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Abstract

In standard models of ambiguity, the evaluation of an ambiguous asset, as of a

risky asset, is considered as an independent process. In this process only information

directly pertaining to the ambiguous asset is used. These models face significant

challenges from the finding that ambiguity aversion is more pronounced when an

ambiguous asset is evaluated alongside a risky asset than in isolation. To explain

this phenomenon, we developed a theoretical model based on reference dependence in

probabilities. According to this model, individuals (1) form subjective beliefs on the

potential winning probability of the ambiguous asset; (2) use the winning probability of

the (simultaneously presented) risky asset as a reference point to evaluate the potential

winning probabilities of the ambiguous asset; (3) code potential winning probabilities

of the ambiguous asset that are greater than the reference point as gains and those that

are smaller than the reference point as losses; (4) weight losses in probability heavier

than gains in probability. We tested the crucial assumption, reference dependence in

probabilities, in an experiment and found supporting evidence.
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1 Introduction

The evaluation of ambiguous assets is much more complicated than risky assets due to

the absence of objective probabilities. Savage (1954) suggests that individuals could form

subjective additive beliefs. The subjective beliefs could then be used to evaluate the

ambiguous assets according to the expected utility theory. Ellsberg (1961), however,

presented compelling examples in which people prefer to bet on known rather than on

unknown probabilities. One version of the Ellsberg paradox is as follows: There are two

urns: a known urn and an unknown urn. The known urn contains 50 white and 50 black

balls. The unknown urn also contains 100 black and white balls, but the proportion of

black and white balls is unknown. For either urn, an individual first chooses a color and

then draws a ball from the urn. She receives 100 if the color of chosen ball matches her

chosen color. Typically, an individual is willing to pay less for the gamble on the unknown

urn than on the known urn. Several variations of Ellsberg’s (1961) original designs have

been implemented in laboratory experiments, and a similar discount on the unknown urn

was observed (see Wakker, 2010, for a review of the literature). This phenomenon, termed

ambiguity aversion, is inconsistent with Savage’s (1954) subjective expected utility model.

Ambiguity aversion has received tremendous research interest and numerous models have

been put forward to explain it: Schmeidler’s (1989) Choquet expected utility, Gilboa

and Schmeidler’s (1989) maxmin expected utility, Klibanoff et al.’s (2005) smooth am-

biguity model; Nau’s (2006) multistage recursive model, and Abdellaoui et al.’s (2011)

non-expected utility model of source functions, to name just a few leading examples.

These approaches face serious descriptive difficulties since the work of Fox and Tversky

(1995). They showed that the willingness to pay for the ambiguous asset was not system-

atically different from the risky asset when each of them was evaluated in isolation. Only

when the ambiguous asset was evaluated alongside the risky asset, ambiguity aversion

became more pronounced. Fox and Tversky (1995) refer to this effect as ‘comparative ig-

norance’. Chow and Sarin (2002) and Fox and Weber (2002) extended Fox and Tversky’s

(1995) experiment and provided further evidence that a significant portion of ambiguous

aversion results from the fact that the ambiguous and the risky asset were evaluated to-
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gether. This is a fundamentally different perspective of the evaluation of an ambiguous

asset. As stated by Wakker (2000): “Fox and Tversky’s finding seems to place the Ellsberg

paradox in an entirely new light”.

In standard models of ambiguity, the evaluation of an ambiguous asset, as of a risky as-

set, is considered to be an independent process. In this process only information directly

pertaining to the ambiguous asset is used. We believe, while this assumption seems appro-

priate for the evaluation of a risky asset with clearly defined objective probabilities, it is

too strong for the evaluation of an ambiguous asset. Given that there is little information

about the ambiguous asset per se, it seems natural that individuals attempt to ‘improve’

their evaluation of the ambiguous asset by using other information. One reasonable way

would be to find a risky asset with a similar structure and use it as reference. As a result,

the evaluation of the ambiguous asset becomes simpler and clearer. We therefore suggest

that individuals are inclined to use of the information pertaining to the risky asset in the

evaluation of the ambiguous asset when the two types of assets are presented together.

There are a number of ways to use the information of the risky asset. One interesting way

is suggested by Trautmann et al. (2011). They argue that subjects take the value – the

Willingness To Pay (WTP) – of the risky prospect as a reference point for their valua-

tion of the ambiguous prospect, and loss aversion in the payoffs could result in ambiguity

aversion.

