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ABSTRACT. 

Developments in the theory of risk require yet another evaluation of the behavioral validity of the
independence axiom. This axiom plays a central role in most formal statements of expected utility
theory, as well as popular alternative models of decision-making under risk, such as rank-dependent
utility theory. It also plays a central role in experiments used to characterize the way in which risk
preferences deviate from expected utility theory. If someone claims that individuals behave as if they
“probability weight” outcomes, and hence violate the independence axiom, it is invariably on the
basis of experiments that must assume the independence axiom. We refer to this as the Bipolar
Behavioral Hypothesis: behavioral economists are pessimistic about the axiom when it comes to
characterizing how individuals directly evaluate two lotteries in a binary choice task, but are
optimistic about the axiom when it comes to characterizing how individuals evaluate multiple
lotteries that make up the incentive structure for a multiple-task experiment. Building on designs
that have a long tradition in experimental economics, we offer direct tests of the axiom and the
evidence for probability weighting. We reject the Bipolar Behavioral Hypothesis: we find that non-
parametric preferences estimated for the rank-dependent utility model are significantly affected
when one elicits choices with procedures that require the independence assumption, as compared to
choices with procedures that do not require that assumption. We also demonstrate this result with
familiar parametric preference specifications, and draw general implications for the empirical
evaluation of theories about risk.
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Developments in the theory of risk require yet another an evaluation of the behavioral

validity of the independence axiom. This axiom plays a central role in most formal statements of

expected utility theory (EUT), as well as popular alternative models of decision-making under risk,

such as rank-dependent utility (RDU) theory. It also plays a central role in most experiments used to

characterize the way in which risk preferences deviate from EUT. For example, if someone claims

that individuals behave as if they “probability weight” outcomes, and hence violate the independence

axiom (IA), it is usually on the basis of experiments that must assume the IA if the incentives are to

be taken seriously. But there is an obvious inconsistency with saying that individuals behave as if

they violate the IA on the basis of evidence collected under the maintained assumption that the

axiom is magically valid.

This inconsistency has long been noted in the literature, with some ingenious experimental

designs intended to trap the IA under some circumstances. But these indirect tests of the IA have

been inconclusive. This is frustrating: either the axiom applies or it does not. The uneasy state of the

literature has evolved to assuming the axiom for the purposes of making the payment protocol of an

experiment valid, but not assuming it when characterizing the risk preferences exhibited in the same

experiment. Those characterizations seem to show evidence of rank-dependent probability

weighting, when that very evidence calls into question the maintained assumption of the payment

protocol used to generate the evidence. We refer to this as the Bipolar Behavioral Hypothesis:

behavioral economists are pessimistic about the IA when it comes to characterizing how individuals

directly evaluate two lotteries in a binary choice task, but are optimistic about the IA when

characterizing how individuals evaluate multiple lotteries that make up the incentive structure for a

multiple-task experiment.

The standard payment protocol involves a subject making K>1 choices, and then selecting

one choice at random for payment. We call this protocol 1-in-K. Following Conlisk [1989], Starmer
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and Sugden [1991], Beattie and Loomes [1997], Cubitt, Starmer and Sugden [1998] and Cox, Sadiraj

and Schmidt [2011], an alternative payment protocol, which we call 1-in-1, involves a subject making

only one choice, and then being paid with certainty for the single choice.1 The IA can have no role

to play in the validity of the 1-in-1 protocol per se if we restrict choice to simple lotteries, but plays a

defining role in the 1-in-K protocol. And the role that the IA plays in the theoretical and behavioral

validity of the experimental payment protocol is quite distinct from the role that it might play in

evaluating the actual binary choice or choices. Even with the 1-in-1 protocol being used, it is

possible to ask if behavior is better characterized by violations of IA or not. Indeed, the whole point

of our design is to highlight the dual role of the IA in 1-in-K protocols that seek to test violations of

IA.

We offer direct tests of the effect of IA on preferences for risk in general, and the evidence

for probability weighting in particular, by using both of these payment protocols. We reject the

Bipolar Behavioral Hypothesis. We find evidence of RDU probability weighting with the 1-in-1

protocol that does not rely on the validity of the IA. So this result establishes that there is theoretical

and behavioral “cause for concern” when one assumes the validity of the IA for the 1-in-K protocol.

We then find that this theoretical concern is empirically relevant. Estimated RDU risk preferences

are different depending on whether one infers them from data collected with the 1-in-1 payment

protocol or the 1-in-K payment protocol.

Many studies invoke something referred to as “the isolation effect,” which is often a

behavioral assertion that a subject views each choice in an experiment as independent of other choices

in the experiment. When used formally, this hypothesis is usually the same as the IA, and is indeed

1 Conlisk [1989; p.406] has a very clear statement of the problem, and the need for the 1-in-1
protocol. He uses the 1-in-1 protocol in his test of the Allais Paradox, incidentally finding no evidence
whatsoever for the alleged anomaly, but does not test it behaviorally against the 1-in-K protocol. Starmer and
Sugden [1991] were the first to undertake that behavioral comparison.
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exactly the same as the IA in our choice context. We do recognize that it is often invoked informally

as “an empirical matter,” much as a magic talisman is used to ward off evil spirits. 

In section 1 we describe the theoretical constructs needed for our design, in particular the

various axioms that are at issue. In section 2 we present our experimental design, which allows

comparison of risk preferences obtained from tasks that do not require the IA with risk preferences

obtained from tasks that do require the assumption. We also explain why we focus on differences in

estimated preferences across treatments rather than just examine raw choice patterns. In section 3

we develop the econometric model used to estimate preferences. We pay particular attention to the

manner in which between-subject heterogeneity is modeled. The reason for this attention is that the

simplest way of avoiding reliance on the IA is to give some individuals one task, necessitating the

pooling of choices across individuals. In the absence of an assumption of homogeneity of risk

preferences, or samples of sufficient power to allow randomization to mitigate the need for that

assumption, we must address the econometric modeling of heterogeneity. In section 4 we examine

the data from our experiments and econometric analysis. In section 5 we draw some general

implications of our results, and in section 6 draw some general conclusions. Appendices A and B

document the parameters and instructions used in our experiments, and appendix C reviews the

previous experimental literature.

1. Theory

A. Basic Axioms

Following Segal [1988][1990][1992], we distinguish between three axioms. In words, the

Reduction of Compound Lotteries (ROCL) axiom states that a decision-maker is indifferent

between a compound lottery and the actuarially-equivalent simple lottery in which the probabilities

of the two stages of the compound lottery have been multiplied out. To use the language of
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Samuelson [1952; p.671], the former generates a compound income-probability-situation, and the latter

defines an associated income-probability-situation, and that “...only algebra, not human behavior, is

involved in this definition.”

To state this more explicitly, with notation to be used to state all axioms, let X, Y and Z

denote simple lotteries, A and B denote compound lotteries, ™ express strict preference, and -

express indifference. Then the ROCL axiom says that A - X if the probabilities and prizes in X are

the actuarially-equivalent probabilities and prizes from A. Thus if A is the compound lottery that

pays “double or nothing” from the outcome of the lottery that pays $10 if a coin flip is a head and

$2 if the coin flip is a tail, then X would be the lottery that pays $20 with probability ½×½ = ¼, $4

with probability ½×½ = ¼, and nothing with probability ½. From an observational perspective, one

would have to see choices between compound lotteries and the actuarially-equivalent simple lottery

to test ROCL.

The Compound Independence Axiom (CIA) states that a compound lottery formed from

two simple lotteries by adding a positive common lottery with the same probability to each of the

simple lotteries will exhibit the same preference ordering as the simple lotteries. So this is a

statement that the preference ordering of the two constructed compound lotteries will be the same

as the preference ordering of the different simple lotteries that distinguish the compound lotteries,

provided that the common prize in the compound lotteries is the same and has the same (compound

lottery) probability. It says nothing about how the compound lotteries are to be evaluated, and in

particular it does not assume ROCL. It only restricts the preference ordering of the two constructed

compound lotteries to match the preference ordering of the original simple lotteries.

The CIA says that if A is the compound lottery giving the simple lottery X with probability α

and the simple lottery Z with probability (1-α), and B is the compound lottery giving the simple

lottery Y with probability α and the simple lottery Z with probability (1-α), then A ™ B iff X ™ Y œ α
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0 (0,1). So the construction of the two compound lotteries A and B has the “independence axiom”

cadence of the common prize Z with a common probability (1-α), but the implication is only that

the ordering of the compound and constituent simple lotteries are the same.2

Finally, the Mixture Independence Axiom (MIA) says that the preference ordering of two

simple lotteries must be the same as the actuarially-equivalent simple lottery formed by adding a

common outcome in a compound lottery of each of the simple lotteries, where the common

outcome has the same value and the same (compound lottery) probability. So stated, it is clear that

the MIA strengthens the CIA by making a definite statement that the constructed compound

lotteries are to be evaluated in a way that is ROCL-consistent. Construction of the compound lottery

in the MIA is actually implicit: the axiom only makes observable statements about two pairs of

simple lotteries. To restate Samuelson’s point about the definition of ROCL, the experimenter

testing the MIA could have constructed the associated income-probability-situation without

knowing the risk preferences of the individual (although the experimenter would need to know how

to multiply).

The MIA says that X ™ Y iff the actuarially-equivalent simple lottery of αX + (1-α)Z is

strictly preferred to the actuarially-equivalent simple lottery of αY + (1-α)Z, œ α 0 (0,1). The verbose

language used to state the axiom makes it clear that MIA embeds ROCL into the usual

independence axiom construction with a common prize Z and a common probability (1-α) for that

prize.

The reason these three axioms are important is that the failure of MIA does not imply the

failure of CIA and ROCL. It does imply the failure of one or the other, but it is far from obvious

2 For example, Segal [1992; p.170] defines the CIA by assuming that the second-stage lotteries are
replaced by their certainty-equivalent, “throwing away” information about the second-stage probabilities
before one examines the first-stage probabilities at all. Hence one cannot then define the actuarially-equivalent
simple lottery, by construction, since the informational bridge to that calculation has been burnt.
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which one. Indeed, one could imagine some individuals or task domains where only CIA might fail,

only ROCL might fail, or both might fail. Moreover, specific types of failures of ROCL lie at the

heart of many important models of decision-making under uncertainty and ambiguity. We use the

acronym IA when we mean “CIA or MIA” and the acronyms CIA or MIA directly when the

difference matters.

B. Experimental Payment Protocols

Turning now to experimental procedures, as a matter of theory the most popular payment

protocol assumes the validity of the CIA. This payment protocol is called the Random Lottery

Incentive Mechanism (RLIM). It entails the subject undertaking K tasks and then one of the K

choices being selected at random to be played out. Typically, and without loss of generality, assume

that the selection of the kth task to be played out uses a uniform distribution over the K tasks. Since

the other K-1 tasks will generate a payoff of zero, the payment protocol can be seen as a compound

lottery that assigns probability α = 1/k to the selected task and (1-α) = (1-(1/k)) to the other K-1

tasks as a whole. If the task consists of binary choices between simple lotteries X and Y, then the

RLIM can be immediately seen to entail an application of the CIA, where Z = U($0) and (1-α) = (1-

(1/k)), for the utility function U(@). Hence, under the CIA, the preference ordering of X and Y is

independent of all of the choices in the other tasks (Holt [1986]).

If the K objects of choice include any compound lotteries, directly or indirectly, then one

might naturally think of the RLIM as requiring the stronger MIA instead of just the CIA. Indeed,

this was the setting for the classic discussions of the interaction of the IA with the RLIM, the

commentaries of Holt [1986], Karni and Safra [1987] and Segal [1988] on the “preference reversal”

findings of Grether and Plott [1979]. In those experiments the elicitation procedure for the

certainty-equivalents of simple lotteries was, itself, a compound lottery. Hence the validity of the
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incentives for this design required both CIA and ROCL, hence MIA. Holt [1986] and Karni and

Safra [1987] showed that if CIA was violated, but ROCL and transitivity was assumed, one might

still observe choices that suggest “preference reversals.” Segal [1988] showed that if ROCL was

violated, but CIA and transitivity was assumed, that one might also still observe choices that suggest

“preference reversals.”3 Again, the only reason that ROCL was implicated in these discussions is

because the experimental task implicitly included choices over compound lotteries. In our case we

only consider choices over simple lotteries, so the validity of RLIM rests solely on the validity of the

CIA.

