behavior that is “under-diversified” from a classical

SEU perspective but optimal from a broader perspective. The main message is that deviations

from the classical portfolio theory that assumes SEU can be explained by expanding the

concept of portfolio to non-traded assets, which has been recognized in the financial literature,

but more importantly to also allow for preference representations that can explain attitudes

towards ambiguity.

I present below a simple model that can explain the following two observations in

Massa and Simanov [2006]: (i) investors tend to hold stocks that are familiar to them and that

are positively correlated with their labor income; and (ii) wealthy individuals have a greater

tendency to pick stocks that can help hedging their labor income risk.
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Suppose a DM (who could be an individual or a household) with labor income H, and

that has the opportunity to invest part of his initial wealth W0 into two financial assets, X and

Y . For exposition purposes, assume that the DM perceives labor income H and asset X as

risky, while asset Y is perceived as ambiguous. Labor income could be modeled as an

ambiguous process but it is assumed risky for simplicity.17 In the spirit of Massa and Simonov

[2006], asset X can be understood as the set of stocks with which the DM is very familiar and

asset Y is the set of stocks that are less familiar to the DM. There is a joint probability

distribution Q̄ that the DM considers is the best estimate to model the process driving the

comovements of H , X and Y . The ambiguity of Y implies that the DM behaves as if there

were more than one joint distributions, each denoted by Qi. The interpretation of this

particular case is that the individual behaves as if he was sure about the marginal distributions

in the direction of H and X , but is unsure about the marginal distribution of Y . This results in

the individual behaving as if there was a myriad of reasonable possible distribution Qi with

i ∈ I and Q̄ his best estimate of the joint distribution. The latter is calculated by taking the

average over the many possible joint distributions with respect to a probability measure µ that

captures the beliefs that any of the reasonable possible joint distributions is the true one.

The MMR orthogonal decomposition implies that labor income and assets can be

expressed as H = E
Q̄

[H] + H∗, X = E
Q̄

[X] + X∗ and Y = E
Q̄

[Y ] + Y ∗ + Y ⊥. The subindex

Q̄ is used in the expectations operator to remind the reader that the mean of the random

variables is taken using the marginals of Q̄. Define α and β as the proportions of initial wealth

invested in asset X and Y , respectively, and there are no restrictions on these proportions. The

final wealth can be written as W = H + (1 − α − β)W0 + αX + βY . Thus the maximization
17For example, take the case of a dentist for whom income varies from month to month but she is very familiar

with the number of patients that might or might not come each month. In this case, the dentist might perceive
her labor income as risky. In contrast, think of a self-employed consultant that is just starting up his business.
He might have an idea of what a consultant can earn each month from the experience of others. However, this
situation could be perceived as ambiguous because he doesn’t have enough information to believe that his labor
income is going to follow the path of other colleagues’ income. In this case, the consultant might perceive his
income as ambiguous.
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problem is:

max
α

E
Q̄

[W ] − θ

2σ2
Q̄

(W ) − γ

2σ2
µ
(E[W ]) (20)

where

E
Q̄

[W ] = E
Q̄

[H] + (1 − α − β)W0 + αE
Q̄

[X] + βE
Q̄

[Y ];

σ2
Q̄

(W ) = σ2
Q̄

(H∗) + (α)2σ2
Q̄

(X∗) + (β)2[σ2
Q̄

(Y ∗) + σ2
Q̄

(Y ⊥)]

+2(αβ)cov
Q̄

(X∗, Y ∗) + 2(α)cov
Q̄

(X∗, H∗) + 2(α)cov
Q̄

(Y ∗, H∗)

and σ2
µ
(E[W ]) = (β)2σ2

µ
(E[Y ⊥])

Taking the derivative with respect to α and β, the first order conditions are:

[α] : (E
Q̄

[X] − W0) − θ

2
�
2ασ2

Q̄
(X∗) + 2βcov

Q̄
(X∗, Y ∗) + 2cov

Q̄
(X∗, H∗)

�
= 0 (21)

[β] : (E
Q̄

[Y ] − W0) − θ

2
�
2βσ2

Q̄
(Y ∗) + 2αcov

Q̄
(X∗, Y ∗) + 2cov

Q̄
(Y ∗, H∗)

�

− γ

2 [2βσ2
µ
(E[Y ⊥])] = 0

(22)

For the sake of the argument assume that under probability Q̄ asset X and Y only

differ in that X is positively correlated with H :

cov
Q̄

(Y ∗, H∗) = cov
Q̄

(X∗, Y ∗) = 0,

cov
Q̄

(X∗, H∗) > 0,

E
Q̄

[X∗] = E
Q̄

[Y ∗] = Z̄,

σ2
Q̄

(X∗) = σ2
Q̄

(Y ∗) = σ2.

Therefore, the optimal asset demands are given by:

α∗ = Z̄ − W0
θσ2 −

cov
Q̄

(X∗, H∗)
σ2 (23)

β∗ = Z̄ − W0
θσ2 + γσ2

Q̄
(E[Y ]) (24)

An SEU maximizer should choose an asset allocation such that α
∗

β∗ < 1 because both

assets have the same mean and variance. However, asset Y is more suitable to hedge income
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risk than asset X is, given that cov
Q̄

(Y ∗, H∗) = 0 and cov
Q̄

(X∗, H∗) > 0. This can be seen by

taking the ratio of both asset demands and setting γσ2
Q̄

(E[Y ]) = 0, since an SEU maximizer

does not care about ambiguity.