Trautmann et al.’s (2011) approach can explain the findings in Fox and Tversky (1995)

without deviating much from prospect theory. However, it seems a rather complicated

process to first complete the valuation process of the risky asset and then use that value as a

reference point to evaluate the payoffs of the ambiguous prospect. Note that the payoffs are

the same between the risky and ambiguous prospects in their study; it is the information

on probability dimension that differs the ambiguous prospect from the risky prospect. In a

recent paper, Arieli et al. (2011) found – via tracking subjects’ eyeball movements – that

most subjects, when comparing two risky prospects, compare payoffs and probabilities

separately. Rubinstein (1988) suggested a procedure for preference determination, where

the different attributes are decisive in determining preferences for prospects. Thus it seems

counter-intuitive that subjects facing ambiguous prospect and risky asset would quickly
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resolve their difficulty in the probability dimension – which are different between the two –

and instead focus on the payoff domain – which are the same for the two and thus deserves

less attention.

For this reason, we shall use a slightly different approach. Empirical studies on ambiguity

aversion typically used the same monetary payoff structure between the risky asset and the

ambiguous asset. Also, in most valuation models of ambiguous assets payoffs and proba-

bilities are treated separately.1 Thus, with the same payoff structure, the manipulation of

probabilities seems to remain as the most likely explanation for Fox and Tversky’s (1995)

findings without introducing additional effects. Based on this observation, we hypothesize

that, when the risky asset and the ambiguous asset are presented together, (1) individuals

form subjective beliefs on the potential winning probability of the ambiguous asset; (2)

they use the winning probability of the risky asset as the reference point to evaluate the

potential winning probabilities of the ambiguous asset; (3) analogous to prospect theory

where payoffs are coded as gains or losses relative to a reference point, they code potential

winning probabilities of the ambiguous asset that are greater than the reference point as

gains and probabilities smaller than the reference point as losses; (4) finally and again in

analogy to prospect theory, individuals exhibit loss aversion in probability by assigning

a larger weight to losses in probability than to the same amount of gains in probability.

Henceforth we shall refer this set of assumptions as ‘reference-dependence hypothesis’.

Further, in order to distinguish between ambiguity aversion in isolation and ambiguity

aversion in combination with a risky asset, we shall call the latter ‘reference-dependent

ambiguity aversion’.

Our approach differs substantially from the prevailing explanation of comparative igno-

rance, which is typically interpreted as a companion of the “competence hypothesis”

(Heath and Tversky, 1991). According to this hypothesis, people try to avoid ambigu-

ity in areas of incompetence, while they exhibit less ambiguity aversion if they feel more

competent in the decision domain. Referring to the competence hypothesis, Fox and

Tversky (1995) and Heath and Tversky (1991) argue that the joint presentation of the

1Let (xi, pi)i∈{1,2,...,n} denote a risky or ambiguous prospect, where xi is the outcome i and pi
its associated (subjective) probability. Then most valuation models of ambiguity can be written as∑

i∈{1,2,...,n} v(xi)w(pi, xi), where v(xi) evaluates outcome xi and w(pi, xi) evaluates probability.
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two assets highlights the relative incompetence about the ambiguous urn, resulting in a

lower value for it.

The aim of this paper is to accommodate Fox and Tversky’s (1995) findings without in-

troducing additional elements such as individuals’ perceptions of competence. The central

idea of our approach is the use of the risky asset as a reference point in probability for the

evaluation of the ambiguous asset. In doing this, we are more in line with (cumulative)

prospect theory and not the competence hypothesis. We tested our crucial assumption,

the reference-dependence of ambiguity aversion, in an experiment and found supporting

evidence.

In many studies, ambiguity aversion is also found without an explicit comparable risky

asset. Chow and Sarin (2002), for example, while finding evidence consistent with Fox

and Tversky (1995), also report sizable ambiguity aversion without a directly comparable

risky asset. This finding is not inconsistent with our model. Even when the ambiguous

asset is valued in isolation, individuals might still try to simplify the evaluation process by

finding a reference that is not explicitly presented. Such a reference is often rather salient.

For example, in the two-color Ellsberg urn mentioned above it seems natural to think of

the probability 0.5 as the reference. Fox and Weber’s (2002) study on, inter alia, order

effects also indicates that reference-dependent ambiguity aversion can extend beyond a

directly comparative evaluation context. Of course, individuals might be less loss averse

in probabilities when the reference is not explicitly mentioned.

The paper proceeds as follows. Section 2 demonstrates the theoretical model, Section 3

presents the experimental design. Results are reported in Section 4. Finally, Section 5

concludes.

2 The Model

There are two assets, one is risky (denoted by R) and the other is ambiguous (denoted

by U). To simplify the derivation, let’s assume that there are only two states of world:
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a good state and a bad state. For the risky asset there is an objective probability p0 for

the good state (and thus 1 − p0 for the bad state). Individuals receive some monetary

payment G if the good state realizes, and zero otherwise. We let v(G) denote the utility

or value that individuals attach to a monetary payoff of G, where v(0) = 0. Without loss

of generality, we normalize v(G) ≡ 1. Since our main purpose is a descriptive one, we

followed prospect theory (Kahneman and Tversky, 1979; Tversky and Kahneman, 1992).

