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Abstract

The Reduction of compound lotteries is an implicit assumption both in the statement of the St. Petersburg

Paradox as well as in its resolution by Expected Utility (EU). Yet despite the pivotal role of this assumption,

to date there has been no empirical substantiation of its validity. Here we report three real-money experiments

in which the standard compound-lottery form of the (truncated) St. Petersburg Gamble is explicitly juxtaposed

with its reduced form. In the first experiment, we elicit Subjects’ Certainty Equivalents for each form of the

gamble. In the second experiment, Subjects choose between reduced and compound forms within a multiple price

list format, where a different sure payment (in e1 increments), is added either to the reduced or the compound

form. With this instrument, we can test for both ‘weak-form’ and ‘strong-form’ violations of Reduction. The

third experiment replicates the second and then checks for robustness against range and increment manipulation.

In the first experiment we find that the Certainty Equivalent of the compound form is stochastically dominated

by, and significantly smaller than, the objectively equivalent reduced form. This bias toward the reduced form

is borne out in the second and third experiments, where 90%–100% display weak-form violation and 48%–87.5%

display strong-form violation. These results are consistent with the operation of alternation bias, which may be

understood as a subjective distortion of conditional probability. Together these experiments offer evidence that

the Reduction assumption may have limited descriptive validity in St. Petersburg Gambles.
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1 Introduction

For 299 years, the St. Petersburg Paradox has hinged on an implicit assumption that has become

so deeply imbedded in the mathematics and economics professions that it is commonly deployed

without any perceived need for separate justification. The assumption is that, for the purpose of

modeling choice, compound lotteries may be reduced to their probabilistically equivalent simple

lotteries “whose prizes are all the possible prizes of the compound lottery ticket, each evaluated

with the compound probabilities that the classical algebra of probability defines” (Samuelson,

1952, p. 671). Within the program to formalize Expected Utility (EU), this assumption was

made explicit and instated as an axiom of rational preferences: the Reduction of Compound

Lotteries Axiom,1 by which rational decision makers are required to be indifferent between a

multi-stage compound lottery and its probabilistically equivalent ‘collapsed’ single-stage simple

lottery.

Reduction is implicit both in the statement of the St. Petersburg Paradox as well as in its

resolution. The statement of the paradox hinges on powers i of the payoff kernel $2 precisely

off-setting corresponding degrees i of compounding the probability of Heads 1
2 for all i∈Z++,

yielding an infinite sum. Daniel Bernoulli’s resolution, just as the modern resolution by EU, also

implements Reduction2 in specifying the probability of heads on the ith toss as Pi(H) =
(
1
2

)i
∀ i∈Z++.

Nevertheless the experimental literature on probability perception suggests that alterna-

tion bias – a subjective distortion of conditional probability in binary sequences – should be

empirically relevant for St. Petersburg Gamble (StPG) coin-toss sequences. Indeed specifically

coin-toss sequences have been investigated in many ‘perception of randomness’ experiments (e.g.

Rapoport and Budescu, 1997; Kareev, 1995; Budescu, 1987; for a review see Bar-Hillel and Wa-

genaar, 1991). Purely from a theoretical standpoint, augmentation of mathematical expectation

with alternation bias is sufficient by itself to ensure that Willingness To Pay (WTP) for the

StPG is finite and within the generally accepted empirical range (Kaivanto, 2008). Moreover,

insofar as alternation bias is manifest as the subjective attribution of negative autocorrelation

to objectively memoryless and unbiased Bernoulli processes, it suggests that Reduction may not

hold empirically for StPGs.

1von Neumann and Morgenstern (1947) refer to it as Axiom 3:C:b (p. 26).
2implicit in the former, explicit in the latter
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The present paper addresses the as-yet untested empirical question, Is Reduction violated in

StPGs? The experimental design developed for this purpose incorporates several novel features.

Firstly, as is pertinent given the emphasis on sequential effects, the lotteries in this experiment

are truncated real-money StPGs.3 Secondly, we introduce reduced-form StPGs based on a single

draw from an Urn. And thirdly, we introduce a new multiple price list instrument. By design,

this instrument permits simultaneous investigation of (i) weak-form violation of Reduction,

(ii) strong-form violation of Reduction, and (iii) heterogeneity in the magnitude of subjects’

alternation bias.

