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Abstract. Robustness concern has been long reflected in the decision models under uncertainty

since the maxmin expected utility theory. All the models set the degree of robustness concern as

fixed across all the payoff profiles. However, a decision maker’s robustness concern may well changes

when the certainty part or the unit scale of a payoff profile changes. This paper introduces formally

a decision maker’s robustness order, and characterize together a general class of robustness order

and preference order over all the payoff profiles. The preference order has the feature of ranking the

payoff profiles using the optimal degree of robustness. The optimal robustness level is endogenous

and can change with the certainty part of a payoff profile and its unit scale.

1. Introduction

The seminal work of Ellsberg (1961) points out that there does not exist a prior on the state of

the world to rationalize a decision maker(DM)’s preference over state-contingent payoff profiles. A

major treatment in the literature is to represent the preference based on a set of priors rather than a

single one. An important underlying feature along this line is its incorporation of a DM’s robustness

concern under uncertainty. By assigning a payoff profile the minimum expected utility over all the

priors in a certain set, it takes into account the robustness of this evaluation against possible prior

misidentification.

For example, the maxmin utility (MEU) (Gilboa and Schmeidler (1989)) has the form:

V (a) = min
p∈C

∫
adp
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where a is a state-contigent payoff profile, p a probability measure of the states, and C a convex and

compact subset of probability measures.

Constraint Preference (CP) (Hansen and Sargent (2001)) has the form:

V (a) = min
{p:R(p||q)≤η}

∫
adp

where q is a central prior, R(p||q) the relative entropy of p with respect to q, and η ∈ [0,∞) a

parameter. The relative entrophy R(p||q) measures the “distance” between p and q, and R(p||q) = 0

if and only if p = q.

Multiplier preference (MP) (Hansen and Sargent (2001), Strzalecki (2011)) has the form:

V (a) = min
p∈∆

{
∫

adp + θR(p||q)}

where ∆ is the set of all probability measures, and θ ∈ (0,∞] a parameter.

Variational preference (VP) (Maccheroni, Marinacci and Rustichini (MMR) (2006)) has the form:

V (a) = min
p∈∆

{
∫

adp + c(p)}

where c : ∆ → [0,∞] satisfies some conditions. When c = θR(p||q), VP are reduced to MP. When

c(p) = 0 if p ∈ C and c(p) = ∞ if p /∈ C, VP are red used to MEU.

However, a common feature of all these models is that the degree of robustness concern is fixed

across all the payoff profiles. MEU fixes the set C; CP fixes η which determines how large the set of

priors is under consideration. In MP and VP, the parameter θ and the function c are fixed. Both of

them play a role of robustness measure. A big value of θ and a higher range of c corresponds to a

small set of relevant priors, and thus a lower degree of robustness.

Fixed robustness level results in the scale invariance and translation invariance of the preferences.

More precisely, in all these models, I(a) ≥ I(b) implies that I(a+ t̄) ≥ I(b+ t̄) whenever t̄ is a constant

payoff profile producing t in each state. In MEU and CP, we have additionally that I(a) ≥ I(b) implies

that I(ta) ≥ I(tb) whenever t > 0.
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However, the robustness concern may well depend on the amount of the certainty part of a payoff

profile and the unit scale. For example, consider the following two thought experiments.

Table 1.

t ≥ 0 s1 s2

at t+50 t+50

bt t t+100

Table 2.

t > 0 s1 s2

a′t 50t 50t

b′t 0 100t

For at and bt, one may prefer at to bt when t is relatively small, and reverse the preference when t

is very big. Indeed, given a large amount of ensured payoff, why not have a bet? For a′t and b′t, one

may prefer b′t to a′t when t is small, and reverse the preference when t is very big. Because once s1

happens, one can get nothing from b′t while is guaranteed to get 30t from a′t.

A similar example as the second one is also used in MMR (2006) to question MEU, while both VP

and MEU are subject to the challenge of the first example.

This paper introduces formally the robustness concern under uncertainty as a binary relation �′

over all the pairs (a, t) where a is a payoff profile and t a certainty utility level. More precisely,

(a, t) �′ (a′, t′) means that the DM feels more robust to achieve the utility level t in expectation from

a than t′ from a′. Under some axioms, the robustness depends on how large is the set of priors under

which the payoff profile’s expected utility achieves the certainty level. The certainty level is interpreted
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as the aspiration level under uncertainty. Thus, each payoff profile corresponds to a trade-off between

the robustness and the aspiration level.