We assume that individuals evaluate the risky asset in the following way:

V (R) = w(p0)v(G) = w(p0), (1)

where w(p0) is the probability weighting function.

For the ambiguous asset, there is no clear probability one can assign to the good state.

One can, however, form a subjective belief for the good state. Let p denote the subjective

probability an individual assigns to the good state, and let F (p) denote the cumulative

subjective belief distribution that the individual has about the probability p. Then, if an

individual behaves according to the subjective expected utility model, she should evaluate

the ambiguous asset as follows:

V (U) = v(G)

∫ 1

0
pdF (p), (2)

which is independent of p0 (and therefore the value of the risky asset).

But the individual might use the objective probability of the risky asset as a reference

to evaluate her subjective probability of the good state under ambiguity. Analogous to

prospect theory, where payoffs are coded as gains or losses relative to a reference point,

we assume that the individual codes p larger than p0 as gains in probability and p smaller

than p0 as losses in probability. Moreover, the individual evaluates gains and losses in

probability differently. Let l(p − p0), p < p0, denote the way the individual evaluates

losses in probability, and g(p− p0), p ≥ p0 denote the way the individual evaluates gains

in probability. Let ∆ denote the absolute difference between p and p0. In the spirit of loss

aversion in prospect theory, we assume that −l(−∆) > g(∆),∀∆ ∈ [0, 1], i.e. for any equal

amount of difference in probability losses in probability are always weighted more heavily
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than gains in probability. With above assumptions, the evaluation process becomes

V (U) = w(p0) +

ambiguity component︷ ︸︸ ︷∫ p0

0
l(p− p0)dF (p) +

∫ 1

p0

g(p− p0)dF (p) . (3)

In equation (3) there are essentially two components. The first component captures an

individual’s evaluation of the risky asset within the framework of prospect theory. The

second component, the sum of the two integrals, captures an individual’s evaluation of

the ambiguous asset. We refer to the latter as “ambiguity component”. When the am-

biguity component is zero, individuals are ambiguity neutral, because their values for the

ambiguous and for the risky asset are the same. This would happen when individuals

have a degenerated point belief at p0. When the ambiguity component is negative, the

ambiguous asset is valued lower than the comparable risky asset and there is ambigu-

ity aversion. When the ambiguity component is positive, the ambiguous asset would be

evaluated higher than the risky asset and individuals are ambiguity seeking.

In our model the subjective perception of the levels of ambiguity and individuals’ atti-

tudes toward ambiguity are separated from each other. The former is captured by the

subjective beliefs F (p). The higher the standard deviation of F (p), the more ambiguous

the individual perceives the situation. The maximum ambiguity is obtained when F (p) is

bimodal distribution with peaks at 0 and 1. The latter is captured by the functions l(−∆)

and g(∆).

A distinction between the evaluating functions of gains and losses in probability we used

here and the probability weighting functions used in (cumulative) prospect theory (Kah-

neman and Tversky, 1979; Tversky and Kahneman, 1992) must be made. In (cumulative)

prospect theory, w+ (w−) stands for the probability weighting function for gains (losses)

in the payoff domain. Although the two probability weighting functions are allowed to

be different in gains and losses of payoffs, this difference is not important for any of the

central results in prospect theory. Also, empirically there is no strong evidence suggesting

differences between the two functions. The g(∆) and l(−∆) we used here represent the

evaluation functions of gains and of losses in the probability domain. We assume that
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individuals weight losses in probability heavier than gains in probability. This assumption

is the main driving force of our model. In prospect theory a closer companion to g(∆) or

l(−∆) would be the value functions of payoffs in gains or losses.

Apart from this assumption, the parametric form of the two functions can be rather

general. It is not even required that the two functions are continuous or differentiable.

Yet, it could be useful to think of some simple and intuitive ways of capturing loss aversion

in probability. Analogous to the definition of loss aversion in prospect theory we could

choose the following specification: g(∆) = ∆α and l(−∆) = −λ(∆)α, where λ > 1 is the

loss aversion coefficient and α is some constant. Another specification could be g(∆) = ∆α

and l(−∆) = −(∆)β, where α > β captures loss aversion in probability. Since our theory is

mainly motivated by loss aversion in prospect theory, we shall use the former to illustrate

the main features of the model. Using the latter does not change the result qualitatively.