However, an individual that is suffiently averse to ambiguity and/or finds asset Y very

ambiguous, represented by a high value of γσ2
Q̄

(E[Y ]), may choose a portfolio allocation that

puts more weight on asset X (i.e., α
∗

β∗ > 1) even though it is positively correlated with his

income. This rationalizes the first empirical finding in Massa and Simonov [2006].

The second finding in Massa and Simonov [2006], that wealthy individuals behave

according to what SEU would predict, can be explained in several ways. One common

explanation is that wealthy investors are more financially sophisticated as suggested by

Campbell [2006; p. 1576]. Another interpretation is that ambiguity attitudes are affected by the

level of wealth. In my highly stylized model, an individual with sufficiently high wealth can

overcome an aversion towards ambiguity and choose a portfolio allocation that puts more

weight in the asset that helps to hedge income risk (i.e. α
∗

β∗ < 1). This can be shown by taking

the derivative of the ratio of asset demands with respect to initial wealth:

∂α∗/β∗

∂W0
=

�
∂γ

∂W0
θ − ∂θ

∂W0
γ

�

− cov
Q̄

(X∗, H∗)






 ∂θ

∂W0
+ ∂γ

∂W0

σ2
Q̄

(E[Y ⊥])
σ2



 (Z̄ − W0) + θ + γ
σ2

Q̄
(E[Y ⊥])

σ2




(25)

For simplicity, assume that the DM exhibits CARA which implies that ∂θ

∂W0
= 0. Therefore, we

can guarantee that ∂α
∗
/β

∗

∂W0
< 0 by assuming the following: (i) ∂γ

∂W0
< 0 which is implied by φ(.)

satisfying the decreasing concavity property, that is to say, that absolute ambiguity aversion is

decreasing in wealth; and (ii) that the estimated covariance between X and H is not so high, i.e.

cov
Q̄

(X∗, H∗) < Z−W0
θ

, otherwise strong hedging incentives would be the main explanation for

the tilt of the portfolio towards the ambiguous asset. Therefore, an individual that originally

chose a portfolio that was tilted towards the risky asset X and positively correlated to income

can revert his choice towards a portfolio that puts more weight on the ambiguous asset Y if his
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wealth increases such that his aversion to ambiguity is significantly reduced.

3. Optimal Insurance Contracts Under Ambiguity

A. Optimality under Ambiguity of Insurance Contracts with a Straight Deductible: A Coun-

terexample

A well-established result in insurance economics states that the optimal insurance

contract for a risk averse DM is one with a straight deductible. The latter is due to Arrow

[1971, p. 212], who proves the following proposition:

If an insurance company is willing to offer any insurance policy against loss
desired by the buyer at a premium which depends only on the policy’s
actuarial value, then the policy chosen by a risk-averting buyer will take the
form of 100 per cent coverage above a deductible minimum.

Alary, Gollier and Treich [2010; p. 12-13] proves that this result is robust to the introduction of

ambiguity when insurance decisions are made in isolation. This section shows that under

certain conditions this result might not hold. I use a similar argument to Doherty [1984; p.

214], who showed that when a “portfolio contains non-insurable risky assets [e.g., human

capital], the preference of the insured between a deductible and a coinsurance policy depends

upon the covariance” between the loss and the non-tradable asset.

Proposition 6: In the presence of ambiguity and a non-traded asset, an insurance

contract with a straight deductible does not always dominate a coinsurance contract.

Proof. See Appendix A.

The rationale of this result is as follows. The level of the deductible could be so high

that there is a substantial loss in self-hedging possibilities that outweighs the benefits of

variance and ambiguity reduction. However, in the presence of ambiguity, the conditions for a

coinsurance arrangement to dominate are more stringent than in the case with only risk. The

reason is that the potential benefits of self-hedging of the coinsurance arrangement must

compensate both for the reduction in variance and ambiguity created by the contract with a

deductible.

33



Notice that self-hedging is restricted in the present model to the risk domain.

However, one can easily construct a model in which the non-traded asset is also ambiguous.

This would make the self-hedging possibilities important in the ambiguity domain. The latter

would be captured by a covariance term under the second order subjective measure µ of the

ambiguous non-traded asset and the ambiguous loss. As a consequence, one can think of

numerous trade-offs between the risk domain and the ambiguity domain.

B. The Borch Rule Under Ambiguity

An important result in the economic literature, derived by Borch [1962; p. 428], is the

optimality of a coinsurance contract when both parties are risk averse. The rule is stated by

Arrow[1971; p. 216] as follows:

If the insured and the insurer are both risk averters and there are no costs other
than coverage of losses, then any nontrivial Pareto-optimal policy, [α(h)], as a
function of the loss, [h], must have the property, 0 < [dα/dh] < 1. 18

I show that this result is robust to the introduction of ambiguity aversion. However,

the level of coinsurance under ambiguity, relative to the case with only risk, will depend on the

relative importance of risk and ambiguity for each party and the differences in beliefs. In other

words, it will depend on the ratios of the risk aversion and ambiguity aversion parameters, as

well as on the compound distribution and the second order probability measure µ. I use

similar arguments of the derivation in Arrow [1971, p. 217-219] and extend its logic to the

ambiguity domain.

