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Abstract

Despite their importance, games with incomplete information and
dependent types are poorly understood; only special cases have been
considered and a general approach is not yet available. In this pa-
per, we propose a new approach to the model of correlation of types in
Bayesian games, which also allows asymmetries. This is related to the
idea that “beliefs do not determine preferences,” and consists of mod-
eling types with two explicit parts: one for preferences and another
for beliefs. Building on this idea, we are able to provide the first pure
strategy equilibrium existence for a general model of multi-unit auc-
tions where types can be correlated. We also provide further results
for a particular case of this idea, which we call “very simple distri-
butions.” These distributions are defined by density functions which
are constant in squares covering the support of all types. We provide
necessary and sufficient conditions for the existence of a symmetric
monotonic pure strategy equilibrium in first-price auctions with these
distributions.
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1 Introduction

Correlation is a central phenomenon in our world. It is present not only
among many variables relevant to the real economy, but it is probably im-
portant in virtually all economic fields. And, yet, we have not been able
to properly tackle correlation. Simply put, it is a difficult subject that has
been defying our standard techniques.

A particular field where correlation has been poorly understood is the
subject of games of incomplete information. To begin with, we are unable
even to establish general pure strategy equilibrium existence results when
types are not independent. For instance, the important papers of Reny
(1999), McAdams (2003) and Reny (2011), which continue the work of Athey
(2001), establish equilibrium existence for multi-unit auctions only in the
case of independence.

After the pioneering work of Wilson (1969) and (1977), one of the most
important contribution to the study of dependence in games was made by
Milgrom and Weber (1982) when they introduced affiliation. This became
a central assumption in the study of correlated types and it is, to this
date, a hallmark of economic theory. However, some of the implications
of affiliation are not robust to other forms of dependence—see de Castro
(2011).

Even with affiliation, however, progress in the study of Bayesian games
with correlated types has been slow and difficult.1 The case of first price
auction with interdependent values with two players was obtained by Athey
(2001) and Lizzeri and Persico (2000). Later, Reny and Zamir (2004) ex-
tended this to n players. In the case of multi-dimensional auctions, pure
strategy equilibrium existence (PSEE) is established exclusively for indepen-
dent types; Reny (1999), McAdams (2003), Jackson and Swinkels (2005),
Reny (2011). There is not a single general result of PSEE with affiliation for
multi-unit auctions. Indeed, McAdams (2007) provides a counterexample
for the PSEE in a uniform price auction with affiliated types. Departing from
the question of equilibrium existence, affiliation is also not enough to imply
the linkage principle in multi-unit auctions (see Perry and Reny (1999)).
This suggests a difficult tension: it seems that we need stronger conditions,
but at the same time we would like to have a more flexible framework. But
what do we know outside of affiliation?

The more general papers that allow correlation of types—Jackson, Si-
1We will just highlight some of the standing gaps in the literature. For a more complete

survey, see de Castro and Karney (2011).
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mon, Swinkels, and Zame (2002) or Jackson and Swinkels (2005)—prove
equilibrium existence only in mixed strategies. The question is whether
pure strategy equilibria exist. Some general results have been established
by van Zandt and Vives (2007) and van Zandt (2010), but these papers re-
quire assumptions that are not valid for some important classes of Bayesian
games.2 Out of affiliation, we do not have general pure strategy equilibria
existence results even for games as simple as symmetric private value first
price auctions.3 Thus, PSEE in Bayesian games out of independent types
is an old, but still open question.

The above discussion should not give the impression that problems are
restricted to equilibrium existence. Rather, it is just an illustration of how
deep the limitations go. Since equilibrium existence is the basis for all
useful results that game theory is able to provide, these limitations hinder
progress in econometrics, industrial organization and many other practical
applications of Bayesian games.

The purpose of this paper is to present a simple idea and suggest it as
a different route to tackle the problem of correlation of types in Bayesian
games. To explain the idea, it is useful to recall the “standard approach”
to model correlation. This “standard approach” or “setting” is the represen-
tation of players’ information by signals and a common prior determining
the beliefs about other types through conditional probabilities. That is, in
a standard setting, each player i has a signal vi that represents the pref-
erence parameter for that player (e.g., the value of an object), there is a
common prior γ over the signals of all players v = (v1, . . . , vn) and a player
with signal vi has belief δi given by the conditional probability γ(·|vi). In
this sense, the signal contains both information about the preferences (e.g.
the value of the object) and the beliefs about other players’ information.
Although nowadays collapsing players’ beliefs and tastes in this way seems
very natural, when Harsanyi (1967-8) introduced the idea of types, he was
careful to maintain different parameters for tastes and beliefs. The standard
approach became very popular later, and its main justification seems to be
its simplicity.4 A surprising implication of our results is that the theory be-
comes considerably simpler if we do not make this simplifying assumption.

2The utility functions are required to have increasing differences in all actions, a property
that does not hold in auctions, for instance.

3de Castro (2007) and Monteiro and Moreira (2006) present partial results in this partic-
ular setting.

4Milgrom and Weber (1982, Footnote 14, p. 1097) justify the standard approach as fol-
lows: “To represent a bidder’s information by a single real-valued signal is to make two
substantive assumptions. Not only must his signal be a sufficient statistic for all of the
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We begin by departing from this “standard approach” and explicitly de-
scribe each type ti as composed of two separate parts: a preference pa-
rameter vi and a belief parameter δi, that is, ti = (vi, δi).5 The important
point is that beliefs and preference parameters should be kept as separate
elements.6 Of course, this simple idea requires more details. The main
contribution of this paper is the introduction of the following condition:7

(∗) Any non-null set of types contains two strictly ordered types sharing
the same belief.

Everything that follows in this paper is either a discussion of what (∗)
means or an illustration of the results that it allows us to prove, together
with some technical contributions that simplify or generalize previously
known settings and results.