2.1 Some Examples

In the following we will use a few examples to provide an intuitive illustration of the

implications of the ambiguity component in equation (3). Let’s assume that the subjective

belief of p is uniformly distributed between 0 and 1, i.e. F (p) = p. This assumption is

strictly for illustrative purposes. In general, F (p) should be context specific and could

be different for different individuals. Figure 1 illustrates the calculation of the ambiguity

component. Notice first that, when F (p) = p, the integral
∫ p0
0 l(p − p0)dF (p) simply

becomes the area above the line l(−∆), and the integral
∫ 1
p0
g(p − p0)dF (p) becomes the

area below the line g(∆).

Consider first the Ellsberg paradox, where the objective probability of the risky asset is

0.5. In this case, p0 = 0.5, and thus the ambiguity component is

Ambiguity component =

∫ 0.5

0
l(p− 0.5)dF (p) +

∫ 1

0.5
g(p− 0.5)dF (p). (4)

This is illustrated in the top graph of Figure 1. Since −l(−∆) > g(∆),∀∆ ∈ [0, 1] , it can

be immediately seen that the negative area (bottom left) is larger than the positive area
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Figure 1: The graph is produced by assuming F (p) = p, g(∆) = ∆0.7, and l(∆) =
−1.5(∆)0.7.
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(top right). Hence, the ambiguity component is negative,

Ambiguity component =

∫ 0.5

0
l(p− 0.5)dF (p) +

∫ 1

0.5
g(p− 0.5)dF (p)

< −
∫ 1

0.5
g(p− 0.5)dF (p) +

∫ 1

0.5
g(p− 0.5)dF (p) = 0, (5)

which represents ambiguity aversion in the Ellsberg paradox. Note that this result can

be obtained for any F (p) that gives a symmetric density mass around p0, as long as the

assumption of loss aversion in probability is satisfied.

In some ambiguous situations we could have p0 larger than 0.5. For example, let’s consider

two urns, each with 100 balls of five colors: black, white, yellow, green, and blue. In the

risky urn there are 20 balls for each color. In the ambiguous urn the proportion of colored

balls is unknown. For each urn, an individual can choose four colors and wins if the

drawn ball matches any of the four colors. In this scenario, p0 = 0.8, and the ambiguity

component is:2

Ambiguity component =

∫ 0.8

0
l(p− 0.8)dF (p) +

∫ 1

0.8
g(p− 0.8)dF (p). (6)

The calculation is illustrated in the middle graph of Figure 1. As the negative area is larger

than the positive area, the ambiguity component is negative and, consequently, there is

ambiguity aversion.

Finally, in some ambiguous situations we could have p0 much smaller than 0.5. Consider

the two five-color-urns mentioned above. For each urn, an individual can now choose only

one color and wins if the drawn ball matches this color. In this scenario, p0 = 0.2, and

2In this scenario the assumption of F (p) = p is questionable. As discussed later, a more natural
assumption of F (p) would perhaps be a distribution which assigns density mass symmetric to p0 = 0.8. In
this example, we use the assumption nevertheless, because it provides a more intuitive calculation of the
ambiguous component.

9



the ambiguity component is:

Ambiguity component =

∫ 0.2

0
l(p− 0.2)dF (p) +

∫ 1

0.2
g(p− 0.2)dF (p). (7)

As illustrated in the bottom graph of Figure 1, the negative area is now smaller than the

positive area, and, consequently, the ambiguity component is positive. That is, in situa-

tions where the objective reference probability is small, individuals are ambiguity seeking.

This result is not as unusual as it may first appear. In fact, several studies provided

evidence of ambiguity seeking when the objective probability of winning an ambiguous

gamble was small (see Camerer and Weber, 1992, Table 3, for an overview).

2.2 Links to Other Models

So far, purely for illustrative purposes, we have assumed F (p) = p when p0 is small

(p0 = 0.2), medium (p0 = 0.5), and large (p0 = 0.8). This is, of course, an ad hoc

assumption, which becomes questionable when p0 moves away from 0.5. An arguably more

reasonable assumption of F (p) would be that F (p) exhibits more mass around p0, and the

further p moves away from p0, the less mass individuals attach to these probabilities. One

such form of subjective belief, for example, is a normal distribution with a mean p0 and

values that are restricted to [−p0, 1− p0].3

As we normalized V (G) ≡ 1, the value of the risky asset is simply w(p0). We can take

a similar perspective for the value of the ambiguous asset. Let V (U) ≡ Π(p0), we could

regard the value of the ambiguous asset as its weighting function in an ambiguous situa-

tion. A comparison between w(p0) and Π(p0) then reflects the difference between decision

making under risk and under ambiguity. Figure 2 provides such a comparison.