A DM may have a preference on the two criterion plane with robustness and aspiration measured

in each dimension. He may evaluate a payoff profile by the optimal point on its robustness-aspiration

trade-off line according to this preference. In this paper, we back up this preference from a DM’s

robustness order and his preference order over all the payoff profiles. We characterize together a

general class of robustness orders, and preference orders which rank payoff profiles using the optimal

degree of robustness. This optimal robustness degree is determined endogenously and can change with

the amount of the certainty part of a payoff profile and its unit scale.

2. The Model

Let S be a finite set of states, and ∆(S) the set of all the probabilities on S. Let Z be a separable

metric space denoting a set of outcomes, and ∆(Z) the set of all Borel probability measures on Z,

equipped with the weak convergence topology. Note that ∆(Z) is also a separable metric space. An

act f is a function from S into ∆(Z). Let F = ∆(Z)S be the set of all acts, equipped with the

product topology. For any p ∈ ∆(Z), we identify it with the constant act in F sending p to each

state. Preference � over acts is a binary relation on F , with � and ≈ denoting its asymmetric and

symmetric parts respectively as usual.

The following axioms are considered for �.

(I) (Order): � is complete and transitive.

(II) (Continuity): � is continuous.

(III) (Constant Certainty Independence): For any p, q, r ∈ ∆(Z) and any α ∈ [0, 1], p ≈ q

implies αp + (1− α)r ≈ αq + (1− α)r.

(IV) (Monotonicity): For any f, g ∈ F , f(s) � g(s) for all s ∈ S implies f � g.

(VI) (Nondegeneracy): f � g for some f, g ∈ F .
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The following are some standard results in the literature.

Lemma 1. Suppose that � satisfies (I) Order, (II) Continuity and (III) Constant Certainty Inde-

pendence. Then there exists a continuous affine function u : ∆(Z) → R representing � restricted to

∆(Z), and u is unique up to positive affine transformation.

Lemma 2. Suppose that � satisfies (I) Order, (II) Continuity, (III) Constant Certainty Indepen-

dence, (IV) Monotonicity and (VI) Nondegenaracy. Then there is a nonconstant continuous affine

function u : ∆(Z) → R and a functional I : u(∆(Z))S → R (Note that u(∆(Z)) is an interval in R.)

such that

(a) f � g ⇐⇒ I(u(f)) ≥ I(u(g));

(b) I(p) = u(p) for all p ∈ ∆(Z). Moreover, u is unique up to positive affine transformation.

Now let us consider two main characters for decision making under uncertainty. On one hand, an

uncertain act gives one the opportunity to win something so that it gives one the room for aspiring

certain outcome. On the other hand, it does not guarantee one an ensured result, so it may be fragile

in robustness to achieve his aspiration. For a given act, the more one aspire from it, the less robustness

it can provide. There is a trade-off between aspiration and robustness under uncertainty.

To treat the aspiration and robustness concern fundamentally, we need to introduce another binary

relation �′ on F ×∆(Z), with �′ and ≈′ denoting its asymmetric and symmetric parts respectively.

Given f, g ∈ F and p, q ∈ ∆(Z), (f, p) �′ (g, q) means that the decision maker feels more robust to

aspire something as good as p from f than something as good as q from g. To reflect the nature of

this relation, let us consider the following axioms for �′.

(i) (Order): �′ is complete and transitive.

(ii) (Continuity): �′ is continuous.
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(iii) (Monotonicity): For any (f, p) (g, q) ∈ F × ∆(Z), if m ∈ ∆(S) and
∑
s∈S

f(s)m(s) � p im-

plies that
∑
s∈S

g(s)m(s) � q, then (f, p) �′ (g, q). If in addition, there exists m ∈ ∆(S) such that∑
s∈S

f(s)m(s) ≺ p and
∑
s∈S

g(s)m(s) � q, then (f, p) ≺′ (g, q).

(iv) (Anonymity): For any (f, p) ∈ F ×∆(Z), if f ′ is a permutation of f , then (f, p) ≈′ (f ′, p).

Here are some useful facts.

Lemma 3. Let f, g ∈ F and p, q ∈ ∆(Z) be given. Let max f(S) ∈ f(S) be such that max f(S) �

f(s) for all s ∈ S, and min f(S) is defined analogously.