First, observe that the most important aspect in condition (∗) is the
fact that types share the same belief. Indeed, the order implicitly assumed
to exist in (∗) can be constructed from the preference part of each type.
For instance, if the preference part Vi refers to the values of the objects
in a multi-unit auction, we could order its elements vi using the standard
coordinate-wise order of euclidean spaces. Then, any set with positive mea-
sure will always contain two strictly ordered signals—see details in section
2.1. In this sense, the belief part is the most important restriction and
we will focus the discussion here on this aspect. Let us see some settings
where (∗) is satisfied:

1. Standard setting with Independence. Indeed, if types are indepen-
dent, then any signals vi, v′i imply the same (conditional probability

information he possesses concerning the value of the object to him, it must also adequately
summarize his information concerning the signals received by the other bidders. The deriva-
tion of such a statistic from several separate pieces of information is in general a difficult
task (...). It is in the light of these difficulties that we choose to view each Xi as a “value
estimate,” which may be correlated with the “estimates” of others but is the only piece of
information available to bidder i.”

5 From a general perspective—that of universal type spaces introduced by Mertens and
Zamir (1985)—, types can always be seen as having two parts: a payoff type and a belief
type. Therefore, the explicit consideration of the belief goes in the direction of a more general
model. This paper shows that this extra “complication” actually simplifies the analysis in a
surprising way.

6 It seems that Neeman (2004) was the first to argue that beliefs and preferences should
be seen as “causally independent” from one another. As we discuss in more detail in section
7.1, our idea is intrinsically related to his “beliefs do not determine preferences” assumption.
See also Heifetz and Neeman (2006).

7The condition implicitly requires that types spaces are ordered, as we further discuss
below.
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or) belief δi = γ(·|vi) = γ(·|v′i).

2. Standard setting where there is only a countable number of different
beliefs δi = γ(·|vi). Notice that independence is just a special case of
this, where there is just one belief.

3. Ti is (a subset of) Vi × ∆(T−i) and the measure on Ti is absolutely
continuous with respect to the product of its marginals over Vi and
∆(T−i).

These examples will be fully specified and justified in section 2.1.
Of course, it is also useful to know settings where (∗) is not satisfied.

A simple example is a standard setting with a uniform distribution γ over
the triangle defined by 0 6 v1 6 v2 6 1. In this case, if player 1 has signal
v1, her belief about player’s 2 signal is the uniform distribution over [v1, 1].
Therefore, (∗) cannot be satisfied because there are not two different signals
sharing the same belief. Fortunately, however, for every standard setting
where (∗) is not satisfied, there exists another setting sufficiently “close”
that satisfies (∗). Indeed, assume that with probability 1− ε, the types and
beliefs are just as described and, with probability ε > 0, when receiving the
signal vi, player i beliefs that other players’ signals are uniformly distributed
on [0, 1]. As we further discuss in section 2, this is “ε-close” to the original
model and satisfies (∗). Therefore, (∗) does not add any significative extra
restriction than that already imposed by the game model itself.

Having clarified some aspects about (∗), it is time to describe what (∗)
allows us to accomplish. In the remainder of this introduction I describe the
main results in this paper and other technical contributions, which could
be of interest by themselves.

1.1 Main Results

The main results of the paper can be summarized as follows.

1. For Bayesian games with (possibly infinite dimensional) action spaces
satisfying some weak assumptions (details in section 3), a generaliza-
tion of supermodularity and increasing differences and general type
spaces satisfying (∗), we show that every best reply to any mixed
strategies is pure. That is, we give conditions under which strictly
mixed strategies are never best replies. Therefore, all equilibria are in
pure strategies. See Theorem 4.3 in section 4.
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2. Building on this first result, we turn to a more particular setting: that
of multi-unit auctions studied by Jackson and Swinkels (2005). In
this setting, we show that if (∗) is satisfied, there exists a monotonic
pure strategy equilibrium. This is the first result in the literature that
establishes existence in pure strategies for general multi-unit auctions
out of independence. See Theorem 5.1 in section 5.

3. Although the equilibrium mentioned in 2 above is in “monotonic”
strategies, this monotonicity depends on a special order on types,
which may be different from the standard one, for example in single-
unit auctions. This raises the question whether the pure strategy
equilibria shown to exist will also be in monotonic strategies taking in
account the usual order on real-valued signals. Considering a sym-
metric first price auction in a still general setting satisfying (∗)—see
point 5 in section 1.2 below—, we establish necessary and sufficient
conditions for the existence of a monotonic equilibrium. Moreover,
since the setting is specially suitable for numerical simulations, we
are able to establish an algorithm for checking when there is or is
not an equilibrium. The algorithm is surprisingly fast. While the best
known algorithms for finding mixed strategy equilibria in finite games
run in exponential time, our algorithm requires only O(k2) manipu-
lations in an auction with 2 players and k intervals. See Theorems
6.2 and 6.4. Section 6.3 shows how numerical methods could estab-
lish some results about the revenue ranking of first and second-price
auctions with general kind of correlation. Moreover, we show in sec-
tion 6.5 that results obtained in this framework satisfy approximate
results in any standard settting.

As this list of results highlights, the results of this paper are not re-
stricted to pure strategy equilibrium existence. In particular, it is not our
main purpose to offer alternative methods for proving pure strategy equi-
librium existence, as Reny (1999), Athey (2001), McAdams (2003) and Reny
(2011) do. Rather, the main objective of the paper is to propose a new
approach to the correlation of types in Bayesian games, establish its foun-
dations and provide some venues for applications.

1.2 Other Contributions

Besides the ideas in the proofs of the above mentioned results, we introduce
some technical contributions that could be of interest by themselves. These
are the following:
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1. We introduce a new monotonicity condition in section 3.1, which gen-
eralizes supermodularity and increasing differences (it is implied by
them). This condition assumes that all spaces are only partially or-
dered sets, that is, the space of actions is not required to be a lat-
tice, as supermodularity or quasi-supermodularity require. Called
unimaginatively “monotonicity condition,” it allows us to prove that
all best-reply actions, even to mixed strategies, are increasing. It is
presented in two forms—an increasing differences form, which is pre-
served under integration and it is very easy to check—and a single-
crossing form, which is slightly more general. See definitions 3.1 and
3.3.