3Since the normal distribution has values extending outside of the range [−p0, 1 − p0], the restriction
of p ∈ [−p0, 1− p0] makes the cumulative mass in the range of [−p0, 1− p0] smaller than 1. For a proper
distribution function, one could adjust the normal distribution function to

1

N(−p0, 1− p0)
× dN(p),

where N(−p0, 1− p0) denotes the cumulative mass between −p0 and 1− p0.
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Figure 2: The parametric form of π(p0) = e−0.93(−ln(p0))
0.85

is taken from the empirical
estimate of Abdellaoui et al. (2011). The functional form of Π(p0) is produced by assuming
g(∆) = ∆ and l(−∆) = −1.5∆. F (p) is assumed to be normally distributed around p0
with a standard deviation of 0.20.
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Figure 2 bears a remarkable similarity to Figure 3 in Abdellaoui et al. (2011). In particular,

our theory suggests, similar to their empirical findings, that: (1) individuals are ambiguity

seeking with small p0 and ambiguity averse with large p0; (2) decision weights in ambiguity,

Π(p0), are flatter than decisions weights in risk, w(p0), suggesting less sensitivity to changes

in probability under ambiguity than under risk. Note that Abdellaoui et al.’s (2011) results

were obtained without explicit comparison between the ambiguous and the risky asset.4

However, in their experimental setting, there often exists a salient probability that may

be used as reference.5 Hence, although the subjects in Abdellaoui et al.’s (2011) study did

not explicitly face a risky asset as comparison, they might nevertheless have formed an

implicit reference when evaluating the ambiguous asset. Of course, based on the finding

of Fox and Tversky (1995), ambiguity aversion should be weaker when the reference is

not explicit. This may explain why our model suggests a stronger certainty effect than

the empirical findings in Abdellaoui et al. (2011), as revealed by a larger gap in our curve

when p0 approaches 0 or 1.6

3 Experimental Design

The crucial assumption in our model is the reference-dependence hypothesis, which states

that the objective probability of the risky asset is used as a reference to evaluate the

subjective probability of the underlying state of the ambiguous asset. Thus, unlike other

models of ambiguity, our model suggests that the probability of the risky asset has an

impact on the value of the ambiguous asset.

We decided to directly employ a relatively strong test condition: we held the ambiguous

4Abdellaoui et al. (2011) used the certainty equivalence method to obtain the value of the ambiguous
asset and the risky asset, but they never presented the two assets simultaneously to subjects.

5For example, for the two five-color-urns (with 100 balls) mentioned earlier, it seems reasonable to
assume that p0 = 0.2 and p0 = 0.8 are the most prominent comparable probabilities in the minds of the
subjects, even if they are not displayed simultaneously when they take their decisions.

6The shape of Π(p0) certainly depends on the assumption of F (p) and the particular parametric forms
of l(−∆) and g(∆). The general properties of Π(p) are rather robust. We simulated Π(p0) with a few
other specifications of F (p) and a number of parametric forms of l(−∆) and g(∆). All properties discussed
above remain intact.
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asset constant while we varied the winning probabilities of the risky asset. As the am-

biguous asset remains the same, its value should, according to standard ambiguity models,

remain constant no matter what risky asset is presented with it. If, however, the value

of the ambiguous gamble changes with the variations in the probabilities of the risky as-

set, this direct effect can be interpreted as strong support for the reference-dependence

hypothesis.

Another, more elaborate way of testing the our model is to vary the winning probabilities of

the risky assets alongside several values of fixed underlying probabilities of the ambiguous

asset. The willingness to pay (WTP) for the risky and for the ambiguous asset could then

be used to produce a graph similar to the one in Figure 2. However, as this test would

primarily focus on the extended model, it is unnecessarily complicated for a basic test of

the reference-dependence hypothesis.

Given that the ambiguous asset is fixed, a between-subjects design becomes a natural

choice. We administered to each subject a questionnaire that described two gambles: one

ambiguous and one risky. The ambiguous gamble was presented as a bag with 10 black

and white chips of unknown proportion. The subject could first choose a color (white or

black) and then draw a chip out of the bag. If the color of the chip matched the chosen

color, she won 10 euro, and zero otherwise.7 Similarly, the risky gamble was presented as

a bag with 10 black and white chips of known proportion. The subject drew a chip out of

the bag and if the chip was black, she won 10 euro, and zero otherwise. An example of the

the questionnaire is shown in Figure 4 and Figure 5 in the Appendix. In all questionnaires,

the ambiguous gamble was held constant and thus all subjects faced the same ambiguous

gamble. Different subjects, however, faced different risky gambles. There were seven risky

gambles: a bag with n black chips of a total 10 chips, where n=1, 3, 4, 5, 6, 7, or 9. These

seven bags corresponded to seven risky gambles with a winning probability of 0.1, 0.3, 0.4,

0.5, 0.6, 0.7, or 0.9 respectively, constituting seven treatments.