In total we report three real-money experiments in which the standard compound-lottery

form of the (truncated) StPG is explicitly juxtaposed with its reduced form. The former is im-

plemented with a coin toss sequence consistent with convention, while the latter is implemented

with a single random draw from a probabilistically equivalent urn. In the first experiment, we

elicit Subjects’ certainty (cash) equivalents for each form of the gamble. In the second experi-

ment, Subjects face a multiple price list consisting of 11 choices between the compound and the

reduced form of the gamble, where each choice task has a different distinct sure fixed payment

added to one of the alternatives. The list starts with e5 added to the reduced form (urn) and

ends with e5 added to the compound form (coin), changing in increments of e1. This con-

figuration offers a test of ‘strong-form’ violation of Reduction, in which Subjects reveal with

real-money choices whether they violate Reduction, and if so, how much they explicitly forgo

in doing so. In the third experiment, we (a) replicate the results of the second experiment with

a larger sample, and then (b) investigate possible range and increment effects with an 11-item

price list that ranges from e1 added to the reduced form to e1 added to the compound form in

increments of 20 Euro cents.

In the first experiment we find that the distribution of certainty equivalents for the reduced

form stochastically dominates the distribution of certainty equivalents for the compound form.

Within subjects, the reduced form’s certainty equivalent is statistically significantly larger than

that of the objectively identical reduced form.4 Therefore we conclude that Reduction is violated

in this ‘judged valuation’ task, revealing a bias toward the reduced form. This bias is borne

out in the second experiment. When choice is costless – i.e. in a straight choice between

the reduced form and the compound form – 90% of the Subjects choose the reduced form

3Previous experiments have employed finite but not truncated StPGs; see Section 5.
4The effect size – i.e. mean difference – is yyyyyy.
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over the compound form. This constitutes a weak-form violation of Reduction in which the

null hypothesis is premised on strict adherence to Expected Utility and thus the absence of

‘secondary criteria’ influencing choice (Bernasconi and Loomes, 1992). Furthermore, 45% of the

Subjects forgo a sure e1 added to the compound form in order to obtain the reduced form.5

These 45% violate Reduction in the strong-form sense, whereby a distinct preference for the

reduced form is expressed through choice which involves giving up a certain e1. Part (a) of the

third experiment replicates this result with twice the number of Subjects.6 Again 90% choose

the reduced form when choice is costless, while 47.5% give up a certain e1 to obtain the reduced

form instead of the compound form. In part (b), a full 100% choose the reduced form over the

compound form when it is objectively costless to do so (weak-form violation of Reduction), and

87.5% choose to forgo 20 Euro cents to obtain the reduced form rather than the objectively

equivalent compound form (strong-form violation of Reduction).

In each of these experiments, both the rejection of the EU-based null hypothesis as well as

the direction of this departure are consistent with the operation of alternation bias. This is

a distortion of conditional probability, distinct from distortion of outcomes7 and distortion of

unconditional probabilities.8 By design, the present experiments preclude the possibility that

the observed choice behavior may be due to distortion of outcomes (e.g. risk aversion) or distor-

tion of unconditional probabilities (e.g. probability weighting). Altogether, these experiments

provide evidence that the Reduction assumption (Axiom) may have limited descriptive validity

in St. Petersburg Gambles. These results carry implications for both the demonstration of the

St. Petersburg Paradox as well as for its resolution, each of which invokes Reduction without

separate justification.

2 Reduction of compound lotteries

The Reduction of compound lotteries – sometimes stated as an assumption, sometimes as an

axiom – is present both in classical EU as well as in modern behavioral theories such as Cu-

mulative Prospect Theory (CPT). Some formalizations stipulate that simple one-stage lotteries

are the basic objects of choice to which theory applies, and that multi-stage compound lotteries

5Conversely, none of the subjects is willing to forgo a sure e1 added to the reduced form in order to obtain

the compound form.
640 Subjects rather than 20.
7Bernoulli’s ‘moral worth’ and concave utility of money
8Yaari’s dual theory and Prospect Theory’s probability weighting
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are ‘reduced’ into such simple lotteries through algebra alone (Samuelson, 1952; Hauser, 1978).