The CIA can be avoided by setting K=1, and asking each subject to answer one binary

choice task for payment. Unfortunately, this comes at the cost of another assumption if one wants

to compare choice patterns over two simple lottery pairs, as in most of the popular tests of EUT

such as the Allais Paradox and Common Ratio test: the assumption that risk preferences across

subjects are the same. This is a strong assumption, obviously, and one that leads to inferential

tradeoffs in terms of the “power” of tests of EUT relying on randomization that will vary with

sample size. Sadly, plausible estimates of the degree of heterogeneity in the typical population imply

massive sample sizes for reasonable power, well beyond those of most experiments.

The assumption of homogeneous preferences can be diluted, however, by changing it to a

conditional form: that risk preferences are homogeneous conditional on a finite set of observable

characteristics.4 Although this sounds like an econometric assumption, and it certainly has statistical

implications, it is as much a matter of theory as formal statements of the CIA, ROCL and MIA. 

3 Guala [2005; p.97ff] contains an excellent discussion of these issues surrounding the “preference
reversal” debates.

4 Another way of diluting the assumption is to posit some (flexible) parametric form for the
distribution of risk attitudes in the population, and use econometric methods that allow one to estimate the
extent of that unobserved heterogeneity across individuals. Tools for this “random coefficients” approach to
estimating non-linear preference functionals are developed in Andersen, Harrison, Hole, Lau and Rutström
[2010].
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2. Experiment

A. Basic Design Issues

Our basic experimental design focuses directly on the risk preferences that one can infer

from binary choices over pairs of simple lotteries. This task is canonical, in terms of testing EUT

against alternatives such as RDU, as well as for estimating risk preferences. Our design builds on a

comparison of the risk preferences implied by 1-in-1 and 1-in-K choice tasks. We let K equal 30, to

match the typical risky choice experiment in which there are many choices (e.g., Hey and Orme

[1994]). Figure 1 shows the interface given to our subjects in this case of sequential presentation of

choice tasks. A standard, fixed show-up fee, in our case $7.50, was paid to every subject

independently of their lottery choices.

An important dimension of choice tasks, for K>1, is whether the individual gets to see the

lotteries prior to making any choices. Again, the typical case in the experimental literature is when

the choices are presented sequentially. Although there is often some similarity in prizes and

probabilities from choice task to choice task, the subject does not know the exact lotteries to come,

and that can make the task of forming portfolios very demanding (Hey and Lee [2005a][2005b]). On

the other hand, presenting subjects with a “multiple price list” of ordered lottery choices is a

justifiably popular task for eliciting risk attitudes (Holt and Laury [2002][2005], Harrison, Johnson,

McInnes and Rutström [2005] and Andersen, Harrison, Lau and Rutström [2006]). In this case the

subject sees all binary choices arrayed on one page, and is virtually encouraged to form some

portfolio.5

It is common in many experimental settings for the individual to face one or more paid tasks

after the K tasks of focus in the elicitation of risk preferences. A good example is the joint

5 It is easy to show that first order stochastic dominance implies that K rows or binary choice tasks
imply only K+1 efficient portfolios, in which there are only 0 or 1 switch points.
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estimation design of Andersen, Harrison, Lau and Rutström [2008], in which subjects completed

risky lottery choices designed to infer the concavity of their utility function so that inferences about

discount rates defined over utility could be made from a later task involving choices over time-dated

monetary amounts. Hence we also examine the effect of there being an extra task after the binary

lottery choice of primary interest. 

B. Specific Design

Table 1 summarizes our experimental design. In treatment A subjects undertake 1-in-1

binary choices, where the one pair they face is drawn at random from a set of 69 lottery pairs shown

in Table A1 of Appendix A. These lottery pairs span five monetary prize amounts, $5, $10, $20, $35

and $70, and five probabilities, 0, ¼, ½, ¾ and 1. The prizes are combined in ten “contexts,”

defined as a particular triple of prizes.6 They are based on a battery of lottery pairs developed by

Wilcox [2010] for the purpose of robust estimation of EUT and RDU models.7 Figure 2 shows the

coverage of these lottery pairs in terms of the Marschak-Machina triangle. Each prize context

defines a different triangle, but the patterns of choice overlap considerably. Figure 2 shows that

there are many lottery pair chords that assume parallel indifference curves, as expected under EUT,

but that the slope of the indifference curve can vary, so that the tests of EUT have reasonable power

for a wide range of risk attitudes under the EUT null hypothesis (Loomes and Sugden [1998] and

Harrison, Johnson, McInnes and Rutström [2007]). These lotteries also contain a number of pairs in

6 For example, the first context consists of lotteries defined over the prizes $5, $10 and $20, and the
tenth context consists of lotteries defined over the prizes $20, $35 and $70. The significance of the prize
context is explained by Wilcox [2010][2011].

7 The original battery includes repetition of some choices, to help identify the “error rate” and hence
the behavioral error parameter, defined later. In addition, the original battery was designed to be administered
in its entirety to every subject. We decided a priori that 30 choice tasks was the maximum that our subject pool
could focus on in any one session, given the need in some sessions for there to be later tasks.
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which the “EUT-safe” lottery has a higher  EV than the “EUT-risky” lottery: this is designed

deliberately to evaluate the extent of risk premia deriving from probability pessimism rather than

diminishing marginal utility.

In treatment A we do not  have to assume the CIA in order for observed choices to reflect

risk preferences under EUT or RDU. In effect, it represents the behavioral Gold Standard

benchmark, against which the other payment protocols are to be evaluated.

In treatment B we move to the 1-in-30 case, which is typical of the usual risk elicitation

setting. In all cases, unless otherwise noted, we explicitly told subjects that there were no further

salient tasks affecting their earnings after the risky lottery task, to avoid them even tacitly thinking of

forming a portfolio over the risky lottery tasks and any future tasks.

Treatment C extends the 1-in-30 case to the most common in the experimental literature,

where the risky lottery choice task is followed by some other paid task. Payments for the lottery

choices are not affected by payments for the other task, but the prospect of another paid task might

encourage subjects to form some sort of “anticipated portfolio.” The instructions in treatment C

raised the possibility of a future task for payment, but the instructions in treatments A, B, and D

clearly stated that there would be no further paid task.8 Common practice and expectation in our lab

might have led subjects to expect multiple tasks, and that could obviously vary with the experiences

of each subject.

Every random event determining payouts was generated by the rolling of one or more dice. 

8 To be precise, at the end of the instructions for treatment C subjects were told that “All payoffs are
in cash, and are in addition to the $7.50 show-up fee that you receive just for being here, as well as any other
earnings in other tasks.” In the other treatments subjects were told that “All payoffs are in cash, and are in
addition to the $7.50 show-up fee that you receive just for being here. The only other task today is for you to
answer some demographic questions. Your answers to those questions will not affect your payoffs.”
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These dice were illustrated visually during the reading of the instructions,9 and each subject rolled

their own dice.

C. Why Not Just Look At Raw Choice Patterns?

We focus on the risk preferences implied by the observed choice data, and do not examine

the choice patterns themselves. The reason is that there are limits on what can be inferred by just

looking at choice patterns. Since much of the literature on the evaluation of the axioms of EUT has

done precisely that, we explain why we believe this to be less informative than trying to make

inferences about the underlying latent preferences. This may be particularly important because many

might wonder how they could differ: after all, if preferences are just rationalizing observed choices,

and if observed choices appear to violate the predictions of EUT or IA, how can it be that the

implied preferences might not?

Behavioral Errors

In an important sense, our task would be easier if humans never made mistakes.  This would

allow us to test deterministic theories of choice, and any deviation from the predictions of the theory

would provide prima facie evidence of a failure of the theory.  However, humans do make errors in

behavior, and so our task is more complex. The canonical evidence for behavioral errors is the

fraction of “switching behavior” observed when subjects are given literally the same lottery pair at

different points in a session (e.g., Wilcox [1993]).  Any analysis of individual choice ought to account

for such behavioral errors.  Indeed, some previous analyses of choice patterns have attempted to

9 The lab contains a video projector from the front table to the displays throughout the room. Apart
from a large front-screen display, there are 3 wide-screen TV displays throughout the lab so that every cubicle
has a clear view.
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account for “mistakes” by implementing “trembles” (e.g., Conlisk [1989; Appendix I] and Harless

and Camerer [1994]).  Such trembles are agnostic about the way any behavioral error might affect

the latent components of the choice. A more satisfactory approach would incorporate behavioral

errors into the choice process in a more coherent manner, as discussed in detail by Wilcox [2008].

It is worth emphasizing that behavioral errors are quite distinct conceptually from sampling

errors. The former refer to some latent component of the theoretical structure generating a 

predicted choice. The latter refer to the properties of an estimate of the parameters of that

theoretical structure. To see the difference, and assuming a consistent estimator, if the sample size

gets larger and larger the sampling errors must get smaller and smaller, but the (point estimate of

the) behavioral error need not.10 In the first instance behavioral errors are the business of theorists,

not econometricians.11

Do Choice Patterns Use All Available Information?

Once we recognize that there can be some imprecision in the manner in which preferences

translate into observed choices, we obtain another informational advantage from making inferences

about preferences estimated from a structural model: a theory about how the intensity of a

preference for one lottery over another matters. For any given utility function and set of parameter

values, and assuming EUT for exposition, a larger difference in the EU of two lotteries matters

more for the likelihood of the presumed preferences than a difference in the EU that is close to

10 An additional complication arises if one posits random coefficients. In this case, the estimates for
any structural parameter, such as the behavioral error parameter, will have a distribution that characterizes the
population. If that population distribution is assumed to be Gaussian, as is often the case, there will be a point
estimate and standard error estimate of the population mean, and a point estimate and standard error estimate
of the population standard deviation. With a consistent estimator, increased sample sizes imply that both
standard error estimates will decrease, but the point estimate of the population standard deviation need not.

11 Of course they interact, as stressed by Wilcox [2008][2011].
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zero. To see this, assume some parameter values characterizing preferences, and two lottery pairs.

One lottery pair, evaluated at those parameter values, implies an EU for the left lottery that is ε

greater than the EU for the right lottery. Another lottery pair, similarly evaluated at those parameter

values, implies an EU for the left lottery that is much greater than ε more than the EU for the right

lottery. An observed choice that is inconsistent with the predicted choice for the second lottery pair

matters more for the validity of the assumed parameter values than an inconsistent observed choice

for the first lottery pair. This is not the case when one simply looks at the number of consistent and

inconsistent choice pairs, as all inconsistent choices are treated as informationally equivalent.

Of course, one has to define the term “intensity” for a given utility representation, and there

are theoretical and econometric subtleties involved in normalizing EU differences over different

choice contexts, discussed later and in Wilcox [2008][2011]. And structural estimation does entail

some parametric assumptions, also discussed later, that are not involved with the usual analysis of

choice patterns. But there is simply more information used when one evaluates estimated

preferences with a structural model. The difference is akin to limited-information inference versus

full-information inference in statistics: ceteris paribus, it is always better to use more information than

less. Now we admit immediately that things are not all equal, and that some parametric assumptions

will be needed to undertake what we call the full-information approach here.12 But we do argue that

the preference estimation approach is complementary to studying choice patterns, and not an

inferior and less direct method of conducting the same analysis.

Are the Stimuli Representative?

Comparison of choice patterns from a paradox test with two pairs of lotteries may support

12  We will see that the parametric assumptions can be a lot fewer than one usually makes.
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or refute the theory under consideration, but how confident are we that the result is representative

of choices over all lottery pairs?  What if multiple tests using distinct choice patterns are conducted

and only a single test pattern suggests a failure of the theory?  Perhaps some theorists are content

with a single case of falsification, but others may be concerned that the single failure is a rare

exception. For example, it is well-known that violations of EUT tend to occur less frequently when

lotteries are in the “interior” of the Marschak-Machina triangle (e.g., Starmer [2000; p.358]). Hence

one might draw one negative set of qualitative conclusions about EUT from one battery of stimuli

and a different, positive set of qualitative conclusions about EUT from a different battery of

stimuli.13 As a general model for all sets of stimuli, EUT is still in trouble in this case, to be sure, but

inferences about the validity of EUT then need to be nuanced and conditional.