7The fact that subjects were able to choose a color does not mean that the chosen color is governed by
a belief distribution that always lies above a winning probability of 0.5. What is needed is that the belief
distribution of the chosen color gives less mass on low winning probabilities and/or more mass to high
winning probabilities than the unchosen color. For example, it would be sufficient if the subjective belief
of the chosen color first order degree stochastically dominates the unchosen color.
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Individuals typically read questionnaires from the left to the right. If individuals evaluate

the gamble on the left hand side first, they might be more inclined to use the probability

of the risky asset as the reference when it is presented on the left hand side. To test for

such an order effect, we counter balanced the sides on which the risky and the ambiguous

gamble were presented.

We elicited subjects’ WTP for the risky gamble and the ambiguous gamble by using the

BDM mechanism (Becker et al., 1964). For the real payment of a subject, we generated

a random number between 0 and 10 (by drawing a chip from a bag with 11 respectively

numbered chips). The drawn number would then be compared with her WTP for the

gamble on either the left or the right hand side (determined by a coin flip) of the ques-

tionnaire. If her WTP was smaller than the randomly generated number, then she would

not get to play the gamble and her experiment ended. If the subject’s WTP was equal

to or larger than the randomly generated number, then she played the gamble, but payed

only the price of the randomly generated number.

Constructing the ambiguous gamble properly is critical to the experiment. Although the

construction procedure must be perfectly clear, the gamble itself should be regarded by

students as ambiguous. We constructed the ambiguous gamble according to the following

procedure, which was announced publicly before we implemented it. At the start of the

experiment we asked ten randomly selected subjects, who did not participate in rest of

the experiment, to pick an integer number between 0 to 10. We did not tell them how

are we going to use those numbers. Each of them left the experimental room, secretely

wrote the number on a small piece of paper, which they then folded, to hide the number.

They then brought the folded pieces of paper into the experimental room and we asked

another randomly chosen subject, who did not participate in rest of the experiment, to

help us with the construction of the ambiguous gamble. This helper randomly picked one

of the ten folded papers. We then gave the helper two bags: one with 10 black chips and

one with 10 white chips. We asked the helper to leave the experimental room and use the

two bags to produce an ambiguous bag of 10 chips, in which the number of black chips

should be the number on the paper she has drawn. When finished, the helper returned

with two closed bags, placed the ambiguous bag on the desk in the front and stashed the
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other away. Neither the experimenters nor the subjects knew the contents of any of the

two bags throughout the experiment.

The experiment was done on 7th September, 2011 in the Radboud University Nijmegen.

The subjects were 210 second year business and economics students in the bachelor course

“Corporate Finance” (third lecture). Before the lecture started, we placed the question-

naires on the desks, with the back side facing up. To reduce the influence of peer students

on one’s decisions, we always left one empty seat between any two seats. Furthermore, we

distributed the questionnaire in such a way that every student was surrounded by differ-

ent treatments. When the lecture started, we guided students to their seats in an orderly

manner. We asked them not to touch the questionnaire on the desk until we told them so.

They were also told that they could read the side that was facing up (which explained the

payment procedure). Once the classroom was filled, we did not allow the rest of students

to enter the classroom. They waited outside the classroom where we gave them some

questionnaires to fill in to avoid making them feel excluded. Those questionnaires are,

however, excluded from data analysis. After all students were seated, we asked them to

flip the questionnaire around and to read the front side of questionnaire, but not to fill

in the questionnaire yet. We gave students five minutes to read questionnaires. After the

five minutes, we asked students to once again turn to the back side of the questionnaire.

We then read through the payment procedure aloud. We told the students that 20 of

them would be chosen for real payment after the lecture. Subjects that were chosen for

real payment would receive an endowment of 10 euro. In our explanations of the payment

procedure, special attention was given to the BDM mechanism.8 We asked students to

raise their hands if they had any questions. Questions were answered individually.

We then carefully explained the procedure of constructing the ambiguous gamble (as

described above). After the ambiguous gamble was produced, we placed the ambiguous

bag on a desk in front of all students. We told them explicitly that this was the ambiguous

bag described in their questionnaires. Questionnaires were then filled in and collected.

Each student retained an ID number that was also printed on the questionnaire. Then

8To give the students an intuitive feeling for the BDM mechanism, we asked them to imagine that, in
order to play the gamble, their WTP would have to compete against a computer that produces a random
price between 0 and 10.
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the lecture started. In a 15-minute break, after the first half of the lecture, we asked the

student helper to randomly pick 20 questionnaires out of the pile. The ID numbers of

these questionnaires were announced and shown on a screen. The students with these ID

numbers were asked to stay after the lecture. The rest was allowed to also stay and watch

the experiment, but they needed to be quiet. After the lecture was over, we asked the

20 students to come to the front of the classroom and show their ID number. For each

student, we then determined via the BDM mechanism whether they could really play the

gamble, as described above. Those who could not play the gamble received 10 euro and

stayed outside of the experimental area. The others played the gamble.9

In total the experiment (exluding lecture time) lasted about 45 minutes and the average

payoff of the selected students was 9.88 Euro.