Other formalizations require the decision maker to be indifferent between a multi-stage com-

pound lottery and its probabilistically equivalent simple one-stage lottery (e.g. Harrison et al.,

2012). von Neumann and Morgenstern (1947) denote it as Axiom 3:C:b and describe it as an

expression of the ‘algebra of combining’ (p. 26). In parts of the EU literature the axiom is

known by this latter label (Aumann, 1962; Fishburn, 1978). Luce and Raiffa (1957) instead

invoke it as an assumption rather than as an axiom (Assumption 2, p. 26).

The modern Prospect Theory literature has adopted a variety of different measures for com-

pound lotteries (prospects). All but one particular functional form of the probability weighting

function leads to violation of Reduction; different implementations of Prospect Theory have

finessed this in different ways. Original Prospect Theory simply excluded compound prospects

from consideration by restricting the domain of representable preferences to simple prospects

(Kahneman and Tversky, 1979). In a subsequent exploratory investigation by the same authors,

Reduction was found to be violated by the certainty effect and the pseudo-certainty effect fo-

cusing attention on the second-stage prospect (Tversky and Kahneman, 1981). Alternatively,

the Reduction of Compound Prospects Assumption can be invoked as a theoretical requirement,

much as it is within EU (Wakker, 2010, p. 60). Finally, the reduction of compound prospects

can be facilitated by restricting the form of the probability weighting function to that particular

parameterization of the Prelec two-parameter class (Prelec, 1998) which admits the reduction

of compound prospects (Prelec, 2000; Luce, 2001).9

Numerous theoreticians, past and present, view Reduction as a very strong assumption.

Hauser (1978) expresses the view that it is “perhaps the stongest assumption in the utility

axioms.” Fishburn (1978) notes that “...many people exhibit systematic and persistent violations

of... ...the reduction or invariance principle which says that preference or choice between acts

depends only on their separate probability distributions over outcomes” (p. 492).

Numerous experimental studies have investigated various aspects of Reduction (Tversky

and Kahneman, 1981; Keller, 1985; Bernasconi and Loomes, 1992; Halevy, 2007). Recently,

Kaivanto and Kroll (2012) find weak-form violation of Reduction in real-money choices between

probabilistically equivalent compound (two-stage) and simple (single-state) lotteries offering a

9Interestingly, Blavatskyy (2005) employs a limit approximation of the Tversky-Kahneman weighting function

that satisfies Reduction. It is not clear from the context where this is an intended objective of employing the

limit approximation or whether it is a fortuitous coincidence.
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1-in-10 chance of e100 ($136). This experiment, which includes control treatment for ratio bias

and computation costs, finds that 80% of subjects violate Reduction, consistent with ‘negative

recency’, which in the binary sequence context is known as ‘alternation bias’. Nevertheless,

according to the most recent study of Reduction by Harrison et al. (2012), such violations of

Reduction should be mere artifacts of the Random Lottery Incentive scheme. Harrison et al.

(2012) find that in choices between compound and reduced forms that are ‘played out and paid

out’ for real money in 1-in-1 cases – i.e. in each case individually – the violation of Reduction

disappears. However, Kaivanto and Kroll’s (2012) experiments find substantial (weak-form)

violation of Reduction even though they play out and pay out 1-in-1 cases.

3 Alternation bias

Alternation bias is a binary sequence manifestation of the local representativeness effect, whereby

the population (or infinite limit) properties of a stochastic process are attributed, erroneously,

to small finite samples. The local representativeness effect was introduced into the economics

literature by Rabin (2002) as the law of small numbers, whereby people misjudge and “exaggerate

how likely it is that a small sample resembles the parent population from which it is drawn”

(p. 775).

For finite Bernoulli sequences generated by an objectively fair and memoryless coin, the

local representativeness effect leads a Subject to expect, within finite sequences, (i) close to a

50%–50% balance between Heads and Tails, and (ii) excessive local irregularity, i.e. too many

reversals between Heads and Tails. It is this latter subjective predisposition to expect too many

reversals that we call alternation bias. This may be understood more formally as a negatively

distorted conditional subjective probability belief, or alternatively as an alternation rate that is

subjectively upward-distorted PS(H|T ) = PS(T |H) > 0.5.