2. For some cases where our new monotonicity condition fails, we show
that a simple perturbation technique can be used to approximate such
games with games that do satisfy the condition. This technique is at
the heart of the proof of pure strategy strategy equilibrium existence
in the private value multi-unit auctions (Theorem 5.1).

3. In the context of multi-unit auctions, we define a condition on tie-
breaking rules (Assumption 5.2) that allows us to prove the modularity
of allocations (Proposition 5.4) and payments (Corollary 8.13). This
condition is satisfied by a specific tie-breaking rule used by McAdams
(2003) and Reny (2011) for uniform-price auctions, but includes other
potentially relevant rules and allow general auction formats. These
results are instrumental for our proof of Theorem 5.1.

4. We also introduce a condition (Assumption 3.2) about the interplay
between the order and the metric of the action space that allows us
to state our more general results for compact metric space, instead
of just euclidean spaces. This condition is automatically satisfied
in euclidean spaces with the usual coordinate-wise order, but also
in many standard function spaces and other infinitely dimensional
spaces. We are not aware of any similar condition being considered
in the literature.

5. Finally, we introduce a special class of distributions, which we call
“grid” distributions or “very simple” distributions. Here, it is enough
to define very simple distributions in the simple case of single dimen-
sional types and just two players. For this, assume that the signals
support is [0, 1] and divide this interval into k equal pieces. A very
simple distribution is any distribution defined by a density function
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which is constant in the squares thus formed. Figure 1 below il-
lustrates this contruction for k = 2 divisions of [0, 1]. To see that
this satisfies (∗), even without explicit mention to the beliefs, notice
that once the player learns v1, she also knows the interval where her
value is, and every other signal in that interval shares exactly the
same belief about the other bidder’s valuation. Our results about
the complete characterization of monotonic equilibrium existence in
first price auctions (point 3 in section 1.1 above) is given in this set-
ting. These distributions prove to be very convenient for theoretical
and numerical manipulations, besides being dense in the set of all
distributions—which allow approximation to any standard setting.

v1

v2

f (v1, v2)

Figure 1: The density function of a grid distribution.

2 Framework for Types with Correlation

In this section we introduce our main idea: a model to study types with
some form of dependence or correlation. The remainder of the paper will be
devoted to explore the results that can be obtained within this framework.

Consider the set of player I ≡ {1, ..., N}. Eventually we will consider
a non-strategic player, numbered 0, but this player does not need to have
types and can be thought as of “Nature.” Each individual i ∈ I has a
type ti ∈ Ti, where (Ti, Ti) is a measurable space. Let T ≡ ×Ni=1Ti and
T−i ≡ ×j 6=iTj . The product σ-algebra on T and T−i are denoted T and
T−i, respectively. For a measurable space (X,X ), let ∆(X) denote the
set of probability measures on (X,X ). Notice that we do not impose any
topological assumptions in this setup.8

8Heifetz and Samet (1998) study type spaces without topology.
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Player i’s type determines the beliefs of player i about other players.
This will be given by a map δ̂i : Ti → ∆(T−i). Finally, we denote by
∆i ⊂ ∆(T−i) the set of player i’s possible beliefs about other players’ types,
that is, ∆i ≡ δ̂i(Ti).

For some results, it will be convenient to assume that the types ti ∈ Ti
are generated by a measure τ i. This is more natural when there is a common
prior on T , although this is not strictly necessary. If there is a common prior
on (T, T ), denoted τ , we will define τ i as Ti-marginal of τ , that is:

τ i(B) ≡ τ(T1 × ...× Ti−1 ×B × Ti+1 × ...× TN ), ∀B ∈ Ti.

In this case, the belief map δ̂i could be defined as a regular conditional
probability of τ given ti. Conditions for the existence of a regular condi-
tional probability and relevant definitions can be found in the appendix.
We emphasize, however, that the existence of a common prior is not strictly
necessary.

Our main assumption requires us to consider a partial order on Ti. The
condition requires that in any set of positive measure E ⊂ Ti, we can find
a pair of types in such a set which are strictly ordered and have the same
belief. In other words, the following repeats with symbols condition (∗)
stated in the introduction.

Assumption (∗): If E ∈ Ti has positive measure, i.e., τ i(E) >
0, then there exist ti, t′i ∈ E such that ti <i t′i and δ̂i(ti) = δ̂i(t

′
i).

Note that (∗) is somewhat more demanding than “beliefs do not deter-
mine types,” introduced by Neeman (2004). As Neeman’s assumption, (∗)
also requires that there are at least two types sharing the same belief, that
is, δ̂i(ti) = δ̂i(t

′
i) = δ above. However, it also requires that those types

are ordered, while Neeman (2004) considers no order. Moreover, (∗) also
requires we can find such a pair of ordered types in every set of positive
measure. Note that the requirement that there are ordered types in a set of
positive measure is not strong in continuous type spaces. In this setting,
it just guarantees that the partial order is not too restricted.9 On the other
hand, although the existence of ordered pairs in any set of positive measure
is, by itself, a weak requirement, (∗) requires in addition that this pair of
types share the same belief. In section 2.1 below, we further specify the
type space and describe a natural setting where (∗) holds.

9An example of a partial order that would fail that requirement is the equality order (two
points are “ordered” only if they are equal). This is obviously a very restrictive partial order.
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Note that this assumption rules out atomic (finite) type spaces. With
atoms in the type spaces, it is well known that we can have only strictly
mixed strategies as part of any equilibria, even in simple games. On the
other hand, assuming that types are atomless is far from sufficient to guar-
antee equilibrium in pure strategies. For instance, the type spaces in Jack-
son and Swinkels (2005) are atomless, but they are able to prove equilibrium
existence only in mixed strategies when some kind of correlation between
the types is possible. Moreover, Radner and Rosenthal (1982) and Khan,
Rath, and Sun (1999) provide examples of games with atomless types and
without pure strategy equilibria.