Model estimation can address this “representativeness” issue by presenting subjects with a

wide range of lottery pairs, a point first stressed in the experimental economics literature by Hey and

Orme [1994].  Of course, there is a tradeoff in doing this: with the 1-in-1 protocol we cannot

conduct choice pattern comparisons due to low sample sizes for any given lottery pair.

The Homogeneity Assumption

Another theoretical reason one might want to estimate a structural model of preferences,

rather than examine choice data alone, is to better account for heterogeneity of preferences in the

1-in-1 treatment. The analysis of choice patterns must assume preference homogeneity, or perhaps

minimally condition on a factor, such as assuming homogeneity within samples of men or women.

Some might appeal to large-sample randomization in an attempt to avoid the assumption of

homogeneity, but rarely does anyone conduct appropriate power analyses to justify that appeal. By

13 For example, contrast Camerer [1989] and Camerer [1992] for an illustration of this precise issue.
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using structural model estimation, observed preference heterogeneity can be ameliorated through the

use of demographics controls (e.g., Harrison and Rutström [2008]), and unobserved preference

heterogeneity can be ameliorated through the use of random coefficient models (e.g., Andersen,

Harrison, Hole, Lau and Rutström [2010]).

D. Data

A total of 348 subjects were recruited to participate in experiments at Georgia State

University between February 2011 and April 2011. The general recruitment message did not

mention the show-up fee or any specific range of possible earnings, and subjects were undergraduate

students recruited from across the campus. Table 1 shows the allocations of subjects across our

main treatments. Instructions for all treatments are presented in Appendix B. Every subject received

a copy of the instructions, printed in color, and had time to read them after being seated in the lab. 

The instructions were then projected on-screen and read out word-for-word by the same

experimenter. Every subject also completed a demographic survey covering standard characteristics.

All subjects were paid in cash at the end of each session.

3. Econometrics

Our interest is in making inferences about the latent risk preferences underlying observed

choice behavior. The estimation approach is typically to write out a structural model of decision-

making, assuming some functional forms if necessary. We focus initially on EUT as the appropriate

null, but also consider RDU and Dual Theory models of decision-making under risk. The lottery

parameters in our design also allow us to estimate the structural model assuming non-parametric

specifications of the utility and probability weighting functions, and these non-parametric
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estimations will be the main focus of inferences whenever possible.

A. The Basic Model

Assume that the utility of income is defined by a completely non-parametric utility function.

We exploit the fact that, by design, the lottery pairs in our experiment span only 5 monetary prize

amounts, $5, $10, $20, $35 and $70. Set the utility for the smallest prize to 0 and the utility of the

largest prize to 1, and directly estimate the utility of the intermediate prizes:

U($0) = 0, U($10) = κ10 , U($20) = κ20 , U($35) = κ35 , U($70) =1 (1)

with the constraint that κ10 , κ20 and κ35 lie in the unit interval. This is precisely the approach

employed by Hey and Orme [1994] and Wilcox [2010].

Let there be J possible outcomes in a lottery. The probability p(Mj) of each outcome Mj is

induced by the experimenter, so expected utility of lottery i is simply the probability weighted utility

of each outcome j:

EUi = 3j=1,J [ p(Mj) × U(Mj) ]. (2)

The EU for each lottery pair is calculated for candidate estimates of κ10 , κ20 and κ35, and the index

LEU = EUR ! EUL (3)

calculated, where EUL is the “left” lottery and EUR is the “right” lottery of a given lottery pair as

presented to subjects. The latent index LEU, based on latent preferences, is then linked to observed

choices using a standard cumulative normal distribution function Φ(LEU). This “probit” function

takes any argument between ±4 and transforms it into a number between 0 and 1. Thus we have the

probit link function,

prob(choose lottery R) = Φ(LEU) (4)
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The logistic function is very similar and leads instead to the “logit” specification.14

Thus the likelihood of the observed responses, conditional on the EUT specifications being

true, depends on the estimates of κ10 , κ20 and κ35 given the above statistical specification and the

observed choices. The “statistical specification” here includes assuming some functional form for

the cumulative density function (CDF). The conditional log-likelihood is then

ln L(κ10 , κ20, κ35 ; y, X) = 3i [ (ln Φ(LEU)×I(yi = 1)) + (ln (1-Φ(LEU))×I(yi = !1)) ] (5)

where I(@) is the indicator function, yi =1(!1) denotes the choice of the Option R (L) lottery in risk

aversion task i, and X is a vector of individual characteristics reflecting age, sex, race, and so on.

It is a simple matter to generalize this analysis to allow the core parameters κ10 , κ20 and κ35 to

each be a linear function of observable characteristics of the individual or task. We would then

extend the model to allow κ10 , for example, to be κ10 + Κ×X, where κ10 is a fixed parameter and Κ

is a vector of effects associated with each characteristic in the variable vector X. In effect the

unconditional model just estimates κ10 and assumes implicitly that Κ is a vector of zeroes. This

extension significantly enhances the attraction of structural ML estimation, particularly for responses

pooled over different subjects, which is a central issue here because of treatment A, since one can

condition estimates on observable characteristics of the task or subject.

Harrison and Rutström [2008; Appendix F] review procedures and syntax from the popular

statistical package Stata that can be used to estimate structural models of this kind, as well as more

complex non-EUT models. The goal is to illustrate how experimental economists can write explicit

14 Even though (4) is common in econometrics texts, it is worth noting explicitly and understanding.
It forms the critical statistical link between observed binary choices, the latent structure generating the index
LEU, and the probability of that index LEU being observed. In our applications LEU refers to some
function, such as (3), of the EU of two lotteries; or, if one is estimating an RDU model, the rank-dependent
utility of two lotteries. The index defined by (3) is linked to the observed choices by specifying that the R
lottery is chosen when Φ(LEU)>½, which is implied by (4) and the functional form of the cumulative normal
distribution function Φ(@).
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maximum likelihood (ML) routines that are specific to different structural choice models. It is a

simple matter to correct for multiple responses from the same subject (“clustering”),15 or

heteroskedasticity, as needed.

B. Behavioral Errors

An important extension of the core structural model is to allow for subjects to make some

behavioral errors. We employ a Fechner error specification, popularized by Hey and Orme [1994],

that posits the latent index

LEU = (EUR ! EUL)/μ (3N)

instead of (3). In this specification μ is a structural “noise parameter” used to allow some errors

from the perspective of the deterministic EUT model.16 The index LEU is in the form of a

cumulative probability distribution function defined over differences in the EU of the two lotteries

and the noise parameter μ. Thus, as μ60 this specification collapses to the deterministic choice EUT

model, where the choice is strictly determined by the EU of the two lotteries; but as μ gets larger

and larger the choice essentially becomes random. When μ=1 this specification collapses to (3).

Thus μ can be viewed as a parameter that flattens out the link function in (4) as μ gets larger.

15 Clustering commonly arises in national field surveys from the fact that physically proximate
households are often sampled to save time and money, but it can also arise from more homely sampling
procedures. For example, Williams [2000; p.645] notes that it could arise from dental studies that “collect data
on each tooth surface for each of several teeth from a set of patients” or “repeated measurements or recurrent
events observed on the same person.” The procedures for allowing for clustering allow heteroskedasticity
between and within clusters, as well as autocorrelation within clusters. They are closely related to the
“generalized estimating equations” approach to panel estimation in epidemiology (see Liang and Zeger
[1986]), and generalize the “robust standard errors” approach popular in econometrics (see Rogers [1993]).
Wooldridge [2003] reviews some issues in the use of clustering for panel effects, noting that significant
inferential problems may arise with small numbers of panels. 

16 This is just one of several different types of error story that could be used, and Wilcox [2008]
provides a masterful review of the implications of the alternatives. Some specifications place the error at the
final choice between one lottery or after the subject has decided which one has the higher expected utility;
some place the error earlier, on the comparison of preferences leading to the choice; and some place the error
even earlier, on the determination of the expected utility of each lottery.
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An important contribution to the characterization of behavioral errors is the “contextual

error” specification proposed by Wilcox [2011]. It is designed to allow robust inferences about the

primitive “more stochastically risk averse than,” and consistent inferences when one estimates over

prize contexts in order to get better estimates (Figure 2). It posits the latent index

LEU = ((EUR ! EUL)/ν)/μ (3O)

instead of (3N), where ν is a normalizing term for each lottery pair L and R. The normalizing term ν is

defined as the maximum utility over all prizes in this lottery pair minus the minimum utility over all

prizes in this lottery pair. The value of ν varies, in principle, from lottery choice to lottery choice:

hence it is said to be “contextual.” For the Fechner error specification, dividing by ν ensures that the

normalized  EU difference [(EUR ! EUL)/ν] remains in the unit interval. Our utility normalization (1)

automatically ensures that the EU difference remains in the unit interval, but later specifications

relax that, and normalization is needed then.

C. Rank-Dependent Models

The RDU model extends the EUT model by allowing for decision weights on lottery

outcomes. The specification of the utility function is the same non-parametric specification (1)

considered for EUT. To calculate decision weights under RDU one replaces expected utility defined

by (2) with RDU

RDUi = 3j=1,J [ w(p(Mj)) × U(Mj) ] = 3j=1,J [ wj × U(Mj) ] (2N)

where

wj = ω(pj + ... + pJ) - ω(pj+1 + ... + pJ) (6a)

for j=1,... , J-1, and

wj = ω(pj) (6b)
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for j=J, with the subscript j ranking outcomes from worst to best, and ω(@) is some probability

weighting function.

We could adopt the simple “power” probability weighting function proposed by Quiggin

[1982], with curvature parameter γ:

ω(p) = pγ (7)

So γ…1 is consistent with a deviation from the conventional EUT representation. Convexity of the

probability weighting function is said to reflect “pessimism.” If one assumes for simplicity a linear

utility function, this implies a risk premium.17

We use instead a non-parametric specification of the probability weighting function which

exploits the fact that our main lottery parameters only use the 5 probabilities, 0, ¼, ½, ¾ and 1. If

we constrain the extremes to have weight 0 and 1, we then have

ω(0) = 0, ω(¼) = n¼ , ω(½) = n½ , ω(¾) = n¾  and ω(1) = 1 (8)

and directly estimate  n¼ , n½ and n¾ with the constraint that each lie in the unit interval. This is the

approach employed by Gonzalez and Wu [1996] and Wilcox [2010]. The rest of the ML specification

for the RDU model is identical to the specification for the EUT model, but with different

parameters to estimate.

The Dual Theory (DT) specification of Yaari [1987] is the special case of the RDU model in

which the utility function is assumed to be linear. Hence diminishing marginal utility can have no

influence on the risk premium, and the only thing that can explain the risk premium is “probability

pessimism.”

17 Since ω(p) < p  œp, the “RDU EV” in which monetary prizes are weighted by ω(p) instead of p has
to be less than the EV weighted by p. Hence the CE under RDU has to be less than the true EV.
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4. Results

We initially focus on behavior observed under treatments A, B and C, and evaluate the

Bipolar Behavioral Hypothesis that risk preferences are the same across the three treatments.18 We

present the initial estimates assuming preference homogeneity across subjects, to be able to focus on

the interpretation of non-parametric estimates of the utility and probability weighting functions. We

then allow for preference heterogeneity. Although everyone says that they prefer to see non-

parametric functions for utility and probability weighting, the corollary is that the resulting estimates

can become detailed, since one eschews “boiling” down to just one or two parameters. So we recap

at the end with some homely and intelligible parametric estimates, confirming our qualitative

findings with non-parametric forms.