Alternation bias was first hypothesized by Reichenbach (1934), and it has been amply docu-

mented and replicated in the ‘perception of randomness’ experimental literature (see summary

in Bar-Hillel and Wagenaar, 1991). Experimental studies place the magnitude of first-order

alternation bias at PS(H|T ) = PS(T |H) = 0.6 (Budescu, 1987; Bar-Hillel and Wagenaar, 1991;

Kareev, 1995). This forms a lower bound, as alternation bias effects have been estimated up to

sixth order (Budescu, 1987). Within economics there are multiple studies, using both observa-

tional and laboratory data, that substantiate and replicate local representativeness, alternation
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bias and their manifestations the Gambler’s Fallacy and the Hot Hand effect (Asparouhava et

al., 2009; Clotfelter and Cook, 1993; Terrell, 1994, 1998; Croson and Sundali, 2005).

Alternation bias holds clear implications for preferences between compound lotteries and

their probabilistically equivalent reduced-form lotteries. Ceteris paribus, Subjects whose per-

ception of randomness is characterized by alternation bias will not be indifferent between the

compound form of a lottery (where alternation bias is operative) and its reduced-form equiv-

alent (where there is no sequential structure to trigger alternation bias). In other words, the

indifference between reduced- and compound-form lottery variants stipulated by Reduction is

predicted to be violated under alternation bias.

Moreover, specifically for StPGs, alternation bias carries implications for mathematical ex-

pectation embodying this subjective distortion.10 Let ñ ∈ Z++ be the (random) index of the

first toss on which a fair coin first turns up ‘Heads’. As ñ is characterized by the geometric dis-

tribution with parameter p = 1
2 , the n = 1, 2, ... stage probabilities are pn = 1

2(1−
1
2)

n−1 = 2−n.

Based on first-order alternation bias alone, PS(H|T ) = 0.6 and PS(T |T ) = 0.4, so the subjective

(distorted) probability of the coin landing ‘Heads’ for the first time on toss n becomes

pfo
n =


PS(H) = 1

2 for n = 1

1
2PS(H|T )PS(T |T )n−2 = 0.3 · 0.4n−2 for n ≥ 2

(3.1)

giving a subjectively distorted mathematical expectation of

Efo
S (GStP ) =

∞∑
n=1

pfo
n 2n = 7.0 (3.2)

without any need to invoke risk aversion or unconditional probability weighting.

4 Hypothesis development: weak-form and strong-form violation

For the purpose of formal testing, the Reduction assumption taken in isolation is insufficient

for deriving a null hypothesis concerning choice behavior.11 Reduction may only be tested as

part of a joint hypothesis, ideally derived from an axiomatic theory of choice. In the present

context, the natural candidate is EU, which explicitly incorporates Reduction as an axiom and

constitutes the modern counterpart to Bernoulli’s ‘moral worth’ solution of the St. Petersburg

Paradox.

10First pointed out in Kaivanto (2008).
11Additional assumptions, such as completeness and monotonicity, are required.
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The Reduction Axiom of EU stipulates that compound lotteries are evaluated as their equiv-

alent single-stage reduced forms, and thus that indifference holds between compound lotteries

and their reduced-form simple-lottery counterparts. However EU does not provide explicit guid-

ance for choice when indifference holds. Any choice from among lotteries judged to be indifferent

is consistent with EU.12 Where indifference holds between two lotteries, the decision maker loses

no utility regardless of which lottery he chooses; choice is ‘costless’.

Nevertheless it is not the case that EU places no restrictions on choice between lotteries

for which the indifference relation holds. EU restricts attention to lottery payoffs and proba-

bilities. Under EU, no other characteristics are admitted as being choice-relevant. Moreover,

under the Reduction Axiom, the only attributes to be legitimately (rationally) consulted in mak-

ing a choice are the probabilities and payoffs of the reduced-form, single-stage, simple lottery.

Under EU, preference is independent of all distinctions13 between the compound form and its

probabilistically equivalent reduced form.

This extends even to the difference in ‘complexity’ between compound and reduced forms.

Hence augmentation of EU with a further lexicographic criterion – albeit potentially an in-

tuitively appealing rationalization of any revealed bias toward the reduced form – is in fact

formally incompatible with the strictly theoretical formulation of EU. In view of this strict and

pure theoretical interpretation, lexicographic biasing of choice toward either the reduced form or

the compound form would constitute a violation of EU. Given the stringency of the theoretical

assumptions being maintained, we refer to this as a weak-form violation of Reduction. Null

hypotheses for tests of weak-form violation of Reduction stipulate symmetry of empirical choice

frequencies between compound-form and reduced-form lotteries.