Proposition 7: Let u(.) and v(.)19 be the von-Neumann-Morgenstern utility functions

that capture, respectively, the risk attitudes of the insured and the insurer. Assume both are

risk averse, i.e. u��(.) < 0 and v��(.) < 0. Moreover, define φu(.) and φv(.) as the functions that

capture the ambiguity aversion of the insured and the insurer, respectively. Both agents have a

KMM representation of preferences under ambiguity. Let W0 and W1 be the initial wealth of
18I change the original notation in Arrow’s quote to match ours. In his book, the loss is denoted by X and the

insurance policy by I .
19Not to be confused with v = φ ◦ u as defined in section 3.1.2.
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the insured and the insurer. Additionally, define α(h̃) as the insurance payment net of the

insurance premium when the ambiguous loss takes the value h̃. The end-of-period wealth of

each agent is:

• Insurer: �Wv = W1 − α(h̃)

• Insured: �Wu = W0 − h + α(h̃)

Each party’s valuation of any insurance schedule α(h̃) has a KMM structure:

• Insurer: V = �
∆v

φv

��
S

v(�Wv)dQv

�
dµv

• Insured: U = �
∆u

φu

��
S

u(�Wu)dQu

�
dµv

where the subindices imply the obvious definition for each variable.

Furthermore, assume a finite world where there are n possible outcomes for h, and

Q̄ = {q1, q2, ..., qi, ...., qn}, θ, γ and µu = {µ1
u
, µ2

u
, ..., µk

u
, ..., µK

u
} represent, respectively, the

compound probability distribution, risk attitudes, ambiguity attitudes and second order beliefs

of the insured. Similarly, for the insurer these variables are represented by P̄ = {p1, p2, ..., pn},

θ̃, γ̃ and µv = {µ1
v
, µ2

v
, ..., µk

v
, ..., µK

v
}. Notice that this is a general model that allows for

different beliefs (Q̄ �= P̄ ), risk and ambiguity attitudes (θ �= θ̃ and γ �= γ̃) and probability

measures over sets ∆u = {Q1, Q2, ..., Qk, ..., QK} and ∆v = {P1, P2, ..., Pk, ..., PK} (µu �= µv).

Elements in Qk and Pk are denoted by qk

j
and pk

j
, respectively.

The risk/ambiguity arrangement in each of the possible outcomes hi of the ambiguous

loss is defined by

dα(hi)
dhi

=
a

�
θqi(1 − qi) + γσ2

µu
(qi)

�

a
�
θqi(1 − qi) + γσ2

µu
(qi)

�
+ b

�
θ̃pi(1 − pi) + γ̃σ2

µv
(pi)

� (26)

Notice that dα(hi)
dhi

∈ (0, 1), since θ > 0, θ̃ > 0, γ > 0, γ̃ > 0, and pi, qi ≥ 0. In other

words, the optimal contract is a coinsurance schedule.

Proof. See Appendix A
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This implies that the Borch rule is robust to the introduction of ambiguity and even of

heterogeneity of beliefs. However, the rule corrects for differences in beliefs, ambiguity and

attitudes towards it. Though not reported here, the introduction of a risky non-traded asset

does not affect the coinsurance structure of the optimal program. The intuition is that such an

extension of the model will not affect the concavity of the Pareto-optimal frontier of the set of

feasible {U, V }, leaving the structure of the maximization program unaffected.

For comparison purposes, dα̃(hi)
dhi

= aθ

aθ+bθ̃
is the optimal coinsurance schedule with only

risk and homogeneous beliefs. With Q̄ = P̄ and µv = µu = µ. The equivalent coinsurance rule

when ambiguity is introduce is equal to:

a
�
θ(1 − qi) + γσ2

µ
(qi)/qi

�

a
�
θ(1 − qi) + γσ2

µ
(qi)/qi

�
+ b

�
θ̃(1 − qi) + γ̃σ2

µ
(qi)/qi

� (27)

For all hi, the coinsurance demand is higher (lower) under ambiguity if θ̃

γ̃
> (<) θ

γ
.

Intuitively, if the insurer is more ambiguity tolerant, relative to its own risk tolerance, than the

insured is, the coinsurance demand is higher under ambiguity. However, this sharp

comparative static is not possible when there are heterogeneous beliefs.

For any hi, Q̄ �= P̄ and µv �= µu, the optimal coinsurance demand is higher (lower) in

the presence of ambiguity if θ̃

γ̃

qi(1−qi)
σ2

µu (qi) > (<) θ

γ

qi(1−qi)
σ2

µu (qi) . Consequently, when there are differences

in beliefs and ambiguity matters to both parties, it cannot be easily predicted under which

conditions the coinsurance demand is higher or lower than that under risk.