A. Non-Parametric Estimates Assuming Preference Homogeneity

Baseline Estimates

Start with non-parametric estimates of the EUT, DT and RDU models in the payoff

environment that does not assume IA: the 1-in-1 treatment A. Of course, EUT assumes IA, so EUT

estimates under payoff environments that require IA, such as the 1-in-30 treatment B, will also be

theoretically consistent with EUT estimates from treatment A. But the estimates for DT and RDU

will not generally be theoretically consistent unless we use the 1-in-1 payoff environment.19 So the

estimates in Table 2 provide the first estimates, to the best of our knowledge, of DT and RDU when

those estimates are not contaminated by having to assume the IA in the form of the Bipolar

Behavioral Hypothesis. The estimates also provide the basis for testing our main hypothesis: that

risk preferences estimated under EUT or RDU change when one moves away from payoff

18 We implicitly view treatments B and C as the same here, and check for differences in due course.
19 Or somehow model the full portfolio of 30 sequential choices as if it were one choice.

-21-



environments that assume the IA to be valid. Of course, as stressed earlier, the “bad news”

theoretically is that one must make an assumption of homogeneous preferences across individuals to

interpret these estimates as reflecting risk preferences. Popular as that assumption is, we can and will

relax it.

Panel A in Table 2 shows the EUT estimates for each interior prize. The point estimates are

increasing in the prize value, consistent with non-satiation, MU(x)/Mx > 0. The 95% confidence

intervals are generally tight, in the sense of allowing one to rule out the hypothesis that these

estimates are statistically indistinguishable from 0 or 1.20 They also suggest that the estimates satisfy

non-satiation even when one allows for sampling error. For example, the 95% confidence interval

for the U($10) estimate is between 0.05 and 0.27, and the 95% confidence interval for the U($20)

estimate is between 0.34 and 0.56, so there is no overlap. There is some slight overlap between the

95% confidence interval for U($20) and the interval for U($35), which is between 0.51 and 0.79. 

The statistical significance of this overlap is tested directly in the next two lines with ΔU20 : 35, which

is the difference in the utilities: if this is positive, and statistically significantly different from zero, as

it is, then we can be confident that these estimates satisfy non-satiation. The same is true, as

expected, of the increment from U($10) to U($20), shown by ΔU10 : 20.

We also directly test for diminishing marginal utility, M2U(x)/Mx2 < 0, by evaluating the

marginal utility of each increment in utility, and then seeing if the difference between the first and

second marginal utility is positive. The estimates show that each of the marginal utilities is positive,

as one would expect from the non-satiation result, and that there is evidence of statistically

20 In a numerical sense this might not be surprising, since we estimate these parameters by using a
non-linear transform that ensures that they lie in the unit interval, as theory suggests. But it is still possible for
the sampling errors to be large enough that the 95% confidence intervals get very close to 0 or 1, and as a
practical matter for finite samples this can occur. The “delta method” is used to infer point estimates and
standard errors from non-linear transformations of this kind (Oehlert [1992]), and it includes some
approximation error which can be particularly noticeable when point estimates are close to the boundary.
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significant diminishing marginal utility.

Turning to the DT estimates in Panel B of Table 2, the aggregate log-likelihood is better than

the aggregate log-likelihood for EUT. We later consider the evidence for and against different

models more carefully, since DT and EUT are non-nested, but this is an intriguing finding for the

most interesting, parsimonious alternative to EUT, at least under the assumption of homogeneous

preferences.21 Since the EUT estimates show diminishing marginal utility, we infer that the risk

premium is positive, so it is no surprise to see that the point estimates for the DT model show

probability “pessimism.” The estimated probability weights for the ¼, ½ and ¾ probabilities are

only 0.21, 0.27 and 0.56, respectively. From the 95% confidence intervals on these point estimates,

and the p-values on the increments in probability weight (Δp ¼ : ½ and Δp ½ : ¾), we see that these

estimates indicate a non-decreasing probability weighting function from ¼ to ½, and an increasing

probability weighting function from ½ to ¾. Finally, we confirm that the probability weights for ½

and ¾ are indeed statistically significantly below the true probability, by evaluating the estimated

differences between the probability weights and the true probability: n¼ - ¼, n½ - ½ and n¾ - ¾.

This is true for two of the three individual probability weight differences, and for all of the

differences considered jointly, so there is clearly some violation of the IA that could interact with the

payoff environment once we consider the 1-in-30 treatment.

Panel C presents estimates for the RDU model, combining the two “risk premium stories”

from EUT and DT. Not surprisingly, it has an aggregate log-likelihood that is better than either of

those two nested alternatives. The most interesting feature of these estimates is the striking role of

diminishing marginal utility and the minor role of probability weighting. The estimated probability

weights for the ¼, ½ and ¾ probabilities are 0.30, 0.38 and 0.69, respectively, and in each case the

21 Expected value is the most parsimonious alternative, but not interesting.
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95% confidence interval includes the true probability. The 95% confidence interval for n½ is

between 0.18 and 0.58, and overlaps with the 95% confidence interval for n¼. In fact, the increase of

8.8 percentage points from n¼ to n½ has a p-value of 0.115; although a one-sided hypothesis test

would be appropriate here, given our prior of an increasing probability weighting function, this still

implies a p-value of 0.057. A χ2 test of the hypothesis that all three of these estimated probability

weights are equal to the corresponding probability has a p-value of 0.03, implying that there is evidence

of statistically significant probability weighting. The estimated utility function under RDU exhibits the

familiar properties of non-satiation and diminishing marginal utility. Again, these conclusions are all

under the maintained assumption of preference homogeneity across subjects.

The Effect of Being Bipolar

These estimates provide the baseline for evaluating the effect of the 1-in-30 payoff treatment

on risk preferences. Table 3 shows more estimates, again assuming that risk preferences are

homogeneous across individuals. In this case we employ all of the data from Table 1, and include

binary dummy variables for the variations in treatments B and C compared to treatment A. The first

three lines in Panel A of Table 3 show estimates of κ10 , κ10
pay1 and κ10

ra_idr from U($10) = κ10 +

κ10
pay1×pay1 + κ10

ra_idr×ra_idr, where pay1 is a binary dummy variable equal to 1 for the 1-in-1

treatment and 0 otherwise, and ra_idr is a binary dummy variable equal to 1 for the 1-in-30

treatment in which there was an additional, salient, individual discount rate elicitation task after the

lottery choices. In each case we show the marginal effect of the binary variable, so we see that

U($10) = 0.21 - 0.072×pay1 + 0.037×ra_idr.

We find no statistically significant effect of the treatments on the estimated utility values

under EUT. In one respect this is just comforting, and not “news,” since EUT assumes the IA and
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the IA is what makes treatments B and C formally the same as treatment A.

There is a different story with DT, which of course relies on probability weighting and

relaxations of IA to explain the risk premium. Here we do see some statistically significant effects

when comparing the 1-in-1 and 1-in-30 treatments. For the ¼ probability weight, we find that the 1-

in-1 treatment increases the weighted probability from 0.07 by 0.18, and that this increase is

statistically significant with a p-value of 0.013. Similarly, for the ½ probability weight there is an

effect from having a paid task follow the lottery choice task; it makes the probability weight even

more pessimistic, by 6.7 percentage points, and has a p-value of 0.077. Overall, a χ2 test confirms

that the pay1 and ra_idr treatments are jointly significant across all three probability weight

coefficients, with a p-value of 0.004. The aggregate log-likelihood for the DT model in this case is

worse than the aggregate log-likelihood for the EUT model. Hence the inferred DT preferences are

sensitive to the use of a payment protocol that assumes the IA.

In many respects the RDU results are the most interesting, since Table 2 suggested that there

was evidence for probability weighting overall, and that the IA axiom was therefore significantly

violated. If the IA is significantly violated, then we might expect to see different risk preferences

under RDU when we merge in the 1-in-30 choices, just as we did with the DT specification that

assumes that all of the risk premium derives from a IA violation. This is indeed what we see in Panel

C of Table 3, although it is not obvious from examination of the individual significance levels. None

of the treatment dummies are individually statistically significant, even though there is a hint of some

effect on the probability weights for the ¼ and ½ probabilities of the 1-in-1 treatment; the p-values

on these estimated effects are 0.19 and 0.12, respectively, but they are large in size.

Overall, a χ2 test indicates that the treatment dummies are not a significant factor across all

estimated coefficients, with a p-value of 0.13. But the effect is significant for the probability
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weighting coefficients, with a p-value of 0.05 for those taken jointly (the p-value for the effect on the

utility coefficients is 0.76). So we do see some statistically significant effect of the payoff treatment on elicited

preferences under RDU, deriving from effects on the estimated degree of probability weighting. Again, however, we

stress that this is still under the maintained assumption of preference homogeneity across subjects. It

is time to relax that assumption and re-evaluate the inferences about the payoff treatments.

B. Non-Parametric Estimates Allowing Preference Heterogeneity

We extend the estimation to include a set of observable characteristics of the individual. We

employ a series of binary variables: female is 1 for women, and 0 otherwise; freshman,

sophomore, and senior are 1 for whether that was the current stage of undergraduate education at

GSU, and 0 otherwise; asian and white are 1 based on self-reported ethnic status, and 0 otherwise;

and gpaVHI is 1 for those reporting a cumulative GPA between 3.5 and 4.0 (mostly A’s), and 0

otherwise.22 Table 4 shows the detailed effect of allowing for this observable heterogeneity in the

EUT model, and Table 5 shows the effect on the estimates of the treatment variables in the DT and

RDU models. So in Table 5 we suppress all of the estimates of demographics, and focus just on the

estimates of interest for our inferences. The demographic characteristics as a whole are statistically

significant for all three models.23

Table 4 shows that allowing for subject heterogeneity does not change the inferences about risk preferences

under EUT. Again, this is expected, given that the 1-in-30 treatments should theoretically have no

effect on elicited risk preferences if the IA holds, and EUT assumes the IA. A χ2 test of the joint

22 We would normally include a measure of age as well, but the sample variation was too small for
this to be useful, and highly correlated with the levels of undergraduate standing.

23 For the EUT model a χ2 test on this hypothesis has a p-value of 0.016. For the DT model the p-
value is 0.02, and for the RDU model the p-value is 0.04 for the utility parameters and 0.01 for the probability
weighting parameters (and less than 0.0001 for all parameters).
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significance of these treatment variables across all estimates has a p-value of 0.70, confirming that

conclusion. Figure 4 illustrates the predicted values of utility across all subjects, using the estimated

model in Table 4 to generate these predictions.24

Much more interesting results arise with the DT and RDU model estimates in Table 5. In

the case of DT, we have a significant effect of the variable pay1 on the probability weight for ¼, and

a close to significant effect of the variable ra_idr on the probability weight for ½. Overall, a χ2 test

shows a significant effect on all estimates with a p-value of 0.033, confirming that relying entirely on a

certain deviation from the IA to explain risk preferences does lead to different estimates of risk

preferences when one has to assume the IA with respect to the payment procedures in order to

make inferences. The aggregate log-likelihood of the DT model is worse than the aggregate log-

likelihood of the comparable EUT model in Table 4. This reverses the, mildly surprising,

relationship obtained when assuming homogeneous preferences.

For the RDU model we observe only one significant individual effect at conventional levels,

from the pay1 variable on the probability weight for ½. However, we do find a significant overall effect

from the 1-in-1 treatment on probability weights. A χ2 test on the hypothesis that this treatment has no

effect on all three probability weights can be rejected with a p-value of 0.045. The 1-in-1 treatment

has no significant effect on the utility parameters. Figure 5 illustrates the predicted probability

weights generated from the full model, with heterogeneity, underlying the estimates reported in

Panel B of Table 5.

In summary, and allowing for observable heterogeneity in preferences, we conclude that

• there is no evidence that estimated EUT preferences are affected by the two experimental

payment protocols employed;

24 These predictions reflect the point estimates in Table 4, and not the sampling errors. Formal
hypothesis tests must take those sampling errors into account.
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• there is evidence that estimated DT preferences are affected by the use of an experimental

payment protocol that assumes the validity of the very axiom that DT relaxes in order to

explain the risk premium; and

• there is evidence that estimated RDU preferences are also affected by the use of an

experimental payment protocol that requires the validity of the IA.