Following Vernon Smith’s precepts for valid microeconomic experiments (induced value the-

ory), we must nevertheless recognize that Subjects face numerous costs in supplying the null

hypothesis response instead of the alternative hypothesis response (Smith, 1982; Harrison, 1994).

These costs, the aggregate of which we denote with the symbol δ, include the cost of cognitive

effort, concentration, fighting distraction or boredom, and the effect of other components of the

Subject’s utility that are higher under the alternative hypothesis than under the null hypothe-

sis. Moreover, specifically when a Subject is indifferent between alternatives, “secondary criteria

may be quite important and apparently small or seemingly irrelevant changes to the framing

12As an example, note that Nash equilibrium in mixed strategies exploits this property.
13including e.g. complexity and compoundness itself
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of decisions (e.g. positioning of words) may have a marked effect” (italics added, Bernasconi

and Loomes, 1992). To overcome these costs and secondary criteria, the dominance precept

requires that “the rewards corresponding to the null hypothesis are perceptively and motiva-

tionally greater [by at least δ] than the rewards corresponding to the alternative hypothesis” in

order to “overcome any costs (e.g. the psychic cost of effort or of concentration) or components

of the Subject’s utility that might induce a response that is not in accordance with the null

hypothesis” (Harrison, 1994).

As observed by Chernoff (1954), Bernasconi and Loomes (1992), and Mandler (2005), EU in

fact offers a crisp prediction when a fixed sure bonus x ∈ R++ is added to one of the lotteries.

Due to the monotonicity axiom of EU, such a sure bonus x, no matter how small, causes the

indifference relation to be replaced by strict preference for the bonus-augmented lottery. Hence

adding a fixed bonus x to either the compound form or the reduced form causes EU decision

makers to choose the bonus-augmented option. The formal experimental design property of

dominance is satisfied when x > δ. But as the value of δ is unknown and Subject-specific, a

range of values of x may be employed. Where larger values of x lead to lower rates of deviation

from the EU prediction – both where x augments the compound-form lottery as well as where

x augments the reduced-form lottery – any related weak-form violation of Reduction may be

ascribed to the failure to satisfy dominance. However, where choice is consistent with EU in

bonus-augmented reduced forms but inconsistent with EU in bonus-augmented compound forms

– or vice versa – this asymmetric configuration constitutes a strong-form violation of Reduction.

Here larger values of x no longer offset larger values of δ,14 but instead offset the effects of more

extreme degrees of alternation bias.

5 Materials and methods

Truncated StPGs The experiments reported here employ truncated, as opposed to merely

finite, StPGs. Cox et al. (2009), for instance, employ finite StPGs that pay nothing in the

outcome where all coin tosses in the sequence land ‘Tails’. Since, in the unrestricted StPG, the

player’s payoff increases the longer the run of Tails, it is important to recognize that if the ith

toss lands Tails, extending a run of i−1 Tails by one, the player is entitled to a minimum payout

14If δ were being offset, there would be no reason for the cost of cognitive effort, concentration, and fighting

distraction or boredom to be different for bonus-augmented reduced forms than for bonus-augmented compound

forms.
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of e2i+1. We employ StPGs that are truncated at k={2, 6} tosses. In the k=2 case a run of 2

Tails pays off e23, while in the k=6 case a run of 6 Tails pays off e27. In this sense the StPGs

employed here are proper truncations.

Reduced form StPG Denote the ‘probability of landing Heads for the first time on toss n’ in

an StPG truncated to k tosses (n ≤ k) as pn(k). The vector of probabilities of landing Heads for

the first time on toss n = (1, 2, ..., k) then becomes p(k) = (p1(k), p2(k), ..., pk(k)). Thus the proba-

bilities of the k+1 possible payoffs (21, 22, ..., 2k, 2k+1) in the k-truncated StPG may be written

as p(k,1) = (p1(k), p2(k), ..., pk(k), pk+1(k)). Therefore the k= 6 truncated StPG is characterized by

the probability vector p(6,1) =
(
1
2 ,

1
4 ,

1
8 ,

1
16 ,

1
32 ,

1
64 ,

1
64

)
. Here p6(6) = p7(6) =

1
26

= 1
64 , so the k=6

reduced form StPG may be implemented with an urn containing 26 =64 balls. In general the

k-truncated StPG may be implemented with an urn containing no fewer than 2k balls.