4. Conclusions

I have shown that if ambiguity matters, risk and ambiguity attitudes interact in

nontrivial ways to determine the change of insurance demand for a given change in wealth. I

derive sufficient conditions to guarantee that the optimal coinsurance demand is decreasing in

wealth. Moreover, in the presence of a risky non-traded asset, I identify conditions under

which more risk or ambiguity aversion decrease the demand for coinsurance.
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Additionally, my model predicts behavior that is inconsistent with the classical

portfolio theory that assumes Subjective Expected Utility theory, however, it provides hints to

a possible solution of the under-diversification puzzle of households. The main message is that

deviations from the traditional portfolio theory can be explained by expanding the concept of

portfolio to non-traded assets, which has been recognized in the financial literature, but also by

simultaneously allowing for preference representations that can explain attitudes towards

ambiguity.

A modified Borch rule remains the optimal contract with bilateral risk/ambiguity

aversion and heterogeneity in beliefs. However, an insurance contract with straight deductible

might be dominated by a coinsurance schedule in the presence of ambiguity and a non-traded

asset.

Several challenging questions remain. Other non-EU models of decision under

ambiguity should be explored to corroborate that my results are not a mere artifact of the

preference representation that I chose. However, an important challenge in the ambiguity

literature is to derive more general results that do not depend heavily on the structure of the

preference representation. Also, the optimality of contracts should be studied in the presence

of asymmetric information and ambiguity. Finally, it would be desirable to derive a model

which does not depend on an approximation and that allows for traded assets, non-traded assets

and insurance.
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Appendix A: Proofs of Results

Proof of Lemma 1. σ2
Q̄

(h) > σ2
µ
(E[h]). I show below that

σ2
µ
(E[h]) = σ2

Q̄
(h) − Eµ[σ2(h)], and hence the inequality holds.

σ2
µ
(E[h]) =

�

∆
(E[h])2dµ −

��

∆
E[h]dµ

�2

=
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hdQ
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hdQdµ
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−
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h2dQdµ +
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S

h2dQdµ

=
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hdQdµ
�2

−
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��

S

h2dQ −
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∆
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S

hdQ
�2�

dµ

= σ2
Q̄

(h) − Eµ[σ2(h)]

Rearranging the last equality we have that σ2
Q̄

(h) = Eµ[σ2(h)] + σ2
µ
(E[h]). Since Eµ[σ2(h)] > 0

because it is an average of variances, the latter equation implies that σ2
Q̄

(h) > σ2
µ
(E[h]).

�

Proof of Proposition 1. Assume m > 0. The following derivative defines the

comparative statics of the optimal insurance demand with respect to changes in initial wealth:

∂αM1∗
amb

∂W0
= mE

Q̄
[h]

{θσ2
Q̄

(h) + γσ2
µ
(E[h])}2 σ2

Q̄
(h)
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∂W0
+ ∂γ

∂W0

σ2
µ
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σ2
Q̄

(h)
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 (28)

where σ2
Q̄

(h) = σ2
Q̄

(h∗) + σ2
Q̄

(h⊥). Since γ =
�
−v

��(W0)
v�(W0)

�
−

�
−u

��(W0)
u�(W0)

�
the partial derivative

above can be written as:
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where θv = −v
��(W0)

v�(W0) .
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Notice that the sign of this partial derivative depends on the sign of the term in the

square brackets. Since both u and v satisfy DC, which implies that θv and θ are decreasing in

W0, and σ2
Q̄

(h) > σ2
µ
(E[h]) > 0, the optimal insurance demand under ambiguity is decreasing

in W0, i.e. ∂α
M1∗
amb

∂W0
< 0.

�

Proof of Lemma 2. The efficient (inefficient) part of the frontier is defined as the set of

{σ2
Q̄

(W (α)), EQ[W (α)]} pairs where
d σ

2
Q̄

(W (α))
d EQ̄[W (α)] > (<)0.

This relationship can be found by taking the total derivative of the variance and

expected value of wealth and dividing one over the other to obtain the following:

d σ
2
Q̄

(W (α))
d EQ̄[W (α)] = 2 (1−α)σ2

Q̄
(h)−cov(H∗

,h
∗)

mEQ̄[h]

The sign of this derivative depends on the level of insurance demand:

d σ
2
Q̄

(W (α))
d EQ̄[W (α)] =






> 0, if α < α∗
MinV ar

= 0, if α = α∗
MinV ar

< 0, if α > α∗
MinV ar

�

Proof of Proposition 5. According to definition 2, the optimal allocation

{σ2
Q̄

(W (αM2∗
amb

)), E
Q̄

[W (αM2∗
amb

)]} will be located on the SEU-inefficient part of the frontier

whenever
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Thus,
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×
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Similarly, {σ2
Q̄

(W (αM2∗
amb

)), E
Q̄

[W (αM2∗
amb

)]} will be located on the SEU-efficient part of

the frontier if cov
Q̄

(H∗, h∗) < κM2∗
H,h;θ.