2.1 Sufficient conditions and examples for (∗)

It is perhaps useful to describe a more familiar setting where (∗) holds. For
this, let V = ×Ni=1Vi, where Vi is the part of the parameter space known
to player i. For instance, Vi could represent the values of the objects to
player i in a multi-unit private value auction. In this case, Vi ⊂ Rn+ has
a natural order: the coordinate-wise order of euclidean spaces. Thus, we
may assume that we have a natural partial order on Vi, which we will denote
by <i. We can use this order to define a natural order on the type spaces
as follows. Let V̂i : Ti → Vi specify for each type ti ∈ Ti, the preference
parameter V̂i(ti) ∈ Vi that is known by ti. We can then define the order on
Ti by:10

t′i >i ti ⇐⇒ V̂i(t
′
i) <i V̂i(ti). (1)

For all constructions in this section, we will assume the order on Ti
defined by (1). We will consider two classes of examples: based on the
standard approach, in which the beliefs are given by common priors, and
settings where Ti is a (subset of) Vi ×∆(T−i).

2.1.1 Sufficient conditions on the standard setting

As we described in the introduction, we call the standard approach one in
which the types (or signals, actually) are given directly on V = ×Ni=1Vi and
the beliefs about other players’ signals are given by a joint distribution γ

10 An alternative definition, sometimes convenient, is the following: t′i >i ti if and only if
V̂i(t

′
i) <i V̂i(ti) and δ̂i(t′i) = δ̂i(ti), that is, we restrict (1) to be valid only for types with the

same beliefs. All of our results remain valid without change under this alternative definition
(some of them could be actually simplified). We use this alternative definition in our result
about equilibrium existence on the JS auction. See (12).
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on V . Of course, there is a σ-algebra Ξ such that (V,Ξ, γ) is a probability
space. This space is the primitive in this model; we define a type space
from this primitive as follows. Let Ti be defined as the following subset of
Vi ×∆(V−i):

Ti ≡ {(vi, δ) ∈ Vi ×∆(V−i) : δ(·) = γ(·|vi)},

where γ(·|vi) denotes, naturally, the γ-conditional probability on v−i given
vi. Note that this Ti corresponds to the original signal space, described
in the language of type of parameter spaces and beliefs. To complete the
definition of the type space (Ti, Ti, τ i), let γi denote the marginal of γ on
Θi,11 and define: Ti ≡ V̂ −1

i (Ξi) and τ i(E) ≡ γi(V̂i(E)), for every E ∈ Ti.
To state our results, we need to introduce some notation. Let ∆i denote

the set of possible beliefs, that is,

∆i ≡ {δ ∈ ∆(V−i) : ∃vi ∈ Vi such that (vi, δ) ∈ Ti}.

Also, let Γ : Vi ⇒ ∆i be the correspondence defined by

Γ(v) ≡ δ̂i
(
V̂ −1
i (v)

)
= {δ ∈ ∆i : ∃ti ∈ Ti s.t. V̂i(ti) = v and δ̂i(ti) = δ}. (2)

We first show that if there are a countable set of beliefs that “correspond”
to almost all parameters, then (∗) holds if the parameters are “sufficiently”
ordered. More precisely, we have the following:

Lemma 2.1 The following conditions imply (∗):
(i) For any measurable E ⊂ Vi, such that γi(E) > 0, there exist v, v′ ∈ E

such that v′ � v;12

(ii) There exists a countable set ∆′i ⊂ ∆i such that for almost all v ∈ Vi,
Γ(v) ∩∆′i 6= ∅.

It is useful to discuss Lemma 2.1’s conditions. Condition (i) is satisfied
if the measure on Vi can be defined using sets of the form [c, d] ≡ {x ∈ Ti :
c 6i x 6i d}. An example where this last condition holds is the following:
Ti is an euclidean space, the Lebesgue measure is absolutely continuous
with respect to τ i and 6i is the standard coordinate-wise order.13

11That is, γi(E) ≡ γ(V1 × · · · × Vi−1 ×E × Vi+1 × · · · × VN ), for any measurable E ⊂ Vi.
12We write x � y if x < y but not y < x.
13 By itself, this condition is weaker than Reny (2011)’s assumption G3, which requires

that there is a countable subset T 0
i of Ti such that every set in Ti assigned positive prob-

ability by τ i contains two points between which lies a point in T 0
i . As Reny (2011, Lemma

A.21, p. 546) shows, in the case Ti is a separable metric space, Reny’s assumption G3 is
equivalent to the requirement that every atomless set with positive measure contains two
strictly ordered points, that is, Lemma 2.1’s condition (i).

10



Condition (ii) is trivially satisfied if ∆i is countable because Γ(Vi) ⊂
∆i. In particular, if γ implies independent types, then ∆i is unitary and
condition (ii) is satisfied. However, condition (ii) does not require ∆i to be
countable, only that there is a countable set of beliefs that correspond to
every preference parameter. This possibility can be used to approximate
standard type spaces where (∗) does not hold by type spaces where it does
hold. We illustrate this construction as follows.

Fix some δ0 ∈ ∆(V−i) and establish that with probability ε > 0, player
i with parameter type vi ∈ Vi has belief δ0 (instead of γ(·|vi)) and with
probability 1 − ε, she has the original belief δ(·) = γ(·|vi). The belief δ0

could be thought of as an “ignorant” or default belief. In this case, ∆′i = {δ0}
would satisfy condition (ii) of Lemma 2.1 and, therefore, (∗) would hold.14

Another class of standard models where (∗) holds is given by the grid
distributions defined on section 2.1.2. This class of models can also ap-
proximate (in a strong sense) any standard model, as we show in section
6.5. The approximation results discussed in this section and on section 6.5
have an important implication for applied work: (∗) cannot be refuted with
any amount of finite data. Therefore, it does not add any significative extra
restriction than that already imposed by the game model itself.