(a) Suppose that � satisfies (I) Order, (II) Continuity and (III) Constant Certainty Independence,

and that �′ satisfies (iii) Monotonicity. If max f(S) ≺ p, then (f, p) � (g, q). If min f(S) � p, then

(f, p) � (g, q). In particular, if max f(S) ≺ p and max g(S) ≺ q, or min f(S) � p and min g(S) � q,

then (f, p) ≈′ (g, q).

(b) Suppose that � satisfies (I) Order, (II) Continuity and (III) Constant Certainty Independence,

and that �′ satisfies (iii) Monotonicity. If p � q, then (f, p) �′ (f, q). If max f(S) � p � q �

min f(S), then (f, p) ≺′ (f, q).

(c) Suppose that �′ satisfies (i) Order and (ii) Continuity. Then there exists a continuous function

r from F ×∆(Z) into [0, 1] representing �′.

(d) Suppose that � satisfies (I) Order, (II) Continuity, (III) Constant Certainty Independence,

(IV) Monotonicity and (VI) Nondegenaracy, and that �′ satisfies (i) Order, (ii) Continuity and (iii)

Monotonicity. Let u : ∆(Z) → R be given as in Lemma 2, and r : F × ∆(Z) → [0, 1] as in (c).

Suppose that phi = u(f). Define rφ : u(∆(Z)) → [0, 1] such that rφ(t) = r(f, p) if u(p) = t. Then

rφ is well defined. Moreover, we can choose r to be onto, so that rφ(t) = 1 when t ≤ minφ(S), and

rφ(t) = 0 when t ≥ max φ(S).
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Define M(φ, t) = {m ∈ ∆(S)|
∑
s∈S

φ(s)m(s) ≥ t} for all (φ, t) ∈ u(∆(Z))S × R. Then

rφ(t) ≥ (>)rφ′(t′) whenever M(φ, t) ⊇ (⊃)M(φ′, t′). In particular, rφ is strictly decreasing on

[minφ(S),max φ(S)].

Suppose further that �′ satisfies (iv) Anonymity, and that φ′ is a permutation of φ. Then rφ = rφ′ .

Note that Anonymity makes sense when the depiction maker is facing total uncertainty and has no

information about the probability over the states. This axiom “equalizes” two acts which come from

a permutation of each other, and thus plays a role in accommodating Ellsberg-type behavior.

Next, let us consider two axioms on � which reflect the influence of �′.

(VII) (Weak Dominace): For any f, g ∈ F , if (f, p) �′ (g, p) for all p ∈ ∆(Z), then f ≥ g. If

(f, p) ≺′ (g, p) for all p such that min f(S) ≺ p � max f(S), then f ≺ g.

(VIII) (Dominance): For any K ∈ N and any f, g1, ..., gK ∈ F , if for any p such that min f(S) ≺

p � max f(S), there exists k ∈ {1, ...,K} such that (f, p) �′ (≺′)(g, p), then f � (≺) max{g1, ..., gK}.

Lemma 4. (a) If �′ satisfies (i) Order, (ii) Continuity and (iii) Monotonicity, then (VII) Dominance

implies (VIII) Weak Dominance.

(b) If � satisfies (I) Order, (II) Continuity, (III) Constant Certainty Independence, and �′ satisfies

(iii) Monotonicity, then � satisfies (IV) Monotonicity.

Here is the main result.

Theorem 1. The following two statements are equivalent.

(1) Preference relation � satisfies (I) Order, (II) Continuity, (III) Constant Certainty Indepen-

dence, (VI) Nondegenaracy and (VIII) Dominance. Robustness relation satisfies (i) Order, (ii) Con-

tinuity and (iii) Monotonicity.

(2) There exist a nonconstant continuous affine function u : ∆(Z) → R, for each φ ∈ u(∆(Z))S,

a continuous, decreasing and surjective function rφ : u(∆(Z)) → [0, 1] which is strictly decreasing on
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[minφ(S),max φ(S)], and an upper semicontinuous function V on u(∆(Z))× [0, 1] such that for any

f, g ∈ F and p, q ∈ ∆(Z),

(a) f � g ⇐⇒ max
t∈[min u(f(S)),max u(f(S))]

V (t, ru(f)(t)) ≥ max
t∈[min u(g(S)),max u(g(S))]

V (t, ru(g)(t));

(b) (f, p) �′ (g, q) ⇐⇒ ru(f)(u(p)) ≥ ru(g)(u(q)).
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