�

Proof of Proposition 6. Suppose there is a DM that is both risk and ambiguity averse,

owns a risky non-traded asset H and is exposed to an ambiguous loss h. Furthermore, suppose

there is an insurance contract that covers 100% of any realization of the ambiguous loss above

δ, a deductible amount chosen by DM. However, if h < δ, the DM assumes the loss in its

entirety. Moreover, assume that there is an alternative coinsurance contract that pays zero if no

loss is realized and αh if a loss of amount h is realized, where α ∈ [0, 1]. The alternative

coinsurance contract is carefully chosen such that a risk and ambiguity neutral insurer charges

the same premium it does in the contract with deductible δ. Thus, α is defined by the

following condition: α(1 + m)E
Q̄

[h] = (1 + m)E
Q̄

[max{0, h − δ}] = π̄.

The strategy is to show that, under certain conditions, the CE implied by a

coinsurance contract (CEC , henceforth) can dominate the one implied by an actuarially

equivalent contract with straight deductible (CED).

A coinsurance contract dominates one with a deductible if the following condition is

satisfied:

CEC ≈ E
Q̄

[WC ] − θ

2σ2
Q̄

(WC) − γ

2σ2
µ
(E[WC ]) >

E
Q̄

[WD] − θ

2σ2
Q̄

(WD) − γ

2σ2
µ
(E[WD]) ≈ CED

(30)

where

WC = H − h − π̄ + αh,

WD = H − h − π̄ + max{0, h − δ},

σ2
Q̄

(WC) = σ2
Q̄

(H) + (1 − α)2σ2
Q̄

(h) − (1 − α)cov
Q̄

(H, h),

σ2
Q̄

(WD) = σ2
Q̄

(H) + σ2
Q̄

(max{h, δ}) − cov
Q̄

(H, max{h, δ})
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WC and WD denote, respectively, the end-of-period wealth under the coinsurance

contract and under the contract with straight deductible.

Given that the same premium π̄ is charged, the expected value of wealth is the same

under both contracts (i.e., E
Q̄

[WC ] = E
Q̄

[WD]). Thus, we just need to focus on the

variance-covariance structure and the perceived ambiguity generated by each contract.

Vajda [1962] showed that the deductible offers a greater reduction in the variance of

retained losses given an amount of insurance premium. This implies that:

(1 − α)2σ2
Q̄

(h)
[(1 − α)E

Q̄
[h]]2 >

σ2
Q̄

(max{h, δ})
[(E

Q̄
[max{h, δ}]]2

A similar argument can be made about the ambiguity perceived by the DM, since in

my framework it is measured as the (subjective) variance of E[h]. Therefore, Vajda’s argument

also implies that an insurance contract with a straight deductible will induce lower perceived

ambiguity than a coinsurance arrangement, given an expected value of retained losses.

Therefore:
(1 − α)2σ2

µ
(E[h])

[(1 − α)E
Q̄

[h]]2 >
σ2

µ
(E[max{h, δ}])

[E
Q̄

[max{h, δ}]]2

In the absence of the non-traded asset, these two simple facts show why Gollier’s result

holds. Intuitively, for a given level of insurance premium, such an insurance contract with

straight deductible provides the DM with lower variance and ambiguity than the coinsurance

arrangement does. However, as shown by Doherty [1984; 213-216] in a context with only risk,

the covariance between the non-traded asset and the retained losses plays a crucial role in the

robustness of Arrow’s result. The same logic can be extended to the ambiguity domain.

A coinsurance arrangement dominates a contract with straight deductible if

CEC > CED. Using the MMR approximation of each CE, the latter condition is satisfied
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whenever

γ

θ

�
(1 − α)2σ2

µ
(E[h]) − σ2

µ
(E[max{h, δ}]

�
+

�
(1 − α)2σ2

Q̄
(h) − σ2

Q̄
(max{h, δ})

�

< (1 − α)cov(H, h) − cov(H, max{h, δ})
(31)

It is plausible that, even though cov(H, h) = 0, the covariance induced by the

deductible, cov(H, max{h, δ}), is low enough such that the above condition is satisfied. In this

case the coinsurance arrangement dominates the contract with a deductible.

�

Proof of Proposition 7. Let u(.) and v(.)20 be the von-Neumann-Morgenstern utility

functions that capture, respectively, the risk attitudes of the insured and the insurer. Assume

both are risk averse, i.e. u��(.) < 0 and v��(.) < 0. Moreover, define φu(.) and φv(.) as the

functions that capture the ambiguity aversion of the insured and the insurer, respectively. Both

agents have a KMM representation of preferences under ambiguity. Let W0 and W1 be the

initial wealth of the insured and the insurer. Additionally, define α(h̃) as the insurance

payment net of the insurance premium when the ambiguous loss takes the value h̃. The

end-of-period wealth of each agent is:

• Insurer: �Wv = W1 − α(h̃)

• Insured: �Wu = W0 − h + α(h̃)

Each party’s valuation of any insurance schedule α(h̃) has a KMM structure:

• Insurer: V = �
∆v

φv

��
S

v(�Wv)dQv

�
dµv

• Insured: U = �
∆u

φu

��
S

u(�Wu)dQu

�
dµv

where the subindices imply the obvious definition for each variable.