These results imply that the Bipolar Behaviorist is in urgent need of medication. It is not possible to

simultaneously maintain that (a) the IA is invalid in the latent specification of choices over pairs of

lotteries, and that (b) the IA is magically valid when paying subjects for more than one choice. We

often hear the “isolation effect” invoked to allow this discord to stand, as noted earlier, but we have

not seen that effect stated in a formal manner that explains how it differs from the IA. It is used in

scientific rhetoric more in the manner of a behavioral “get out of jail free card” in the parlor game

Monopoly.

C. Parametric Estimates

We employ familiar specifications for the parametric utility and probability weighting

functions. Instead of (1) for the utility function, we use the Expo-Power (EP) utility function

proposed by Saha [1993]. Following Holt and Laury [2002], the EP function can be defined as

U(x) = [1!exp(!αx1!r )]/α, (9)

where α and r are parameters to be estimated. RRA is then r + α(1!r )x1!r, so RRA varies with

income x if α…0. This function nests CRRA (as α60) and CARA (as r60), so can be unbounded or

bounded depending on particular parameter values. Instead of (8) for the probability weighting

function, we employ the power function ω(p) = pγ defined earlier by (7) and the inverse-S function

ω(p) = pγ / ( pγ + (1-p)γ )1/γ (10)
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This function exhibits inverse-S probability weighting (optimism for small p, and pessimism for

large p) for γ<1, and S-shaped probability weighting (pessimism for small p, and optimism for large

p) for γ>1. We are aware that there are more exotic functional forms, particularly for probability

weighting, but we have already evaluated a completely non-parametric form in (8), so we use the

simplest, popular, one-parameter functions (7) and (10).

Figures 6 and 7 show the effects of moving from the 1-in-1 payment protocol to the 1-in-30

payment protocol for DT and RDU models, assuming for now homogeneous preferences across all

subjects. The differences are striking, quantitatively and qualitatively, no matter which probability

weighting function is used. Since we know that the primary effect of the payment protocol is on the

estimated probability weighting, it is to be expected that the effects would be more dramatic for DT

than for RDU. For both DT and RDU the preferred probability weighting function is the inverse-S,

which we use for the heterogenous preferences specifications.

Turning to specifications which control for observable characteristics of individual decision

makers, we can formally test the statistical significance of the effect of the 1-in-30 payment protocol

using the 1-in-1 payment protocol as the baseline. For the EUT model, the joint hypothesis that the

1-in-30 dummy on the structural coefficients r and α are both equal to zero cannot be rejected, with

a p-value of 0.65 (and the p-values for r and α separately are 0.36 and 0.73, respectively). This

confirms our earlier finding that under EUT there is no statistically significant difference in elicited

risk preferences across the two payment protocols.

For DT the hypothesis that the 1-in-30 dummy on the structural coefficient γ is equal to

zero can be rejected with a p-value of 0.026. The qualitative effect on probability weighting, allowing

for observed heterogeneity, is the same as shown in Figure 6.

For RDU the joint hypothesis that the dummy on the structural coefficients r, α and γ are all
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equal to zero can be rejected with a p-value of 0.019. In this case it is noteworthy that, consistent

with the non-parametric findings, that the culprit is the probability weighting parameter: the p-values

for the r, α and γ coefficients alone are 0.57, 0.58 and 0.003, respectively. The qualitative effect on

probability weighting, allowing for observed heterogeneity, is also the same as shown in Figure 7.

5. Implications

A. Immediate Implications

A first implication of our results is to encourage theorists to come up with payment

protocols that allow one to elicit multiple choices but do not require that one violate an assumption

required for the coherent specification of the particular decision model. This challenge has been

directly addressed, and partially met, by Cox, Sadiraj and Schmidt [2011]. For the DT of Yaari [1987]

and the Linear Cumulative Prospect Theory model of Schmidt and Zank [2009], they devise

payment protocols that should generate estimates of the same preferences as the 1-in-1 protocol.25

There are no known, or obvious, payment protocols that can be used for RDU and Cumulative

Prospect Theory.

A second implication of our results is to question inferences made about specific alternative

hypotheses to EUT when the 1-in-K protocol has been employed. That is, in literally every test of

specific alternatives to EUT that we are aware of. This is not to say that EUT is valid, just that tests

of the validity of specific alternatives rest on a maintained assumption that is false. Our results

suggest an obvious research strategy to properly evaluate the validity of EUT in an efficient manner.

Examine the catalog of anomalies that arise in choice tasks over simple lotteries using a 1-in-K

payment protocol, for some large K, and then for those anomalies that survive, drill down with the

25 The Linear Cumulative Prospect Theory model assumes linear utility, but allows the probability
weighting of DT with the addition of loss aversion over utilities.
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more expensive 1-in-1 protocol. This strategy does run the risk that there could be “offsetting

violations” of EUT in the 1-in-K payment protocol, but that is a tradeoff that many scholars would,

we believe, be willing to take. And the alternative to the tradeoff is simple enough: replicate every

anomaly using the 1-in-1 payment protocol.

A third, costly implication of our results, then, is to place a premium on collecting choice

data in smaller doses, using 1-in-1 payment protocols. Anyone proposing new anomalies should be

encouraged to take their Bipolar Behaviorist medication, and demonstrate that the alleged

misbehavior persists when one removes the obvious theoretical confound.

A fourth, modeling implication of the need for 1-in-1 choice data is to place greater urgency

on the use of rigorous econometric methods to flexibly characterize heterogeneous preferences.

Random coefficient methods can be used to better characterize unobserved individual heterogeneity

for non-linear structural econometric models.26 Or one can consider semi-parametric stochastic

specifications, to complement the non-parametric specifications of utility and probability weighting

functions employed here.

A fifth implication is to consider more rigorously the learning behavior that might change

behavior towards lottery choices such as these. Binmore [2007; p. 6ff.] has long made the point that

we ought to recognize that the artefactual nature of the usual laboratory tasks, and indeed some

tasks in the field, means that we should allow subjects to learn how to behave in that environment

before drawing unconditional conclusions. Although his immediate arguments are about the study

26 We stress the words non-linear and structural here. The “mixed logit” theorem shows that the linear
mixed logit specification can approximate arbitrarily well any random-utility model (McFadden and Train
[2000]). One needs a non-linear structural specification because these results only go in one direction: for any
specification of a latent structure, defined over “deep parameters” such as risk preferences, they show that
there exists an equivalent linear mixed logit. But they do not allow the direct recovery of those deep
parameters in the estimates from the linear mixed logit. The deep parameters, which are typically the very
things of interest, are buried in the estimates from the mixed logit, but can only be identified with extremely
restrictive assumptions about functional form of the structural model.
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of strategic behavior in games, they are general. Thus the argument is that one would expect 1-in-1

behavior to differ from 1-in-30 behavior since the latter reflects some learning behavior. The

problem with this line of argument is that it is silent as to what should be compared to what, and

does not provide a metric for defining when learning is finished. One could mitigate the issue by

providing subjects with lots of experience in one session, and then invite them back for further

experiments, either 1-in-1 or 1-in-30, arguing on a priori grounds that any behavior differences then

should reflect longer-run, steady-state behavior for this task. We are sympathetic to this view, and

indeed it was implicit in the early days of experimental economics where “experience” meant that

subjects has participated in some task and then had time to “sleep on it” before the next session.

The hypothesis implied here is that the differences we find would diminish if subjects were given

“enough” experience, which is of course testable if one can define what “enough” means.

B. A More Subtle Implication: Modeling Portfolios

A final implication is to model the effects of treating behavior as if generated by portfolio

formation for the experiment as a whole. Indeed, an important subtlety emerges when properly

interpreting our results, which we believe to be significant for future research. We find from our 1-

in-1 tasks that procedures for estimating non-EUT risk preferences are required, but that they do

not generate consistent estimates of preferences when one uses the standard 1-in-K payment protocol.

We stress the word consistent for a reason: the results tell us that there are differences in DT and

RDU estimates when one assumes that the 1-in-K payment protocol generates the same risk

preferences as the 1-in-1 payment protocol. However, the estimated risk preferences need not be the

same under these two payment protocols, and indeed there are theoretical grounds for expecting

them not to be if the IA is violated. Payment protocol 1-in-1 has the advantage that it does not rely
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on IA, and that provides a critical behavioral Gold Standard to use for our purposes. But these

results only show that data generated under payment protocol 1-in-K cannot be used to estimate DT

or RDU risk preferences that are the same as those estimated under payment protocol 1-in-1. The

implication is that one has to account for the effects of the violation in the IA in protocol 1-in-K in

order to correctly estimate DT or RDU risk preferences from data generated under protocol 1-in-K.

It is possible that these theoretically correct estimates of DT or RDU in protocol 1-in-K are the same as

those obtained from protocol 1-in-1.

Table 6 shows the possible interactions between assumptions used for estimating risk

preferences and payment protocols.  Since the IA does not influence the 1-in-1 payment protocol,

the risk preferences estimated in cell III are identical, by construction, to those estimated in cell V.

But the risk preferences in III and V need not be the same as those estimated in cell I, since the IA

plays a role in the evaluation of the lotteries that are the object of the sole choice under the 1-in-1

protocol. Our first result is that the risk preferences in cell I are indeed different from those in cells

III and V.

Since EUT assumes the IA, in theory the risk preferences estimated in cell II should be the

same as those in cell I, and indeed they are behaviorally, as we have demonstrated. But one can

estimate DT or RDU preferences in two ways. One way assumes the Bipolar Behavioral Hypothesis,

in cell IV. The other way, in cell VI, assumes that the same violation of the IA that applies for the

evaluation of the constituent lotteries of the choice in cell V and choices in cell VI also applies to the

evaluation of the compound lottery implied by the payment protocol. Hence the subtle point we are

making is that evidence of differences in risk preferences in cells II and IV does not imply that there

would be differences in the risk preferences in cells V and VI. Cell VI is what we referred to above

as the theoretically consistent estimates of DT or RDU.
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Another way of stating this is that we do not  label choices under other payment protocols

“incentive compatible” if they happen to match the choices under the 1-in-1 payment protocol. An

allocative mechanism or institution is said to be incentive compatible when its rules provide

individuals with incentives to truthfully and fully reveal their preferences. The fact that preferences

are different in a 1-in-K setting to the preferences in a 1-in-1 setting does not make the 1-in-K

preferences untruthful in any useful sense of the word. Instead, they might just reflect true risk

preferences when selecting a compound lottery, which is inapplicable by construction in the 1-in-1

setting.

The research implication is to design experiments in which it is tractable to model the

portfolio explicitly. Using K=2 would be sufficient for this purpose, with each binary choice again

defined over simple lotteries.27 Then the task is to write out explicit structural models that relax the

IA of EUT in one or other manner to evaluate the portfolio of 4 combinations that could be

chosen. It is also feasible to consider K=3 or K=4 as well, generating portfolios of 8 or 16

27 Choosing K=2, the smallest integer greater than 1, allows easy visualization of the complete set of
lottery pairs using a display format akin to the one we use, and facilitates tractable evaluation of the hypothesis
that subjects are evaluating the “grand” compound lottery by considering the experiment as one single
decision problem. This is simply infeasible with K=30, whether or not the 30 pairs are presented sequentially.
Hey and Lee [2005b; p. 234] document the extent of the problem, and the sad outcome for them: “The
crucial point is that, if the subject does not have EU preferences, and if the subject considers the experiment
as a whole, then the responses on individual questions may well not reflect the true preferences of that subject
with respect to the individual questions. This objection was raised by a referee on an experiment carried out
by one of the authors in which subjects were asked 30 pairwise choice questions. The referee asked: ‘how do
you know that the subjects were answering the questions individually and not answering to the experiment as
a whole? How do you know that subjects were not choosing the best strategy for the experiment as a whole?’
The response made to the referee was that if the subjects tried to do the latter, then they would have to
choose between 230 = 1,073,741,824 different strategies, and that this was computationally difficult and
therefore unlikely. The referee was not satisfied by this response and countered with the usual ‘as-if’
arguments.  These were enough to convince the editor.” The problem is obviously exacerbated dramatically
when the specific lotteries to come in future stages are not known, and have to be guessed at if the subject is
to choose the best strategy for the experiment as a whole. This turns a problem of decision making under
objective risk into a challenging problem of decision making under subjective ambiguity. Although one could
envisage procedures to address this concern, it is easier to focus on the simplest case in which this
information can be communicated in a way that does not dramatically change the cognitive burden of the
series of tasks.
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combinations. One would then estimate the risk preferences for those models and compare them to

those obtained from the 1-in-1 choice tasks.