2.1.2 Very Simple (or Grid) Distributions

Perhaps the above discussion is yet too abstract for the taste of more applied
readers, who are familiar with the standard approach and would like to
see general, robust examples where our theory could be used. For this,
we offer a concrete class of distributions where (∗) holds in the standard
approach. This setting is our suggested approach for applied works. Section
6 illustrates the convenience of working with it.

For simplicity, assume that Vi = [0, 1] for all i ∈ I. Grid distributions for
multidimensional signals are formally defined in the appendix (see section
9.1). Also, assume that the common prior γ on V = [0, 1]N is defined by a
density function f : [0, 1]N → R+. Consider the division of each Vi = [0, 1]
into k intervals of the form

(
m−1
k , mk

]
, for m = 1, ..., k. We say that f defines

a grid distribution if f is constant in each of the cubes thus formed. More
precisely:

14 The new type space thus formed would be T ε
i = Ti ∪ (Vi × {δ0}). The definition of T ε

i

would be the same as before, just using the map V̂ ε
i instead of V̂i, where V̂ ε

i : T ε
i → Vi is

defined in the obvious way as a projection. The definition of τεi would take in account the ε
probability above described.
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Definition 2.2 A function f : [0, 1]N → R+ is a k-very simple density func-
tion or k-grid density function (and defines a k-very simple distribution or
k-grid distribution), if for each m = (m1, ...,mN ) ∈ {1, ..., k}N , f is constant
on Im, where

Im ≡
(
m1 − 1

k
,
m1

k

]
× ...×

(
mN − 1

k
,
mN

k

]
. (3)

The set of k-grid density functions is denoted by Dk. We may say that f is
just a grid density function k is not important in the context. The set of all
grid density functions is denoted by D∞ ≡ ∪k∈NDk.

For instance, if k = 3 and we have N = 2 players, we can describe the
density function f by a matrix, as shown in the picture below.

0
t10

t2

1
3

2
3

1

1
3

2
3

1

a11

a12

a13

a21

a22

a23

a31

a32

a33

f ∈ D3

Figure 3: A density f ∈ Dk can be represented by a matrix A = (aij)k×k.

It is easy to see that this class of distributions satisfies (∗). Indeed, if
vi, v

′ ∈
(
m−1
k , mk

]
, then

f(v−i|vi) =
f(vi, v−i)

f(vi)
=
f(v′i, v−i)

f(v′i)
= f(v−i|v′i), ∀v−i ∈ V−i,

because f assumes the the same values for vi and v′i, no matter what v−i
is. In other words, any two signals in one of the interval share the same
beliefs about the signals of the opponents. Since there is a finite number of
intervals, there is a finite number of different beliefs. Therefore, condition
(ii) of Lemma 2.1 is satisfied.

As discussed in section 6.5, we can approximate any continuous dis-
tribution in the standard approach with grid distributions, in a strong and
useful sense.
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2.1.3 Product structure

Now assume that each Ti has a product structure. By this, we mean that
there is a homeomorphism m between Ti and (a subset of) Vi × ∆(T−i).
In this case, the space (Ti, Ti, τ i) is taken as primitive and the maps V̂ :
Ti → Vi and δ̂i are defined by m ◦ pVi and m ◦ p∆i , respectively, where
pVi : Vi × ∆(T−i) → Vi and p∆i : Vi × ∆(T−i) → ∆i are the natural pro-
jection maps. This implies that τ i defines measures γi ≡ τ i ◦ V̂ −1

i and

νi ≡ τ i ◦ δ̂
−1

i on Vi and ∆i, respectively. We slightly abuse terminology by
saying that τ i is absolutely continuous with respect to the product γi × νi
if: for any measurable set E ⊂ Vi ×∆(T−i) such that γi × νi(E) = 0, then
τ i(m

−1(E)) = 0.
This allows us to establish the following:

Lemma 2.3 Assume that Ti has the product structure as described above
and that condition (i) of Lemma 2.1 is satisfied. Moreover, assume that:

(ii)’ τ i is absolutely continuous with respect to the product γi × νi.

Then, >i satisfies (∗).

All these results suggest that (∗) is a reasonable condition in models
with correlated types.

3 Bayesian Games with a Monotonicity Condition

We now describe our general model of games of incomplete information.
Each player i ∈ I chooses actions in a set Ai, which satisfies the following:

Assumption 3.1 For each i, (Ai, ρi) is a compact metric space and 6i is a
partial order on Ai.

Notice that we do not assume that Ai is a lattice. For an example of a
partial order that does not lead to a lattice; see footnote 29. Besides this,
there are other examples of important partial orders used in economics that
do not lead to lattices structures. For instance, Muller and Scarsini (2006)
shows that some standard stochastic orders fail to be lattices.

The fact that we do not work with lattices, however, imposes some limita-
tions. For instance, we cannot use supermodularity or quasi-supermodularity,
because these properties are only defined for lattices. This leads us to make
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a contribution of defining a new monotonicity condition in section 3.1 be-
low. But before introducing it, we need to complete the specification of the
Bayesian game.

Ai is endowed with its Borel σ-algebra Ai. The metric ρi and the binary
relation 6i are related by the following property:

Assumption 3.2 For every i ∈ I and every ai, a′i, ai, ai ∈ Ai, we have:

ai 6i ai, a
′
i 6i ai ⇒ ρi(ai, a

′
i) 6 ρi(ai, ai). (4)

The above assumption is trivially satisfied in euclidean spaces with the
standard coordinatewise partial order. It is also satisfied if Ai is a space
of real-valued functions and 6i is the coordinatewise order, as long as the
distance ρi(ai, a′i) is obtained through the function x 7→ |ai(x)−a′i(x)|, as it
would be the case for the sup or the Lp-metrics. However, it may fail in some
ordered spaces; for instance, it fails if Ai = R2 and 6i is the lexicographic
order.15

The product space A ≡ ×i∈IAi is endowed with the sum metric ρ, that
is, for a = (ai, a−i) and a′ = (a′i, a

′
−i).

ρ(a, a′) ≡
∑
i∈I

ρi(ai, a
′
i).