The set of all {U, V } pairs has a boundary that is convex to the northeast. To show

this, suppose any two insurance policies α1(h̃) and α2(h̃) that induce allocations {U1, V1} and
20Not to be confused with v = φ ◦ u as defined in section 3.1.2.
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{U2, V2}, respectively. Define a third insurance schedule α3(h̃) = .5α1(h̃) + .5α2(h̃) for each h̃.

The three insurance schedules induce the following end-of-period wealth Wi1, Wi2 and

Wi3 = .5Wi1 + .5Wi2 for i = u, v. Given that both parties are risk averse, the following

statements are true:

u(Wu3) > .5u(Wu1) + .5u(Wu2)

v(Wv3) > .5v(Wv1) + .5v(Wv2)

Since both conditions hold for each h̃, it also holds when we take expectations.

Without ambiguity, the latter argument will imply that the set of {U, V } pairs induced by all

the attainable insurance schedules will have a frontier that is convex to the northeast.

Therefore, any Pareto-optimal insurance schedule can be obtained by maximizing a linear

function aE[u(�Wu)] + bE[v(�Wv)] for a, b ≥ 0 and at least one positive. I show that this is also

the case when ambiguity is introduced.

Suppose the sets of reasonably possible probabilities ∆u and ∆v are finite, and elements

in each set are denoted by Quk and Qvk, respectively, which are indexed by k. The second order

belief µuk is the subjective probability weight that the insured puts over the probability

distribution Quk; µuk is similarly defined for the insurer.The argument in the previous

paragraph and the concavity of φu(.) and φv(.) imply that the following statements are true:
�

k µuk×φu(EQuk
[u(Wu3)]) > .5×�

k µuk×φu(EQuk
[u(Wu1)])+.5×�

k µuk×φu(EQuk
[u(Wu2)])

or

U3 > .5U1 + .5U2
and
�

k µvk ×φv(EQvk
[v(Wv3)]) > .5×�

k µvk ×φv(EQvk
[v(Wv1)])+ .5×�

k µvk ×φv(EQvk
[v(Wv2)])

or

V3 > .5V1 + .5V2

Since these statements hold for every pair of points {U1, V1} and {U2, V2} in the set of

allocations defined by the possible insurance schedules, the northeast boundary of this set is

convex to the northeast. Therefore, any Pareto-Optimal point, i.e. any point on the northeast
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boundary, can be obtained by maximizing a linear function aU + bV , for any a, b ≥ 0, and at

least one of them positive. Assume, that both agents have some bargaining power, thus

a, b > 0. Moreover, I approximate the CE of U and V with the MMR approximation.

Consequently, the maximization problem above is approximated by maximizing

a �CEinsured + b �CEinsurer. Assuming that the state space S is finite, the optimal insurance

schedule with bilateral risk and ambiguity aversion is the solution to:

max
{α(h̃)}

a

�

E
Q̄

[W0 − h̃ + α(h̃)] − θ

2σ2
Q̄

(α(h̃) − h̃) − γ

2σ2
µv

(E[α(h̃) − h̃])
�

+ b

�

E
P̄

[W1 − α(h̃)] − θ̃

2σ2
P̄

(α(h̃)) − γ̃

2σ2
µv

(E[α(h̃)])
� (32)

where Q̄ = {q1, q2, ..., qi, ...., qn}, θ, γ and µu = {µ1
u
, µ2

u
, ..., µk

u
, ..., µK

u
} represent, respectively,

the compound probability distribution, risk attitudes, ambiguity attitudes and second order

beliefs of the insured. Similarly, for the insurer these variables are represented by

P̄ = {p1, p2, ..., pn}, θ̃, γ̃ and µv = {µ1
v
, µ2

v
, ..., µk

v
, ..., µK

v
}. Notice that this is a general model

that allows for different beliefs (Q̄ �= P̄ ), risk and ambiguity attitudes (θ �= θ̃ and γ �= γ̃) and

probability measures over sets ∆u = {Q1, Q2, ..., Qk, ..., QK} and ∆v = {P1, P2, ..., Pk, ..., PK}

(µu �= µv). Elements in Qk and Pk are denoted by qk

j
and pk

j
, respectively. Define the following:

E
P̄

[W0 − h̃ + α(h̃)] = W1 − �
j pjα(hj),

E
Q̄

[W0 − h̃ + α(h̃)] = W0 − �
j qjhj + �

j qjα(hj),

σ2
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j pjα(hj))2,

σ2
Q̄
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j qj(α(hj) − hj))2,
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v
[�j pk

j
α(hj)]2 − [�k µk

v

�
j pk

j
α(hj)]2
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k µk

v
[�j pk

j
(α(hj) − hj)]2 − [�k µk

v
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j pk

j
(α(hj) − hj)]2
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The first order condition with respect to α(h̃i) is:

b
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−pi − θ̃pi


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(33)

Now differentiate the first order condition with respect to hi:

−b
�
θ̃pi(1 − pi) + γ̃σ2

µv
(pi)

� �
dα(hi)

dhi

�

− a
�
θqi(1 − qi) + γσ2

µu
(qi)

� �
dα(hi)

dhi

− 1
�

= 0

or equivalently

dα(hi)
dhi

=
a

�
θqi(1 − qi) + γσ2

µu
(qi)

�

a
�
θqi(1 − qi) + γσ2

µu
(qi)

�
+ b

�
θ̃pi(1 − pi) + γ̃σ2

µv
(pi)

� (34)

Notice that dα(hi)
dhi

∈ (0, 1), since θ > 0, θ̃ > 0, γ > 0, γ̃ > 0, and pi, qi ≥ 0. In other

words, the optimal contract is a coinsurance schedule.