4 Experimental results

In total 210 students participated the experiment. Two students did not give their WTPs

for the ambiguous gamble, and were therefore excluded from analysis.

Table 1 summarizes the WTPs of the risk gambles with 1, 3, 4, 5, 6, 7, 9 black chips

(corresponding a winning probability of 0.1, 0.3, 0.4, 0.5, 0.6, 0.7, 0.9), and WTPs of

the ambiguous gamble that were presented along with them. We further split the WTPs

by the positioning of the risky gamble on the questionnaire, that is, whether the risky

gamble was shown on the left or on the right side of the questionnaire. As can be seen by

comparing the WTPs of the ambiguous and the risky gamble on the row of 0.5 winning

probability, there is significant ambiguity aversion. The mean and median WTPs of the

risky gamble with 0.5 winning probability are 4.28 and 4.5, whereas the mean and median

of the ambiguous gamble are 3.35 and 3.0, respectively. A two-sided wilcoxon test shows

that the difference is significant (p < 0.01).

9The payoff therefore was determined as 10 Euro minus the randomly drawn number between 0-10 plus
the outcome of the gamble (0 or 10).
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probability WTP of the risky gamble the WTP of the ambiguous gamble
of the risky Overall the risky gamble appeared on Overall the risky gamble appeared on
gamble mean median left (mean) right (mean) mean median left (mean) right (mean)

0.1 1.82 1.00 1.00 2.05 3.95 4.00 2.00 4.48

0.3 3.02 3.00 2.66 3.50 3.85 4.70 3.32 4.57

0.4 3.45 4.00 3.84 3.06 3.37 4.00 3.61 3.13

0.5 4.28 4.50 4.05 4.53 3.35 3.00 3.20 3.50

0.6 5.14 6.00 4.75 5.52 3.67 4.00 2.92 4.42

0.7 5.24 5.00 5.03 5.58 3.69 4.00 3.55 3.92

0.9 7.31 8.00 8.00 7.25 3.85 4.00 4.00 3.83

Table 1: WTPs of the risky gamble and the ambiguous gamble. “Left” (“right”) means
the risky gamble was on the left (right) hand side of the questionnaire.

If students behaved according to standard models of ambiguity, we should not observe

much variation of the WTPs of the ambiguous gamble when the probability of the risky

gamble changes. This is clearly not what we observed in the data. As we can see from

Table 1, the ambiguity aversion is most pronounced when the risky gamble has a winning

probability of 0.5: the mean difference of WTPs between the risky and the ambiguous

gamble is 0.93 and the median difference is 1.5. The WTPs of the ambiguous gamble

increases (hence ambiguity aversion, defined as the difference of WTPs between the risky

gamble with p0 = 0.5 and the ambiguous gamble, decreases) as the winning probability of

the risky gamble moves away from p0 = 0.5: mean differences of ambiguity aversion are

0.91, 0.43, and 0.33 respectively for the risky gamble with winning probability of 0.4, 0.3,

and 0.1, and are 0.61, 0.59, 0.43 respectively for the risky gamble with winning probability

of 0.6, 0.7, and 0.9; median difference of −0.2 for the risky gamble with winning probability

of 0.3 and median difference of 0.5 for others. An graphic illustration is reported in Figure

3.10 In this graph, the x-axis is the winning probability of the risky gambles: p0 =0.1, 0.3,

0.4, 0.5, 0.6, 0.7, 0.9, the y-axis is a boxplot of the values of the ambiguous gamble. The

difference between the WTPs of the ambiguous gamble at p0 = 0.5 and all other values of

p0 is statistically significant at a 90 percent confidence interval (two-sided Wilcoxon test,

p = 0.0802). We also tested the difference between the WTPs of the ambiguous gamble at

p0 = 0.5 and (jointly) at p0 = 0.1 and 0.3, and between p0 = 0.5 and (jointly) at p0 = 0.7

and 0.9. Again, both differences are significant at a 90 percent confidence interval (two-

10One should not compare this figure with Figure 2. Figure 2 is produced by varying the ambiguous
gamble along with p0, in such a way that the ambiguous gamble has an “ambiguity neutral” probability
of p0. But here the ambiguous gamble is fixed.
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Figure 3: A boxplot of the values of the same ambiguous gamble when it was presented
with risky gambles with different probabilities. The bold black lines in the boxes are the
median WTPs of the ambiguous gamble in the corresponding scenario. The long dashed
curve connects the mean WTPs of the ambiguous gamble in the corresponding scenario.
The dashed line is the median value (4.5) of the risky gamble with winning probability of
0.5.

sided wilcoxon tests, p = 0.0595 and p = 0.0925, respectively). Among the ambiguous

gambles with p0 6= 0.5 there is no single pair with statistically significant differences in

their WTPs (two-sided wilcoxon tests, p > 0.1 for each pair).