Given a profile of types t = (t1, ..., tN ) and a profile of actions a =
(a1, ..., aN ) played by each individual, player i receives the payoff ui(t, a).
We assume the following:

Assumption 3.3 For each i ∈ I, the function ui : T × A → R is bounded
and measurable.

Let Fi denote the set of measurable functions from Ti toAi. The strategy
adopted by player i will be a function si ∈ Fi. Let F−i denote ×j 6=iFj . Given
a profile of strategies s = (s1, ..., sN ), player i has (ex ante) utility16

Ui(si, s−i) ≡
∫
ui(t, s(t)) dτ =

∫
ui(t, s(t))f(t) τ(dt), (5)

15Indeed, we could have ai = (1, 0) 6i ai = (1, 1) 6i a
′
i = (1, 2) 6i ai = (1.1, 0) and

ρi(ai, a
′
i) = 1 > 0.1 = ρi(ai, ai).

16In this version, we will restrict our definitions to the case with a common prior; these
definitions can be easily extended to cases without common prior. See for instance, van
Zandt (2010).
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where we assume that t 7→ ui(t, s(t)) is measurable, hence integrable.
As usual, a profile s = (s1, ..., sN ) is a (Bayesian pure strategy) equilib-

rium if Ui(si, s−i) > Ui(s′i, s−i) for all i and s′i ∈ Fi.
It will be useful to introduce the interim payoff. Player i’s interim payoff

when she is of type ti and plays action ai is given by:

Πi(ti, ai, s−i) ≡
∫
T−i

ui(ti, t−i, ai, s−i(t−i)) τ(dt−i|ti) (6)

=

∫
T−i

ui(ti, t−i, ai, s−i(t−i)) f(t−i|ti)
∏
j 6=i

τ j(dtj).

The above setup will be valid throughout the paper, although we special-
ize later to some particular cases. Our main interest is on the distribution
of types, which is characterized by f . Therefore, when the other elements
of the game are clear from the context and the game has a pure strategy
equilibrium, we will sometimes abuse terminology and say that f has an
equilibrium.

Although we will focus primarily on pure strategies, some of our re-
sults consider mixed strategies. For this, we will define mixed (behav-
ioral) strategies.17 A behavioral strategy for player i is a Markov kernel
µi : Ti ×Ai → [0, 1]. Let Si denote the set of behavioral strategies by player
i. Following Balder (1988), we define product µ = µ1 ⊗ ...⊗ µm by:

µ ((t1, ..., tN ), B1 × ...×BN ) ≡
∏
i∈I

µi(ti, Bi)

for rectangles and extend it for measurable sets by standard arguments.
(See details in Balder (1988).) For each distributional strategy σi corre-
sponds a behavioral strategy µi. Therefore, the ex ante utility function can
be given by:

Ui(µ1, ..., µN ) ≡
∫
T

[∫
A
ui(t, a)µ(t, da)

]
τ(dt). (7)

Recall that a behavioral strategy µi is pure if µi(ti, ·) is a Dirac measure
(has just one point in its support) for almost all ti. Player i’s interim payoff
when she is of type ti and plays action ai is given by the function Πi :

17Behavioral and distributional strategies are equivalent. See, for instance, Rustichini
(1993).
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Ti ×Ai × S−i → R defined by:

Πi(ti, ai, µ−i) ≡
∫
T−i

Pi(ti, t−i, ai,µ−i) τ(dt−i|ti)

=

∫
T−i

Pi(ti, t−i, ai,µ−i) f(t−i|ti)
∏
j 6=i

τ i(dtj).

where Pi : T ×Ai × S−i → R is defined by:

Pi(t, ai,µ−i) ≡
∫
A−i

ui(t, ai, a−i)µ−i(t−i, da−i).

Occasionally, we will consider the restriction Πi : T ′i × Ai × S−i → R of Πi

to subsets T ′i ⊂ Ti, which is defined in the standard way.

3.1 A new monotonicity property

We introduce a new monotonicity property, that generalizes supermodular-
ity and increasing differences or quasi-supermodularity and single-crossing.
For this, let us introduce some notation. Let (X,>) and (Y,>) be par-
tially ordered sets. Also, let Z be an index set and consider the function
g : X × Y × Z → R.18

Notice that we did not require the above sets to be lattices.19 Since we
work only with partially ordered sets and not lattices, we cannot even define
supermodularity or quasi-supermodularity. Our monotonicity property is
presented in two forms: increasing differences (ID) and single-crossing (SC).
In the ID form, it is a suitable generalization of the combination of super-
modularity and increasing differences, which does not require the lattice
structure:

Definition 3.1 (ID-Monotonicity Property) g satisfies the ID-monotonicity
property in X × Y if for any x, x′ ∈ X, such that x < x′, and y, y′ ∈ Y such
that ¬(y′ > y),20 there exists y, y ∈ Y satisfying the following:

g(x, y, z)− g(x, y, z) < g(x′, y, z)− g(x′, y′, z),∀z ∈ Z. (8)

18In our applications below, g will be the the ex post or the interim payoff function, X will
be a subset of Ti, Y will be Ai and Z will be S−i for each i.

19 The relevance of this relaxation is discussed after Assumption 3.1.
20As usual, the symbol ¬ means negation.
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It is important to highlight that y and y do not need to be ordered with
respect to y and y′. In contrast, if we assume that Y is a lattice and
supermodularity is valid, these elements would be y = y ∧ y′ and y = y ∨ y′
and would, therefore, satisfy y > y, y′ > y.