�
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Appendix B: Baseline Model: Insurance Demand under Risk

Consider a risk averse decision maker (DM) with a von Neumann-Morgenstern utility

function u(.), with u�(.) > 0 and u��(.) < 0, and initial wealth W0. She is exposed to a risky loss

h that has mean EP [h] and variance σ2
P

(h) under probability distribution P . There is a risk

neutral insurer that is willing to offer the individual any desired amount α ∈ (0, 1] of a

coinsurance contract.21 The insurer charges a premium π = (1 + m)EP [h] per unit of

insurance, where m ≥ 0 is the loading factor. The insurance contract pays zero if no loss is

realized and αh if it is realized. If the individual decides to purchase insurance, her random

final wealth is W = W0 − h − απ + αh. Thus, the maximization problem of the individual is:

max
α

EP [u(W )] = max
α

EP [u(W0 − h − α(1 + m)EP [h] + αh)] (35)

I simplify the problem by using the Arrow-Pratt approximation of the certainty

equivalent (CE) of the expected utility wealth.22 Therefore, the problem in equation (1) can be

approximated by:

max
α

EP [W ] − θ

2σ2
P

(W ) (36)

subject to: W = W0 − h − απ + αh

where

EP [W ] = EP [W0 − h − α(1 + m)EP [h] + αh] = W0 − (1 + αm)EP [h],

σ2
P

(W ) = σ2
P

(W0 − h − α(1 + m)EP [h] + αh) = (1 − α)2σ2
P

(h)

and θ = −u
��(W0)

u�(W0) > 0 is the Arrow-Pratt degree of absolute risk aversion.

The first and second order condition with respect to α are:

[F.O.C] : −mEP [h] − θ

2[2(1 − α)(−1)σ2
P

(h)] = 0 (37)

21I focus in this section only on coinsurance contracts and deal later with the optimality of this type of contract.
22See Gollier [2001, pp. 21-24] for details of the approximation.
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[S.O.C] : −θσ2
P

(h) < 0 (38)

Solving for α, we obtain the following optimal insurance demand :

αM1∗
risk

= 1 − mEP [h]
θσ2

P
(h) (39)

Four standard results in the literature of insurance demand follow immediately:

1. Full coverage is optimal (αM1∗
risk

= 1), if coinsurance is available at a fair price (m = 0).

This is the “Mossin-Smith Theorem” developed in Mossin [1968] and Smith [1968].

2. Given m > 0 such that 0 < α1∗
risk

< 1, an increase in the degree of risk aversion will

lead to an increase in the optimal demand for insurance at all levels of wealth, ceteris

paribus. Schlesinger [2000; p. 138] proves this statement. In the present framework,

this is easily seen from the following derivative:

∂αM1∗
risk

∂θ
= mEP [h]

θ2σ2
P

(h) > 0 (40)

This result is a direct consequence of a standard result independently derived by Pratt

[1964, p. 136) and Arrow [1971, p. 102]. They showed that an increase in absolute risk

aversion decreases the demand for a risky asset. This would imply that a risk averse

agent will demand more insurance to cover the loss than another individual that is less

risk averse.23

A change in risk, σ2
P

(h), affects coinsurance demand in the same direction that risk

aversion does because:
∂αM1∗

risk

∂σ2
P

(h) = mEP [h]
θ[σ2

P
(h)]2 > 0 (41)

However, it has been shown that this is not a general result since it is likely that some
23In the context of insurance, the risky asset would be the retained loss. Thus, more insurance would translate

into a lower exposure to the risky asset.
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pessimistic deteriorations in beliefs increase the demand for a risky asset, thus

decreasing insurance demand. Some important references that demonstrate this

counterintuitive possibility are Rothschild and Stiglitz [1971], Fishburn and Porter

[1976], Eeckhoudt and Gollier [1995], Gollier [1995] and Athey [2002].

3. Recall that if the local measure of risk aversion, θ = −u
��(W0)

u�(W0) , is decreasing (increasing)

in W0, individual’s preferences are said to exhibit DARA (IARA). Moreover, if θ is

independent of W0, preferences exhibit CARA.

Proposition B.1(Schlesinger [2000; p.136]):Assume that m > 0 but is not too large

such that 0 < αM1∗
risk

< 1. Then, for an increase in the initial wealth W0,

(i) αM1∗
risk

will decrease under decreasing absolute risk aversion (DARA).

(ii) αM1∗
risk

will be invariant under constant absolute risk aversion (CARA).

(iii) αM1∗
risk

will be increasing under increasing absolute risk aversion (IARA).