6. Conclusions

Bipolar disorders have several manifestations, apart from making it hard to lead a stable,

productive life. One important manifestation is that sufferers are often mis-diagnosed as being

depressives, since that is what typically leads them to present themselves for scrutiny by trained

specialists. The serious consequence of this is that the treatment for depression often makes bipolar

disorders much worse. So it is important that our powerful diagnostic test, the 1-in-1 payment

protocol, confirms that what appears to be a bipolar disorder among behaviorists is indeed

straightforward depression about the Independence Axiom. The treatment then shifts to untangling

the way in which that axiom fails when one does not have inferences confounded by the payment

protocol.
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Table 1: Experimental Design

All choices drawn from the same battery of 69 lottery pairs at random.
All subjects receive a $7.50 show-up fee.

Unless otherwise noted for treatment C, subjects were told that there
would be no other salient task in the experiment.

Treatment Subjects Choices

A. 1-in-1 75 75

B. 1-in-30 Sequential 37 1110

C. 1-in-30 Sequential with an additional paid task † 236 7080

Notes: † additional task was a time-discounting choice, after the risky lottery choices, and the
subjects were told at the outset that there could be additional salient tasks.
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Figure 1: Default Binary Choice Interface
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Figure 2: Lotteries in the Marschak-Machina Triangle
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Table 2: Non-Parametric Estimates Assuming Homogeneity and 1-in-1 Choices

Parameter Point Estimate Standard Error p-value 95% Confidence Interval

A. Expected Utility Theory (LL = -37.8)
κ10 0.163 0.056 0.004 0.053 0.273
κ20 0.449 0.058 <0.001 0.336 0.562
κ35 0.653 0.071 <0.001 0.513 0.793
ΔU10 : 20 0.286 0.052 <0.001 0.184 0.388
ΔU20 : 35 0.203 0.049 <0.001 0.108 0.299
ΔU10 : 20 ÷10 0.029 0.005 <0.001 0.018 0.039
ΔU20 : 35 ÷ 15 0.014 0.003 <0.001 0.007 0.020
M2U(x)/Mx2 0.015 0.007 0.021 0.002 0.028

B. Dual Theory (LL = -35.7)
n¼ 0.207 0.042 <0.001 0.125 0.289
n½ 0.271 0.041 <0.001 0.191 0.352
n¾ 0.561 0.052 <0.001 0.458 0.663
Δp ¼ : ½ 0.064 0.048 0.178 -0.029 0.158
Δp ½ : ¾ 0.289 0.047 <0.001 0.197 0.382
n¼ - ¼ -0.043 0.042 0.303 -0.125 0.039
n½ - ½ -0.229 0.041 <0.001 -0.309 -0.148
n¾ - ¾ -0.189 0.052 <0.001 -0.292 -0.087

C. Rank-Dependent Utility Theory (LL = -34.7)
κ10 0.169 0.086 0.049 0.000 0.337
κ20 0.395 0.124 0.001 0.152 0.639
κ35 0.608 0.121 <0.001 0.369 0.846
ΔU10 : 20 0.227 0.054 <0.001 0.122 0.332
ΔU20 : 35 0.212 0.039 <0.001 0.135 0.289
ΔU10 : 20 ÷10 0.023 0.005 <0.001 0.012 0.033
ΔU20 : 35 ÷ 15 0.014 0.003 <0.001 0.009 0.019
M2U(x)/Mx2 0.009 0.007 0.188 -0.004 0.021
n¼ 0.297 0.086 0.001 0.128 0.465
n½ 0.385 0.102 <0.001 0.185 0.584
n¾ 0.686 0.095 <0.001 0.500 0.871
Δp ¼ : ½ 0.088 0.056 0.118 -0.022 0.199
Δp ½ : ¾ 0.301 0.046 <0.001 0.210 0.392
n¼ - ¼ 0.047 0.086 0.588 -0.122 0.215
n½ - ½ -0.115 0.102 0.258 -0.315 0.084
n¾ - ¾ -0.064 0.095 0.496 -0.250 0.121
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Table 3: Non-Parametric Estimates Assuming Homogeneity

Data from treatment A, B and C

Parameter Point Estimate Standard Error p-value 95% Confidence Interval

A. Expected Utility Theory (LL = -3761.8)
κ10 constant 0.207 0.034 <0.001 0.141 0.273
κ10 pay1 -0.072 0.075 0.333 -0.218 0.074
κ10 ra_idr 0.037 0.038 0.330 -0.037 0.111
κ20 constant 0.451 0.045 <0.001 0.361 0.540
κ20 pay1 -0.021 0.082 0.798 -0.182 0.140
κ20 ra_idr 0.053 0.050 0.293 -0.046 0.152
κ35 constant 0.662 0.039 <0.001 0.585 0.739
κ35 pay1 -0.037 0.095 0.694 -0.223 0.148
κ35 ra_idr 0.020 0.044 0.647 -0.066 0.105

B. Dual Theory (LL = -3806.1)
n¼ constant 0.073 0.032 0.021 0.011 0.135
n¼ pay1 0.181 0.073 0.013 0.039 0.324
n¼ ra_idr 0.006 0.035 0.868 -0.063 0.075
n½ constant 0.395 0.034 <0.001 0.328 0.463
n½ pay1 -0.081 0.068 0.233 -0.213 0.052
n½ ra_idr -0.067 0.038 0.077 -0.142 0.007
n¾ constant 0.611 0.045 <0.001 0.524 0.699
n¾ pay1 0.009 0.093 0.924 -0.173 0.191
n¾ ra_idr -0.050 0.048 0.298 -0.145 0.044

C. Rank-Dependent Utility Theory (LL = -3724.6)
κ10 constant 0.236 0.044 <0.001 0.149 0.323
κ10 pay1 -0.097 0.087 0.266 -0.268 0.074
κ10 ra_idr -0.002 0.052 0.967 -0.104 0.100
κ20 constant 0.501 0.063 <0.001 0.377 0.625
κ20 pay1 -0.100 0.113 0.374 -0.322 0.121
κ20 ra_idr -0.007 0.072 0.918 -0.148 0.134
κ35 constant 0.705 0.051 <0.001 0.604 0.805
κ35 pay1 -0.120 0.122 0.325 -0.358 0.119
κ35 ra_idr -0.035 0.059 0.554 -0.152 0.081
n¼ constant 0.208 0.048 <0.001 0.114 0.302
n¼ pay1 0.130 0.099 0.189 -0.064 0.324
n¼ ra_idr -0.004 0.054 0.943 -0.110 0.102
n½ constant 0.594 0.045 <0.001 0.505 0.683
n½ pay1 -0.163 0.105 0.120 -0.369 0.043
n½ ra_idr -0.079 0.053 0.137 -0.182 0.025
n¾ constant 0.802 0.041 <0.001 0.723 0.881
n¾ pay1 -0.054 0.102 0.596 -0.253 0.145
n¾ ra_idr -0.051 0.047 0.276 -0.144 0.041
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Table 4: Non-Parametric Estimates of EUT Model Allowing Heterogeneity

Data from treatments A, B and C (LL = -3718.6)

Parameter Point Estimate Standard Error p-value 95% Confidence Interval

κ10 constant 0.160 0.039 <0.001 0.084 0.236

κ10 pay1 -0.063 0.060 0.298 -0.180 0.055

κ10 ra_idr 0.026 0.031 0.401 -0.035 0.087

κ10 female 0.069 0.030 0.021 0.010 0.128

κ10 freshman 0.055 0.048 0.256 -0.040 0.149

κ10 sophomore 0.016 0.032 0.622 -0.047 0.079

κ10 senior -0.010 0.031 0.739 -0.070 0.050

κ10 asian -0.007 0.032 0.823 -0.069 0.055

κ10 white 0.017 0.030 0.582 -0.042 0.075

κ10 gpaVHI -0.021 0.030 0.479 -0.081 0.038

κ20 constant 0.355 0.060 <0.001 0.237 0.473

κ20 pay1 -0.052 0.083 0.533 -0.215 0.112

κ20 ra_idr 0.039 0.045 0.390 -0.050 0.127

κ20 female 0.096 0.039 0.014 0.019 0.173

κ20 freshman 0.172 0.064 0.007 0.047 0.298

κ20 sophomore 0.064 0.047 0.177 -0.029 0.157

κ20 senior 0.005 0.046 0.918 -0.086 0.095

κ20 asian -0.005 0.048 0.910 -0.099 0.088

κ20 white 0.049 0.043 0.260 -0.036 0.133

κ20 gpaVHI -0.050 0.045 0.262 -0.138 0.038

κ35 constant 0.554 0.063 <0.001 0.430 0.679

κ35 pay1 -0.077 0.114 0.497 -0.301 0.146

κ35 ra_idr 0.012 0.046 0.786 -0.077 0.102

κ35 female 0.101 0.041 0.013 0.022 0.181

κ35 freshman 0.177 0.058 0.002 0.064 0.290

κ35 sophomore 0.106 0.045 0.018 0.018 0.193

κ35 senior 0.029 0.047 0.541 -0.063 0.121

κ35 asian -0.042 0.051 0.415 -0.142 0.059

κ35 white 0.023 0.044 0.599 -0.063 0.109

κ35 gpaVHI -0.041 0.049 0.403 -0.137 0.055
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Table 5: Non-Parametric Estimates of DT and RDU Model Allowing Heterogeneity

Data from treatments A, B and C. Estimates of demographic variables and constant omitted

Parameter Point Estimate Standard Error p-value 95% Confidence Interval

A. Dual Theory (LL = -3749.6)
n¼ pay1 0.234 0.123 0.058 -0.008 0.475
n¼ ra_idr 0.009 0.045 0.846 -0.080 0.097
n½ pay1 -0.093 0.078 0.232 -0.245 0.059
n½ ra_idr -0.069 0.040 0.089 -0.148 0.010
n¾ pay1 0.005 0.072 0.942 -0.135 0.145
n¾ ra_idr -0.032 0.042 0.444 -0.115 0.050

B. Rank-Dependent Utility Theory (LL = -3641.0)
κ10 pay1 -0.151 0.117 0.198 -0.381 0.079
κ10 ra_idr 0.014 0.055 0.800 -0.094 0.122
κ20 pay1 -0.179 0.143 0.211 -0.459 0.101
κ20 ra_idr 0.007 0.073 0.920 -0.135 0.150
κ35 pay1 -0.179 0.154 0.246 -0.481 0.123
κ35 ra_idr -0.024 0.061 0.691 -0.145 0.096
n¼ pay1 0.125 0.148 0.399 -0.166 0.415
n¼ ra_idr 0.023 0.060 0.709 -0.096 0.141
n½ pay1 -0.192 0.133 0.148 -0.453 0.068
n½ ra_idr -0.057 0.054 0.295 -0.163 0.049
n¾ pay1 -0.068 0.069 0.323 -0.203 0.067
n¾ ra_idr -0.019 0.033 0.575 -0.083 0.046
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Table 6: Preference Estimates and Payment Protocols

Assumptions used to estimate
risk preferences

Payment protocol A:
pay 1-in-1

Payment protocol B:
pay 1-in-K

EUT I II

RDU and IA for
payment protocol B III IV

RDU V VI
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Figure 6: Bipolar Probability Weighting Functions
for Dual Theory Models
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Appendix A: Parameters of Experiments

Table A1: Lotteries in Experiments

Prizes “Safe” Lottery Probabilities “Risky” Lottery Probabilities
Pair Context Low Middle High Low Middle High Low Middle High EV Safe EV Risky