Also, note that g satisfies the above assumption if it is supermodular
and has increasing differences, as the following lemma establishes:

Proposition 3.2 Assume that Y is a lattice and that g : X × Y × Z →
R is supermodular in Y and satisfies increasing differences in X × Y or,
alternatively, it is strictly supermodular in Y and satisfies non-decreasing
differences inX×Y . Then g satisfies the ID-monotonicity property inX×Y .21

An interesting characteristic of the ID-monotonicity property is that it is
preserved under integration—see Lemma 8.5 in the appendix for a precise
statement. Therefore, if the ex post utility function satisfies it, the interim
payoff function also does. This is useful because it is in general much easier
to check a condition on the ex post payoff function. If we are willing to make
assumptions directly on the interim function, then the increasing difference
form of the monotonicity property can be relaxed to a single-cross form:

Definition 3.3 (SC-Monotonicity Property) g satisfies the SC-monotonicity
property in X × Y if for any x, x′ ∈ X, such that x < x′, and y, y′ ∈ Y such
that ¬(y′ > y), there exists y, y ∈ Y satisfying the following:

g(x, y, z) > g(x, y, z) =⇒ g(x′, y, z) > g(x′, y′, z),∀z ∈ Z. (9)

It is clear that ID-monotonicity implies SC-monotonicity. Also, Proposi-
tion 3.2 has a version for the SC-monotonicity property:

Proposition 3.4 Assume that Y is a lattice and that g : X × Y × Z → R is
weak quasi-supermodular in Y and satisfies strict single crossing in X × Y
or, alternatively, it is strictly quasi-supermodular in Y and satisfies single
crossing in X × Y . Then g satisfies the SC-monotonicity property in X × Y .

Notice that both ID-monotonicity and SC-monotonicity require strict-
ness in the inequality. Strict conditions have received less attention than
their weak counterpart. As some of the techniques of this paper will show,
small perturbations of standard games will satisfy this strict form.

21See section 8.1.2 in the appendix for definitions of the properties used in Propositions
3.2 and 3.4, and for proofs of both propositions.
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Actually, if we have freedom to choose the order on the type spaces, then
the ID or SC-monotonicity properties are almost trivial. Let us illustrate this
claim for interim payoff functions in a simple game with just two actions
Y = {y, y′}, with y > y′. For this, let us fix the strategies µ−i of the other
players. Then, define that types x and x′ are ordered (x < x′) if and only if:

Π(x, y)−Π(x, y′) < Π(x′, y)−Π(x′, y′). (10)

This makes the ID-monotonicity property trivially satisfied.
Of course the point of the above trick is not to provide a way to de-

fine orders, but to illustrate how the monotonicity property is, in itself, a
weak condition. When the order used is such that (∗) is also valid, the
monotonicity property can provide interesting results, as we will illustrate
below.

4 Basic Results

We now present the results for the general framework described above.

4.1 Monotonic Best Replies, without (∗)

We present two versions of our basic framework, which does not assume
(∗). The first one contains assumptions on the ex post utility function,
which is in general easier to verify. For each δ ∈ ∆i ≡ δ̂i(Ti), define Tiδ ≡
{ti ∈ Ti : δ̂i(ti) = δ}. Let S−i denote the set of profiles of mixed strategies
played by players j 6= i. Given µ−i ∈ S−i and ti ∈ Ti, let BR(ti, µ−i) ⊂ Ai
denote the set of best replies by player i of type ti to the mixed strategies
µ−i.

Theorem 4.1 Let Assumptions 3.1, 3.2 and 3.3 hold. Assume that for each
δ ∈ ∆i, ui : Tiδ × T−i × A → R satisfies the ID-monotoniticy property in
Tiδ ×Ai. Let µ−i ∈ S−i . The following holds:

1. If ti, t′i ∈ Tiδ, ti < t′i, ai ∈ BR(ti, µ−i), a
′
i ∈ BR(t′i, µ−i) then ai 6 a′i.

2. If µi be a better reply strategy to µ−i, then for each δ ∈ ∆i, the set of
player i’s types in Tiδ who possibly play mixed strategies under µi is a
denumerable union of antichains.22,23

22By denumerable we mean either finite or countable.
23An antichain in a partially ordered set (X,6) is a subset of X that contains no two

ordered points.
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Note that the above result imposes no assumption on the type spaces:
they can be completely general (just measurable spaces). This result can
be stated with (slightly more general) assumptions in the interim payoff
function.

Theorem 4.2 Let Assumptions 3.1, 3.2 and 3.3 hold. Assume that for each
δ ∈ ∆i, Πi : Tiδ × Ai × S−i → R satisfies the SC-monotoniticy property in
Tiδ ×Ai. Let µ−i ∈ S−i. Then the two conditions of Theorem 4.1 hold.

Both Theorems 4.1 and 4.2 apply to any type space. For instance, the
set of types can be finite, continuous or even a universal type space without
common priors. Note that (∗) was not assumed in either theorem. We also
remark that, although the first claim above is easier to understand and
appreciate, the second claim is the most useful for the rest of this paper.

It is useful to observe that the beliefs do not play a specific role in
Theorem 4.2, because it is stated on the interim payoff function. That is,
the proof of Theorem 4.2 actually establishes the following:

Theorem 4.2’ Let Assumptions 3.1, 3.2 and 3.3 hold. Let {Tiλ}λ∈Λ be a
partition of Ti and assume that for each λ ∈ Λ, Πi : Tiλ × Ai × S−i → R
satisfies the SC-monotoniticy property in Tiλ×Ai. Let µ−i ∈ S−i. If ti, t′i ∈ Tiλ
for some λ ∈ Λ, ai ∈ BR(ti, µ−i), a

′
i ∈ BR(t′i, µ−i) then ai 6 a′i.

24

The proof of these results can be summarized as follows. First, we
reduce Theorem 4.1 to Theorem 4.2. This step is accomplished in Lemma
8.5, by observing that the ID-monotonicity property in the ex post utility
function is preserved under integration and if the considered types share
the same belief. Therefore, the SC-monotonicity property is satisfied by the
interim payoff function in the partition defined by the beliefs of types.