Multiple-price list The multiple-price list developed here subsumes a ‘costless choice’ weak-

form violation of Reduction test and five incrementally more costly strong-form violation of

Reduction tests, which do double duty in recording across-subjects heterogeneity of alternation

bias strength corresponding to e.g. the magnitude of PS(H|T ).

The range of the multiple-price list is a function of the number of items (questions) and the

increment size. The number of items may be further decomposed into j ∈ Z++ items on either

side of the central ‘costless choice’ item, giving a total of 2j+1 items. Defining the inter-item

increment to be △ ∈ R++, then the total range of the multiple price list becomes 2j△.

Across all experiments and treatments reported here, we fix j=5, giving 11 items in total. In

Experiments 2 and 3(a) we employ an increment size of e1, giving a total range of 2 ·5 ·1 = e10.

In part (b) of Experiment 3 we employ △= 0.20 Euro cents, giving a total range of 2 · 5 · 0.2 =

e2.
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Table 1: Example multiple-price list with △=1

Q. Alternative A Alternative B

1. Urn variant + 5 Euro Coin variant

2. Urn variant + 4 Euro Coin variant

3. Urn variant + 3 Euro Coin variant

4. Urn variant + 2 Euro Coin variant

5. Urn variant + 1 Euro Coin variant

6. Urn variant Coin variant

7. Urn variant Coin variant + 1 Euro

8. Urn variant Coin variant + 2 Euro

9. Urn variant Coin variant + 3 Euro

10. Urn variant Coin variant + 4 Euro

11. Urn variant Coin variant + 5 Euro

6 Experiment I

This experiment is designed to test whether Reduction holds in the ‘judged valuation’ task that

is Certainty Equivalent elicitation.

6.1 Subjects and procedures

The experiment was conducted in z-Tree at the experimental laboratory of the Karlsruhe Insti-

tute of Technology (KIT). Sixty-three students from different fields of study were recruited into

sessions of no more than 10 Subjects using ORSEE (Greiner, 2004). At the time of participating

in the study, all subjects were enrolled in an engineering or computer science degree program

at KIT, and had already completed at least one course in mathematics or statistics as part of

their degree program. Subjects ranged in age from 22 to 28, with an average of 24.1 years. 70%

of the subjects were male.

This Certainty Equivalent (CE) test section comprised two banks of 15 questions, with each

question presented separately on the screen. All subjects answered both banks of 15 questions.

At the beginning of each session, Subjects were given written instructions describing the lottery

and their choice alternatives. After subjects had time to read the instructions, the experimenter
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Table 2: Fifteen choices (presented individually) between the lottery (either the reduced-

form Urn-implemented StPG or the compound-form coin-implemented StPG) and a fixed sure

amount.

Q. Alternative A Alternative B: certain sum

1. Lottery 1 Euro

2. Lottery 2 Euro

3. Lottery 3 Euro

4. Lottery 4 Euro

5. Lottery 5 Euro

6. Lottery 6 Euro

7. Lottery 7 Euro

8. Lottery 8 Euro

9. Lottery 9 Euro

10. Lottery 10 Euro

11. Lottery 11 Euro

12. Lottery 12 Euro

13. Lottery 13 Euro

14. Lottery 14 Euro

15. Lottery 15 Euro

demonstrated the Urn and the Coin Toss randomization devices to be used to ‘play for real’ one

choice according to the Random Lottery Incentive scheme. Subjects were given the opportunity

to seek clarification on any aspect of the experiment before commencing the z-Tree program.

Subjects wishing to ask a question were individually led outside the laboratory room, where

neither the question nor the answer could be heard by the other subjects. After all session

Subjects had complete their questions, the experimenter proceeded to implement one of each

Subject’s choices. Standard laboratory protocols to minimize the risk of experimenter demand

effects were followed.
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6.2 Results

Comparison of the Empirical Cumulative Distribution Functions for the compound- and reduced-

form StPGs reveals a First-Order Stochastic Dominance relationship: the reduced-form (Urn)

First-Order Stochastically Dominates the compound-form (Coin). After dropping 4 subjects

due to aberrant response patterns (those coded as 16 in the Empirical CDF plot), 59 paired

observations are available for nonparametric testing. The null hypothesis under Reduction is

that there is no median difference within-subjects between the reduced-form lottery CE and

the compound-form lottery CE. The Wilcoxon signed-rank test rejects the null of no median

difference (p < 0.0001). For robustness to skewness we also implement the sign test, and find

that the null of no median difference is rejected with p = 0.0000.