1 1 $5 $10 $20 0 1 0 0.25 0 0.75 $10.00 $16.25
2 1 $5 $10 $20 0.25 0.75 0 0.5 0 0.5 $8.75 $12.50
3 1 $5 $10 $20 0 1 0 0.5 0 0.5 $10.00 $12.50
4 1 $5 $10 $20 0.5 0.5 0 0.75 0 0.25 $7.50 $8.75
5 1 $5 $10 $20 0 1 0 0.25 0.5 0.25 $10.00 $11.25
6 1 $5 $10 $20 0.25 0.5 0.25 0.5 0 0.5 $11.25 $12.50
7 1 $5 $10 $20 0 0.5 0.5 0.25 0 0.75 $15.00 $16.25
8 1 $5 $10 $20 0 0.75 0.25 0.5 0 0.5 $12.50 $12.50
9 1 $5 $10 $20 0.25 0.75 0 0.75 0 0.25 $8.75 $8.75
10 1 $5 $10 $20 0 1 0 0.75 0 0.25 $10.00 $8.75

11 2 $5 $10 $35 0 1 0 0.5 0 0.5 $10.00 $20.00
12 2 $5 $10 $35 0 0.75 0.25 0.25 0 0.75 $16.25 $27.50
13 2 $5 $10 $35 0.25 0.75 0 0.75 0 0.25 $8.75 $12.50
14 2 $5 $10 $35 0 0.5 0.5 0.25 0 0.75 $22.50 $27.50
15 2 $5 $10 $35 0 0.75 0.25 0.5 0 0.5 $16.25 $20.00
16 2 $5 $10 $35 0 1 0 0.75 0 0.25 $10.00 $12.50

17 3 $5 $10 $70 0.25 0.75 0 0.5 0 0.5 $8.75 $37.50
18 3 $5 $10 $70 0 1 0 0.5 0 0.5 $10.00 $37.50
19 3 $5 $10 $70 0.5 0.5 0 0.75 0 0.25 $7.50 $21.25
20 3 $5 $10 $70 0 1 0 0.75 0 0.25 $10.00 $21.25

21 4 $5 $20 $35 0 1 0 0.25 0 0.75 $20.00 $27.50
22 4 $5 $20 $35 0 0.75 0.25 0.25 0 0.75 $23.75 $27.50
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23 4 $5 $20 $35 0 0.5 0.5 0.25 0 0.75 $27.50 $27.50
24 4 $5 $20 $35 0 1 0 0.5 0 0.5 $20.00 $20.00
25 4 $5 $20 $35 0.5 0.5 0 0.75 0 0.25 $12.50 $12.50
26 4 $5 $20 $35 0 0.75 0.25 0.5 0 0.5 $23.75 $20.00
27 4 $5 $20 $35 0.25 0.75 0 0.75 0 0.25 $16.25 $12.50

28 5 $5 $20 $70 0.25 0.75 0 0.5 0 0.5 $16.25 $37.50
29 5 $5 $20 $70 0 0.75 0.25 0.25 0 0.75 $32.50 $53.75
30 5 $5 $20 $70 0.5 0.5 0 0.75 0 0.25 $12.50 $21.25
31 5 $5 $20 $70 0.25 0.5 0.25 0.5 0 0.5 $28.75 $37.50
32 5 $5 $20 $70 0.25 0.75 0 0.75 0 0.25 $16.25 $21.25
33 5 $5 $20 $70 0 0.5 0.5 0.25 0 0.75 $45.00 $53.75

34 6 $5 $35 $70 0 1 0 0.25 0 0.75 $35.00 $53.75
35 6 $5 $35 $70 0.25 0.75 0 0.5 0 0.5 $27.50 $37.50
36 6 $5 $35 $70 0 0.75 0.25 0.25 0 0.75 $43.75 $53.75
37 6 $5 $35 $70 0.5 0.5 0 0.75 0 0.25 $20.00 $21.25
38 6 $5 $35 $70 0 0.5 0.5 0.25 0 0.75 $52.50 $53.75
39 6 $5 $35 $70 0 0.75 0.25 0.5 0 0.5 $43.75 $37.50
40 6 $5 $35 $70 0.25 0.75 0 0.75 0 0.25 $27.50 $21.25
41 6 $5 $35 $70 0 1 0 0.75 0 0.25 $35.00 $21.25

42 7 $10 $20 $35 0 1 0 0.25 0 0.75 $20.00 $28.75
43 7 $10 $20 $35 0.25 0.75 0 0.5 0 0.5 $17.50 $22.50
44 7 $10 $20 $35 0 1 0 0.25 0.25 0.5 $20.00 $25.00
45 7 $10 $20 $35 0 1 0 0.5 0 0.5 $20.00 $22.50
46 7 $10 $20 $35 0 1 0 0.25 0.5 0.25 $20.00 $21.25
47 7 $10 $20 $35 0 0.75 0.25 0.5 0 0.5 $23.75 $22.50
48 7 $10 $20 $35 0 1 0 0.5 0.25 0.25 $20.00 $18.75
49 7 $10 $20 $35 0.25 0.75 0 0.75 0 0.25 $17.50 $16.25
50 7 $10 $20 $35 0 1 0 0.75 0 0.25 $20.00 $16.25
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51 8 $10 $20 $70 0.25 0.75 0 0.5 0 0.5 $17.50 $40.00
52 8 $10 $20 $70 0.5 0.5 0 0.75 0 0.25 $15.00 $25.00
53 8 $10 $20 $70 0.25 0.75 0 0.75 0 0.25 $17.50 $25.00

54 9 $10 $35 $70 0 1 0 0.25 0 0.75 $35.00 $55.00
55 9 $10 $35 $70 0.25 0.75 0 0.5 0 0.5 $28.75 $40.00
56 9 $10 $35 $70 0 0.5 0.5 0.25 0 0.75 $52.50 $55.00
57 9 $10 $35 $70 0 0.75 0.25 0.5 0 0.5 $43.75 $40.00

58 10 $20 $35 $70 0 1 0 0.25 0 0.75 $35.00 $57.50
59 10 $20 $35 $70 0.25 0.75 0 0.5 0 0.5 $31.25 $45.00
60 10 $20 $35 $70 0 0.75 0.25 0.25 0 0.75 $43.75 $57.50
61 10 $20 $35 $70 0 1 0 0.5 0 0.5 $35.00 $45.00
62 10 $20 $35 $70 0.5 0.5 0 0.75 0 0.25 $27.50 $32.50
63 10 $20 $35 $70 0 1 0 0.25 0.5 0.25 $35.00 $40.00
64 10 $20 $35 $70 0.25 0.5 0.25 0.5 0 0.5 $40.00 $45.00
65 10 $20 $35 $70 0 0.5 0.5 0.25 0 0.75 $52.50 $57.50
66 10 $20 $35 $70 0 1 0 0.5 0.25 0.25 $35.00 $36.25
67 10 $20 $35 $70 0.25 0.75 0 0.75 0 0.25 $31.25 $32.50
68 10 $20 $35 $70 0 0.75 0.25 0.5 0 0.5 $43.75 $45.00
69 10 $20 $35 $70 0 1 0 0.75 0 0.25 $35.00 $32.50
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Appendix B: Instructions

The original instructions used in all experiments are available on request.

Treatment A: 1-in-1

Choices Over Risky Prospects

This is a task where you will choose between prospects with varying prizes and chances of
winning. You will be presented with one pair of prospects where you will choose one of them. You
should choose the prospect you prefer to play. You will actually get the chance to play the prospect
you choose, and you will be paid according to the outcome of that prospect, so you should think
carefully about which prospect you prefer.

Here is an example of what the computer display of a pair of prospects will look like.

 The outcome of the prospects will be determined by the draw of a random number between
1 and 100. Each number between, and including, 1 and 100 is equally likely to occur. In fact, you will
be able to draw the number yourself using two 10-sided dice.

 In the above example the left prospect pays five dollars ($5) if the number drawn is between
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1 and 40, and pays fifteen dollars ($15) if the number is between 41 and 100. The blue color in the
pie chart corresponds to 40% of the area and illustrates the chances that the number drawn will be
between 1 and 40 and your prize will be $5. The orange area in the pie chart corresponds to 60% of
the area and illustrates the chances that the number drawn will be between 41 and 100 and your
prize will be $15. 

Now look at the pie in the chart on the right. It pays five dollars ($5) if the number drawn is
between 1 and 50, ten dollars ($10) if the number is between 51 and 90, and fifteen dollars ($15) if
the number is between 91 and 100. As with the prospect on the left, the pie slices represent the
fraction of the possible numbers which yield each payoff. For example, the size of the $15 pie slice
is 10% of the total pie.

The pair of prospects you choose from is shown on a screen on the computer. On that
screen, you should indicate which prospect you prefer to play by clicking on one of the buttons
beneath the prospects. 

After you have made your choice, raise your hand and an experimenter will come over. It is
certain that your one choice will be played out for real. You will roll the two ten-sided dice to
determine the outcome of the prospect you chose.

For instance, suppose you picked the prospect on the left in the above example. If the
random number was 37, you would win $5; if it was 93, you would get $15. If you picked the
prospect on the right and drew the number 37, you would get $5; if it was 93, you would get $15.

Therefore, your payoff is determined by two things:

    • by which prospect you selected, the left or the right; and
    • by the outcome of that prospect when you roll the two 10-sided dice.

Which prospects you prefer is a matter of personal taste. The people next to you may be presented
with a different prospect, and may have different preferences, so their responses should not matter
to you. Please work silently, and make your choices by thinking carefully about the prospect you are
presented with.

All payoffs are in cash, and are in addition to the $7.50 show-up fee that you receive just for
being here. The only other task today is for you to answer some demographic questions. Your
answers to those questions will not affect your payoffs.

Treatment B: 1-in-30 Sequential

Choices Over Risky Prospects

This is a task where you will choose between prospects with varying prizes and chances of
winning. You will be presented with a series of pairs of prospects where you will choose one of
them. There are 30 pairs in the series. For each pair of prospects, you should choose the prospect
you prefer to play. You will actually get the chance to play one of the prospects you choose, and you
will be paid according to the outcome of that prospect, so you should think carefully about which
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prospect you prefer.

Here is an example of what the computer display of such a pair of prospects will look like.

SAME DISPLAY AS FOR TREATMENT A

The outcome of the prospects will be determined by the draw of a random number between
1 and 100. Each number between, and including, 1 and 100 is equally likely to occur. In fact, you will
be able to draw the number yourself using two 10-sided dice.

In the above example the left prospect pays five dollars ($5) if the number drawn is between
1 and 40, and pays fifteen dollars ($15) if the number is between 41 and 100. The blue color in the
pie chart corresponds to 40% of the area and illustrates the chances that the number drawn will be
between 1 and 40 and your prize will be $5. The orange area in the pie chart corresponds to 60% of
the area and illustrates the chances that the number drawn will be between 41 and 100 and your
prize will be $15. 

Now look at the pie in the chart on the right. It pays five dollars ($5) if the number drawn is
between 1 and 50, ten dollars ($10) if the number is between 51 and 90, and fifteen dollars ($15) if
the number is between 91 and 100. As with the prospect on the left, the pie slices represent the
fraction of the possible numbers which yield each payoff. For example, the size of the $15 pie slice
is 10% of the total pie.

Each pair of prospects is shown on a separate screen on the computer. On each screen, you
should indicate which prospect you prefer to play by clicking on one of the buttons beneath the
prospects. 

After you have worked through all of the pairs of prospects, raise your hand and an
experimenter will come over. You will then roll a 30-sided die to determine which pair of prospects 
will be played out. Since there is a chance that any of your 30 choices could be played out for real,
you should approach each pair of prospects as if it is the one that you will play out. Finally, you will
roll the two ten-sided dice to determine the outcome of the prospect you chose.

For instance, suppose you picked the prospect on the left in the above example. If the
random number was 37, you would win $5; if it was 93, you would get $15. If you picked the
prospect on the right and drew the number 37, you would get $5; if it was 93, you would get $15.