The students typically read from the left to the right. This implies that they could have

read and evaluated the left hand side gamble first. This could have an important implica-

tion for our model: if the risky gamble was positioned on the left hand side, subjects might

have been more inclined to use its winning probability as reference for the ambiguous gam-

ble on the right hand side than the other way around. Consequently, reference-dependent

ambiguity aversion could be more pronounced when the risky gamble was shown on the

left hand side. To check this possibility we compared the WTPs of the ambiguous gamble

when the risky gamble was presented on the left and on the right. We find statistically

significant differences in WTPs for ambiguous gambles that were presented with the risky
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gambles of 0.1, 0.3, and 0.6 winning probabilities (one-sided wilcoxon test, p < 0.05). In

contrast, when the risky gambles of 0.4 and 0.9 were on the left hand side the average am-

biguous WTPs were even lower, although not statistically significant (two-sided wilcoxon

test, p > 0.10). All together, there seems to be a tendency for a more pronounced am-

biguity aversion on the right hand side of the questionnaire, but the evidence is sparse.11

This result is consistent with the finding in Alevy (2011), where they found that subjects

priced ambiguous assets lower than risky assets only when they were previously exposed

to risky assets.

We calculated each subject’s risk aversion as the difference of the risk neutral evaluation

10 × p and her WTP for the risky gamble. As a measure of ambiguity aversion, we

subtracted each subject’s WTP for the ambiguous gamble from the mean of the risky

gamble with a winning probability of 0.5 (4.28 on average). We then computed the non-

parametric Spearman correlation of the risk aversion and ambiguity aversion and found

a statistically significant positive correlation of 0.49 (p < 0.01). This result is consistent

with the study of Bossaerts et al. (2010), where the authors suggest that a positive risk-

ambiguity correlation may be able to explain the ‘value effect’ in historical financial market

data.

5 Discussion

In this paper we propose a novel approach to explain ambiguity aversion. The central

idea is the use of a more or less salient reference point in probability for the evaluation of

the ambiguous asset. We argue that individuals form subjective beliefs on the potential

winning probability of the ambiguous asset and that the winning probability of risky asset

in the classic setting of Fox and Tversky (1995) is used as a reference point to evaluate

the potential winning probabilities of the ambiguous asset. Analogous to prospect theory

where payoffs are coded as gains or losses relative to a reference point, potential winning

11For the risky gambles, the WTP differences between the left and the right hand side are comparatively
weak (two-sided wilcoxon test, p < 0.10 for the risky gambles of 0.3 and 0.4, p > 0.10 for all other risky
gambles).
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probabilities of the ambiguous asset that are greater than the reference point are coded as

gains and probabilities smaller than the reference point are coded as losses, and individuals

exhibit loss aversion in probability by assigning a larger weight to losses in probability than

to the same amount of gains in probability. We tested the crucial assumption of the model,

reference-dependence, in an experiment and found supporting evidence.

Our approach and explanation of ambiguity aversion is fundamentally different from stan-

dard models, which attempt to explain ambiguity aversion as an isolated phenomenon.

Also, our approach differs from the predominant explanation of comparative ignorance,

first presented by Fox and Tversky (1995). As a companion of the competence hypothesis

(Heath and Tversky, 1991), the comparative ignorance hypothesis per se does not depend

on a comparison or even a reference point, but on the perception of (in)competence as

a state of mind. Although the original experimental design presentated the risky and

the ambiguous urn together, (in)competence about an ambiguous situation can also be

created in settings without direct comparisons where the ambiguous urn is effectively eval-

uated in isolation (see e.g. Camerer and Weber, 1992), but under different perceptions of

competence.

In contrast, our approach does not assume that ambiguity is evaluated in isolation. We

suggest that people try to evaluate ambiguity by comparing it to a similar, but less am-

biguous situation of, ideally, pure risk. If such a salient risky comparison exists, we argue

that this is readily used as a reference point in probability for the ambiguous situation.
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Appendix: Experimental questionnaire

Figure 4: An example of the Questionnaire used in the experiment: the front

Figure 5: An example of the Questionnaire used in the experiment: the back
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