Bearing in mind the discreteness of the monetary sums, Subjects’ choices reveal a willingness

to pay on average e1.66 more, and e2 in the median, for the reduced form over the compound

form.

Figure 1: Empirical CDFs of the Certainty Equivalents of the reduced-form StPG (U64, red)

and the compound-form StPG (CT6, blue).
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7 Experiment II

This experiment is designed to implement weak-form and strong-form tests for violation of

Reduction.

7.1 Subjects and procedures

The subject pool, method of recruitment, laboratory, laboratory procedures and incentive

scheme (RLI) are the same as in the Certainty Equivalent elicitation Experiment I above. All

subjects (N=20) answer 11 questions, one at a time on the z-Tree screen, for both the k = 2

truncated StPG as well as the k=6 truncated StPG. The multiple price list used is as set out

in Table 1: j=5, △=1.

7.2 Results

Table 3: Proportion of Subjects (of N=20) choosing the Urn with the associated 95% confidence

intervals (Jeffreys prior) for the ‘max 2 tosses’ StPG(2) and ‘max 6 tosses’ StPG(6) price lists.

Urn Urn Urn Urn Urn Urn Coin Coin Coin Coin Coin

+5 +4 +3 +2 +1 +0 +1 +2 +3 +4 +5

StPG(2) 1 1 1 1 1 .95 .20 .10 0 0 0

(95% CI) (.88,1) (.88,1) (.88,1) (.88,1) (.88,1) (.79,.99) (.07, .41) (.02, .28) (0,.12) (0,.12) (0,.12)

StPG(6) 1 1 1 1 1 .90 .45 .15 0 0 .05

(95% CI) (.88,1) (.88,1) (.88,1) (.88,1) (.88,1) (.72,.98) (.25,.66) (.04,.35) (0,.12) (0,.12) (.005,.21)

For the Urn+0 entries we can test for weak-form violation of Reduction (H0 : p̂ = p0 and

H1 : p̂ > p0 where p0 = 0.5) using a Binomial test with N = 20 and p0 = 0.5. On the StPG(2)

task, under the null hypothesis, the probability of observing p̂ ≥ .95 is 0.000020. On the StPG(6)

task, under the null hypothesis, the probability of observing p̂ ≥ .90 is 0.000201. 90% of Subjects

display weak-form violation of Reduction on the StPG(6) task.

There is strong asymmetry to the left and right of the costless choice item (Urn+0). All

bonus sums under the △ = 1 increment are systematically recognized as ‘give-away money’

when added to the Urn. We infer that δ < 1 and that dominance is satisfied. Hence entries

on the right-hand-side of the table reflect strong-form violation of Reduction, consistent with

14



alternation bias. 45% of Subjects forgo a sure bonus of e1 in order to obtain the reduced form

instead of the compound form.

8 Experiment III

This experiment is designed to test the robustness of Experiment II’s results by (a) replicating

the experiment at a different laboratory with a different subject pool and (b) testing for range

and increment effects.

8.1 Subjects and procedures

The experiment was conducted using z-Tree at the Magdeburg Experimental Laboratory of

Economic Research (MaXLab). 40 students from different fields of study were recruited into

sessions of no more than 10 Subjects using ORSEE (Greiner, 2004). At the time of participating

in the study, all subjects were enrolled in an engineering or computer science degree program at

the Otto-von-Guericke University Magdeburg in Germany, and had already completed at least

one course in mathematics or statistics as part of their degree program. Subjects ranged in age

from 22 to 29, with an average of 25 years. 67% of the subjects were male.

Although the subject pool differs from that of Experiments I and II, the method of recruit-

ment, the laboratory procedures and the incentive scheme (RLI) are the same as in Experiments

I and II above. All subjects (N=40) answer (a) 11 questions, one at a time on the z-Tree screen,

for both the k=2 truncated StPG as well as the k=6 truncated StPG in the △=1 multiple-price

list format, and then (b) another battery of 2× 11 questions in the △=0.20 multiple-price list

format.