Therefore, your payoff is determined by three things:

    • by which prospect you selected, the left or the right, for each of these 30 pairs;
    • by which prospect pair is chosen to be played out in the series of 30 such pairs using the

30-sided die; and
   • by the outcome of that prospect when you roll the two 10-sided dice.

Which prospects you prefer is a matter of personal taste. The people next to you may be presented
with different prospects, and may have different preferences, so their responses should not matter to
you. Please work silently, and make your choices by thinking carefully about each prospect.
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All payoffs are in cash, and are in addition to the $7.50 show-up fee that you receive just for
being here. The only other task today is for you to answer some demographic questions. Your
answers to those questions will not affect your payoffs. 

Treatment C: 1-in-30 With an Additional Paid Task

These instructions were identical to those for Treatment B, apart from the language changes
in the final paragraph described in the text.
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Appendix C: Literature Review

Starmer and Sugden [1991], Beattie and Loomes [1997] and Cubitt, Starmer and Sugden

[1998] have directly studied the Random Lottery Incentive Method, which of course relies on the

validity of the IA. All of these studies consider direct and indirect violations of the IA.28 Direct

violations come from comparisons of choices 1-in-1 with 1-in-K payment procedures in the

experiments, and indirect violations come from comparisons of choices that have a “trip-wire”

prediction from EUT (and any decision-making model that assumes IA). These indirect violations

are variants of the Allais [1953] phenomena known as “Common Ratio” effects and “Common

Consequence” effects.29

Following Cubitt, Starmer and Sugden [1998; p.119], let a and b be monetary prizes, such

that a>b>0. Consider the risky prospects

R1: {a, λ; 0, 1-λ}          R2: {a, λp; b, 1-p; 0, (1-λ)p}          R3: {a, λp; 0, 1-λp}

and the safe prospects

S1: {b, 1}        S2: {b, 1}          S3: (b,p; 0, 1-p},

28 This is clearly recognized by Starmer and Sugden [1991; p.973]: “The success of the experiment
depended on our finding systematic violations of expected-utility theory for real choices. Provided we found
these, we would be able to test whether subjects behaved according to the reduction principle by investigating
whether the same violations were found with the random-lottery design. The experiment also allows a second
kind of test of the random-lottery design: if random-lottery experiments elicit true preferences, we should
expect to find no significant difference between subjects’ responses to the random lottery and real-choice
designs.” Their reduction principle applies the IA, and their “random lottery” design is what we refer to as a
1-in-K payment protocol.

29 The first test of the common consequence form of the Allais Paradox using incentivized 1-in-1
choices, that do not assume IA, is due to Conlisk [1989]. He found striking evidence of no violations of IA.
On the other hand, this result is not welcome in some circles. Cubitt, Starmer and Sugden [1989; p. 130]
comment that these results are “... sometimes quoted as evidence that violations of EUT are less frequent in
single choice than in random lottery designs. Conlisk investigated the Common Consequence effect using a
single choice design. In each of the two relevant tasks, almost all subjects (26 out of 27 in one case, 24 out of
26 in the other) chose the riskier option. Clearly, this distribution of responses between riskier and safer
choices is far too asymmetric for the experiment to be a satisfactory test for systematic deviations from
EUT.” The logic of the final sentence is hard to ascertain. Moreover, the evidence for the Common
Consequence effect in incentivized 1-in-K choices is decidedly mixed: Burke, Carter, Gominiak and Ohl [1996]
and Fan [2002] find no evidence of an EUT violation, whereas Starmer and Sugden [1991] do, as discussed
below.
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where 0<λ<1 and 0<p#1. With these lotteries, the IA under EUT implies that preferences over R1

and S1 will be the same as preferences over R2 and S2 and also over R3 and S3. The Common

Consequence effect is said to occur when one observes a greater fraction of risky choices over R3

and S3 than over R2 and S2, and a Common Ratio effect is said to occur when one observes a

greater fraction of risky choices over R3 and S3 than over R1 and S1. These differences in the

fractions of risky choices indirectly imply a statistically significant difference in risk preferences.

Starmer and Sugden [1991] present subjects with two pairs of lotteries, making up a

Common Consequence test of EUT. In one 1-in-1 treatment 40 subjects were given each lottery pair

to make a choice over, and over two 1-in-2 treatments 80 subjects were given the two lotteries to

make a choice over. Their Common Consequence test between 1-in-1 choices shows evidence of a

clear violation of the EUT prediction, and the IA. Using a one-sided  Fisher Exact test, since there is

an a priori prediction of direction, albeit from previously observed behavior from hypothetical tasks,

we calculate a p-value of 0.021 on the prediction of the EUT hypothesis.30 Their direct tests of the

IA axiom, from comparisons of choices in the same lotteries across the 1-in-1 and 1-in-2 payment

protocols, show mixed results. Since there is no prior hypothesis as to the direction of the effect of

relying on the IA in the 1-in-2 treatment, it is appropriate in this case to use two-sided Fisher Exact

tests of the hypothesis that the patterns of choice in each treatment are the same. For one lottery

pair the p-value on this hypothesis is 0.23, and for the other lottery pair the p-value is 0.055. These

data provide clear evidence for outright pessimism with respect to the IA: nothing bipolar here.

Beattie and Loomes [1997] examined 4 lottery choice tasks. The first 3 tasks involved a

binary choice between two lotteries, and the fourth task involved the subject selecting one of four

possible lotteries. For each of the 4 choice tasks they had a 1-in-1 treatment, and a 1-in-4 treatment,

30 A comparable test, using the data from the 1-in-2 choices, also rejects the EUT hypothesis, in this
case with a p-value of 0.018.
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conducted on a between subjects basis. Sample sizes were 48, 47, 48 and 50 subjects in each of the

1-in-1 treatments for the 4 tasks, and 48 subjects for the 1-in-4 treatment. The p-values for the two-

sided test of the 1-in-1 and 1-in-4 choices for the same lottery pairs are 0.42, 0.84, 0.77, and 0.058,

respectively, for each choice task. Over all 4 tasks, the p-value is only 0.51. But there is a significant

effect for one of the 4 tasks, and this is a task that is essentially the same as the popular method

developed by Binswanger [1980]: subjects are offered an ordered set of choices that increase the

average payoff while increasing variance. There is no direct evidence of an effect from the RLIM in

the binary choice tasks.

On the other hand, there is clear, but indirect, evidence of a violation of the IA in binary

choices by a comparison of two Common Ratio pairs in their set of choice tasks. For the 1-in-1

choices for these two pairs, a Fisher Exact test can reject the hypothesis of the same choices, as

predicted under EUT, with a p-value of less than 0.001.31 Taken with the direct evidence for these

two pairs, when the IA is tested and not rejected via the RLIM payment procedure, these results

provide striking support for the Bipolar Hypothesis advanced earlier.

Cubitt, Starmer and Sugden [1998] focus exclusively on Common Consequence and

Common Ratio pairs of pairs, across three sets of experiments.

In the first set of experiments they compare 1-in-1 choices with 1-in-3 choices. Their

comparison rests on subjects not having extreme risk-loving preferences over the other lotteries in

the 1-in-3 treatment, but this is an a priori  plausible assumption, and generally supported by their

data. The two-sided p-values for these tests are 0.14 and 0.045, providing evidence against the

application of the IA.

In the second set of experiments they compare 1-in-1 choices with 1-in-4 choices, with

samples of 51 and 46 for the 1-in-1 treatments and 53 for the 1-in-4 treatment. Tests of the

31 The same result occurs for the 1-in-4 pairs in this comparison.
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hypothesis of the same choices in each leg of the Common Ratio pair of pairs have p-values of 0.84

and 0.16, implying that the direct test of the IA via the payment procedure had no significant effect.

But in this case, in contrast to Beattie and Loomes [1997], there is no evidence for the Common

Ratio effect in the 1-in-1 comparisons: the p-value on these choice patterns, spanning both legs of the

Common Ratio pair of pairs, is 0.31. Of course, if EUT appears to be alive and well in terms of this

familiar trip-wire test, then there is no theoretical expectation that the IA would be violated via the

RLIM payment procedure.

In the third set of experiments with virtually the same Common Ratio pairs of pairs, and in

fact the same lottery probabilities and prizes as the comparable Common Ratio pair of Beattie and

Loomes [1997], they compare 1-in-1 choice patterns with 1-in-20 choice patterns. Sample sizes are

49 and 56 for the 1-in-1 treatments, and 97 for the 1-in-20 treatments. The direct tests of the IA via

the RLIM procedure have p-values of 0.41 and 0.32, and the indirect Common Ratio test of the IA

using the 1-in-1 treatment has a p-value of 0.10. At the risk of mixing psychiatric disorder

metaphors, this is evidence for a Borderline Bipolar Hypothesis.

One common feature of virtually all of these studies is the use of a small value of K in the 1-

in-K treatments. The rationale for this is explained by Cubitt, Starmer and Sugden [1998; p. 125]:

First, as in the case of Experiments 1 and 2 [which used K=3 and K=4, respectively],
we wanted to test the contamination hypothesis in a context in which we could
expect the independence axiom to be violated. For Experiment 3 [which used
K=20], however, we chose a somewhat different approach. In Experiments 1 and 2,
the random lottery treatments involved only two tasks. In practical applications of
the random lottery design, there are usually many tasks, and we wished to test the
contamination hypothesis in such a setting. There are some reasons for expecting the
extent of any bias in the random lottery design to depend on the number of tasks.
On the one hand, it might be argued that, the more tasks there are in a random
lottery experiment, the more likely subjects are to use the simplifying heuristic of
treating each task in isolation. On the other hand, the more tasks there are, the more
incentives are diluted; thus if bias is a product of dilution, its extent will increase with
the number of tasks.

With the notable exception of the multiple price list design of Holt and Laury [2002], which uses
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K=10, most applications of the RLIM do use large values of K. Hey and Orme [1994], for example,

had K=100, Harrison and Rutström [2009] had K=60, Hey and Lee [2005a][2005b] have employed

K=30 like us, and Wilcox [2010] and Hey [2001] bravely use K=300 and K=500, respectively, to

obtain a rich data set for each individual subject.

Another common feature of all of these studies is that subjects were able to see all lotteries

before having to make any choices. Starmer and Sugden [1998b] provided all lotteries in a booklet,

and allowed subjects to make choices at any order they wanted. The specific lotteries of interest here

were presented together on the same page of the booklet (their Figure 1, p. 975). Beattie and

Loomes [1997; p.157] note that their 1-in-4 lotteries were “... presented together on a single sheet of

paper.” Cubitt, Starmer and Sugden [1998; p. 127] note that the software interface they used “...

allowed subjects in all groups to backtrack at any point in the experiment, going back to previous

tasks and changing their responses if they wished. After they had made all [...] responses they were

reminded of this option. In this way [...] we gave subjects the opportunity to treat the whole

experiment as a single decision problem if they so wished.” They find that only one-third of subjects

used this backtrack option, and they did not record if there were any changes in choices. Of course,

the remaining two-thirds of subjects could still have viewed all tasks as one decision problem,

making choices in later stages as a function of choices in earlier stages (e.g., “tend to pick safe

options early, to ensure a certain payoff, then go for more risky options”). Cox, Sadiraj and Schmidt

[2011] simply gave subjects all choices at the outset, each on one of K unbound sheets of paper, and

then allowed them to enter choices on a computer interface that presented them sequentially.

Camerer [1989] studied the IA, literally in his design as an “afterthought.” After subjects had

made a number of choices using the RLIM, one was selected for payment, and the subject asked if

he wanted to change the choice. Very few did, as Camerer [1989] notes:

Only two of 80 subjects did change. Therefore, either the independence axiom holds
or subjects exhibit an isolation effect. Since the data below suggest that
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independence is often violated, we must conclude that there is an isolation effect.
This is puzzling for theorists, but comforting for experimenters because it implies
that allowing subjects to play some randomly chosen gambles generates meaningful
responses for all gambles.

Our design provides a more direct test along these lines, without the 1-in-1 choice being an

afterthought where the subject might feel compelled to stick with the initial choice rather than

appear confused or capricious to the experimenter
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