Proof. Take the derivative of αM1∗
risk

with respect to W0:

∂αM1∗
risk

∂W0
= mEP [h]

θ2σ2
P

(h)
∂θ

∂W0
(42)

The sign of this derivative depends on whether preferences exhibit IARA, CARA or

DARA:

∂αM1∗
risk

∂W0
=






> 0, if ∂θ

∂W0
> 0 (IARA)

= 0, if ∂θ

∂W0
= 0 (CARA)

< 0, if ∂θ

∂W0
< 0 (DARA)

(43)

�

This proposition states that, if a subject exhibits DARA preferences, the optimal

coinsurance demand decreases when initial wealth increases because her risk tolerance
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increases with it, that is to say, it becomes less risk averse. Similar intuitive arguments

can be made about CARA and IARA. However, Schlesinger [2000; p. 136] warns that

“each of these conditions [DARA, CARA and IARA] is shown to be sufficient for the

comparative-static effects in Proposition [1], though not necessary."

4. Definition B.1: η = −u
���(W0)

u��(W0) > 0 is the index of absolute prudence. An individual is

locally prudent at W0 if u���(W0) > 0, which is equivalent to u�(W0) being locally

convex ( See Gollier [2001; p. 237]).

Prudent individuals will increase savings if uncertainty affecting future income is

introduced. In other words, the degree of prudence captures the sensitivity of savings

to changes in risk. This is referred to as the precautionary motive of saving. The

following proposition, derived by Gollier [2001; p. 238], links absolute risk aversion to

the concept of prudence.

Proposition B.2: Prudence is a necessary condition for preferences to exhibit DARA.

Proof.

∂θ

∂W0
= −

�
u���(W0)u�(W0) − [u��(W0)]2

[u�(W0)]2

�

=
�

−u��(W0)
u�(W0)

� ��

−u��(W0)
u�(W0)

�

−
�

−u���(W0)
u��(W0)

��

= θ [θ − η]
(44)

Given θ > 0, η > 0 is a necessary condition for ∂θ

∂W0
< 0.

�

Corollary B.1: Strong enough prudence (i.e., η > θ) is a sufficient condition for
∂α

M1∗
risk

∂W0
< 0. Proof. See Proposition 1 and 2.
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Appendix C: Insurance Demand in the Presence of a Non-traded Asset under Risk

Suppose that the DM faces the same situation as in the baseline model, except that the

individual now has a non-tradable and uninsurable asset (e.g., human capital) with risky return

H that might be correlated with a risky loss h. Thus the risky end-of-period wealth is

W = W0 + H − h − απ + αh. Assume the DM maximizes expected utility defined by utility

function u(.) and Q̄, the joint distribution of H and h. Therefore the maximization problem is:

max
α

E
Q̄

[W ] − θ

2σ2
Q̄

(W ) (45)

where

E
Q̄

[W ] = E
Q̄

[W0 + H − h − α(1 + m)E[h] + αh] = W0 + E
Q̄

[H] − (1 + αm)E
Q̄

[h]

σ2
Q̄

(W ) = σ2
Q̄

(H) + (1 − α)2σ2
Q̄

(h) − 2(1 − α)cov
Q̄

(H, h)

The first order condition of the maximization problem is:

[α] : −mE
Q̄

[h] − θ

2
�
2(1 − α)(−1)σ2

Q̄
(h) − 2(−1)cov

Q̄
(H, h)

�
= 0 (46)

The optimal demand for insurance is:24

αM3∗
risk

= 1 −
mE

Q̄
[h]

θσ2
Q̄

(h) −
cov

Q̄
(H, h)

σ2
Q̄

(h) (47)

The Mossin-Smith theorem only holds if cov
Q̄

(H, h) ≤ 0. Doherty [1984; p. 209]

derived a related result, and Mayers and Smith [1983] were the first to emphasize the

interdependency between insurance demand and traded and non-traded assets.

Following the terminology in Mayers and Smith [1983, pp. 308], cov
Q̄

(H, h) represents

the individual’s incentive to “self-insure.” The sign of this covariance makes the insurance

demand lower, equal or higher than in the absence of the non-traded asset (i.e., αM3∗
risk

� αM1∗
risk

).

24The second order condition is satisfied.
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However, I prefer to use the term “self-hedging” to avoid confusion with the usage of

“self-insurance” in the literature. The intuition is that even if the insurance premium is fair

(i.e., m = 0), the DM might still not be willing to fully insure if she can compensate high losses

with high realizations of her human capital. However, if cov
Q̄

(H, h) < 0, the individual might

want to fully insure if a health shock (h) affects negatively her productivity, which would

undermine her human capital.

Moreover, the introduction of a risky non-traded asset does not affect the Arrow-Pratt

result. As a result, higher risk aversion increases the demand for insurance:

∂αM3∗
risk

∂θ
= mE

Q̄
[h]

θ2σ2
Q̄

(h) > 0 (48)

Finally, Proposition B.1 ( the sufficiency of CARA, DARA or IARA for the insurance

demand to be independent of, decreasing or increasing in W0) and Proposition B.2 (the

necessity of prudence to exhibit DARA) are robust to the presence of a non-traded asset. The

optimal demands αM1∗
risk

and αM3∗
risk

, differ only in the term that depends on covQ̄(H,h)
σ

2
Q̄

(h) , which is

not affected by initial wealth. Thus, the proofs of these two propositions remain basically

unchanged.
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