8.2 (a) Results

For the Urn+0 entries we can test for weak-form violation of Reduction (H0 : p̂ = p0 and

H1 : p̂ > p0 where p0 = 0.5) using a Binomial test with N = 40 and p0 = 0.5. On the StPG(2)

task, under the null hypothesis, the probability of observing p̂ ≥ .95 is 0.000000. On the StPG(6)

task, under the null hypothesis, the probability of observing p̂ ≥ .90 is 0.000000. 90% of Subjects

display weak-form violation of Reduction on the StPG(6) task.

Just as in Experiment II, here in Experiment III there is strong asymmetry to the left and

right of the costless choice item (Urn+0). Once again we can infer that δ < 1 and that dominance

is satisfied. Entries on the right-hand-side of the table reflect strong-form violation of Reduction,
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Table 4: Proportion of Subjects (of N=40) choosing the urn with the associated 95% confidence

intervals (Jeffreys prior) for the ‘max 2 tosses’ StPG(2) and ‘max 6 tosses’ StPG(6) price lists.

Urn Urn Urn Urn Urn Urn Coin Coin Coin Coin Coin

+5 +4 +3 +2 +1 +0 +1 +2 +3 +4 +5

StPG(2) 1 1 1 1 1 .95 .25 .10 0 0 0

(95% CI) (.94,1) (.94,1) (.94,1) (.94,1) (.94,1) (.85,.99) (.14, .40) (.03, .22) (0,.06) (0,.06) (0,.06)

StPG(6) 1 1 1 1 1 .90 .475 .175 0 0 .025

(95% CI) (.94,1) (.94,1) (.94,1) (.94,1) (.94,1) (.78,.97) (.33,.63) (.08,.31) (0,.06) (0,.06) (.003,.11)

consistent with alternation bias. 48% of Subjects forgo a sure bonus of e1 in order to obtain

the reduced form instead of the compound form.

The results in Table 4 constitute an overwhelmingly successful replication of Experiment II’s

findings.

8.3 (b) Results

Table 5: Proportion of Subjects (of N=40) choosing the urn with the associated 95% confidence

intervals (Jeffreys prior) for the ‘max 2 tosses’ StPG(2) and ‘max 6 tosses’ StPG(6) price lists.

Urn Urn Urn Urn Urn Urn Coin Coin Coin Coin Coin

+1 +.80 +.60 +.40 +.20 +0 +.20 +.40 +.60 +.80 +1

StPG(2) 1 1 1 1 1 1 .70 .525 .35 .275 .20

(95% CI) (.94,1) (.94,1) (.94,1) (.94,1) (.94,1) (.94,1) (.55, .82) (.37,.67) (.22,.50) (.16,.43) (.10,.34)

StPG(6) 1 1 1 1 1 1 .875 .75 .65 .575 .50

(95% CI) (.94,1) (.94,1) (.94,1) (.94,1) (.94,1) (.94,1) (.75,.95) (.60,.86) (.50,.78) (.42,.72) (.35,.65)

Here, with restricted increment and range, the Urn+0 ‘costless choice’ entries no longer

require the Binomial test, as the fraction of subjects choosing the Urn is 1. Again there is strong

asymmetry to the left and right of the costless choice item (Urn+0). Here we can now infer

that δ < 0.20 and that dominance is satisfied. Entries on the right-hand-side of the table reflect

strong-form violation of Reduction, consistent with alternation bias. 88% of Subjects forgo a
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sure bonus of 20 Euro cents in order to obtain the reduced form instead of the compound form.

9 Conclusion

Together the three experiments reported here cast doubt on the descriptive validity of Reduc-

tion for StPGs. Since Reduction is an axiom – and furthermore one that is necessary for the

application of EU to resolve the St. Petersburg Paradox – the weak- and strong-form violations

uncovered here also impinge upon the role conceived for EU by Daniel Bernoulli.

The present empirical findings are consistent with the operation of alternation bias, which is

a subjective distortion of conditional probability, distinct from the major avenues pursued thus

far for resolving the St. Petersburg Paradox: outcome distortion (concave utility for money) and

probability distortion (unconditional probability weighting).

Finally, alternation bias offers the prospect of relaxing the need to completely reparameterize

CPT as brought about by re-emergence of the St. Petersburg Paradox under conventional

parameterizations of CPT (Blavatskyy, 2005; Rieger and Wang, 2006).
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