The proof of Theorem 4.2 can be divided in two parts. The first and
easiest part is to establish the monotonicity of best actions. This comes
from the monotonicity property in a straightforward way, by obtaining a
contradiction if the best reply actions are not ordered—see Lemma 8.7. The
argument for the second claim in the theorem is more involved. First, we
need to establish a mathematical result about chains.25 Namely, if a chain
has at least three elements, then we can divide it in three sets such that
for every pair of points in one of the sets, we can find a third point in the
other two sets which are strictly between these points.26 The proof of this

24We omit the straightforward adaptation of Theorem 4.1’s implication (2) for this setting.
25A chain is a totally ordered subset of a partially ordered set.
26If the chain is finite, we can divide it in just two sets with the mentioned property.
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fact requires Zorn’s Lemma and some non-trivial constructions. This fact is
used in conjunction with Assumptions 3.1 and 3.2 to show that any chain
of types that have two best reply actions at least 1

n apart must be a definitive
finite number. Then, we use a result in the theory of partially ordered sets
(Dilworth’s Theorem, see Lemma 8.10) to argue that this implies that the
number of antichains of types with two best reply actions at least 1

n is finite.
This gives the conclusion stated in (2).

4.2 Pure strategy equilibria with (∗)

Now, we will introduce our main assumption (∗) on the type space and
show that all best replies are in pure strategies.

Theorem 4.3 Let (∗) and the assumptions of Theorem 4.1 or 4.2 hold. Let
µ−i be any mixed strategy played by player i’s opponents and let µi be i’s
best reply to µ−i. Then, µi is pure.

Therefore, under these assumptions, if there is a mixed strategy equilib-
rium, it is a pure strategy equilibrium. Moreover, all equilibria are in pure
strategies.

Theorem 4.3 gives conditions under which all equilibria must be in pure
strategies; more than that, they show that every best-reply, even to mixed
strategies, is pure. This is a stronger conclusion than most results about
equilibrium existence, which consider only best-reply to monotonic strate-
gies.

The two closest results available in the literature are Maskin and Ri-
ley (2000, Proposition 1) and Araujo and de Castro (2009, Theorem 1).
There are two main differences between these results and Theorem 4.3:
first, both papers restrict attention to unidimensional auction games and
second, both assume independence of types. Therefore, even restricted to
unidimensional affiliated types, Theorem 4.3 presents a new result.

In the remainder of the paper, we will show how Theorem 4.3 leads to
new equilibrium existence results in games of incomplete information. But
before discussing these results, we would like to comment on how (∗) and
Theorem 4.3 could be extended to a setting without measure τ i.

4.3 Insignificant sets

The use of a measure τ i on the statement of (∗) may be considered unde-
sirable, given that in principle the type spaces Ti could be considered only
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measurable spaces. In this section, we show that (∗) could be rephrased
without mentioning a measure τ i, using instead a notion of “insignificant
sets.”

Definition 4.4 A collection Ii of subsets of Ti is a collection of insignificant
sets if: (i) Ii ⊂ Ti; (ii) Ii is closed for countable unions. Any set in Ti \ Ii is
called a significant set.

For the discussion below, fix a collection of insignificant sets Ii. (∗) can
be rephrased as follows:

Assumption (̃∗): If E ∈ Ti is a significant set, then there exist
ti, t
′
i ∈ E such that ti <i t′i and δ̂i(ti) = δ̂i(t

′
i).

The proof of Theorem 4.3 allows us to conclude the following:

Proposition 4.5 Let (̃∗) and the assumptions of Theorem 4.1 or 4.2 hold. Let
µ−i be any mixed strategy played by player i’s opponents and let µi be i’s
best reply to µ−i. Then, the set of types ti ∈ Ti which play mixed strategies
according to µi is an insignificant set.

5 PSE existence in Private Value Auctions

In this section, we describe the first application of our theory: a general pure
strategy equilibrium result for correlated types in private value auctions.
We begin by describing the type structure and then describe the model for
the game, that follows very closely that of Jackson and Swinkels (2005),
henceforth JS.

5.1 Multi-unit Private Value Auctions

The description of the model is organized in two subsections: values and
types (5.1.1) and the game itself (5.1.2).

5.1.1 Multidimensional values and belief types

A useful instance of our main framework is now described. Assume that
the set of player i’s types is Ti ⊂ Ei × Ṽi ×∆i, where:27

• Ei ≡ {0, 1, . . . , `} is the set of player i’s possible initial endowments;
27 Recall that Ti is the support of τ i.
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• Ṽi = [vi, vi]
` ⊂ R` denotes the vector of player i’s valuations for objects

in a multi-unit auction;28

• ∆i is the set of i’s beliefs about other players’ types.

A typical type is therefore ti = (ei, vi, δi), where:

• ei ∈ {0, 1, . . . , `} denotes the number of units that player i is endowed
with;

• vi = (vi1, . . . , vi`) is the vector of player i’s valuations, meaning that
i has marginal value vih for the hth object, satisfying nonincreasing
marginal valuations, that is, vih > vi,h+1 for all i, h; and

• δi ∈ ∆i denotes i’s signal about other bidders’ valuations.

The values vi and vi are finite for all i. The objects are indivisible and
identical. The vector of endowments is e = (e0, ..., eN ) ∈ E ≡ {0, 1, ...., `}N+1;
the vector of values is v = (v1, ..., vN ) ∈ Ṽ ≡

∏N
i=1[vi, vi]

`. Let ∆ ≡ ×Ni=0∆i,
so that T = E × Ṽ ×∆ and t = (e, v, δ) ∈ T denotes a profile of types.

Observe that given that δi determines i’s beliefs about other players’
types, then for ti = (ei, vi, δi) and t′i = (e′i, v

′
i, δi), we must have:

Pr [t−i ∈ E|ti] = Pr [t−i ∈ E|δi] = Pr
[
t−i ∈ E|t′i

]
.

We also define an order in Vi = Ei × Ṽi. Actually, we define the order
exclusively on Ṽi = [vi, vi]

` as follows. First, define vi <i v′i by:

vi <i v
′
i ⇐⇒ vih < v′ih,∀h = 1, ..., `. (11)

Then, define vi 6i v′i iff vi <i v′i or vi = v′i. Notice that this is a partial order,
but it does not generate a lattice.29 On the other hand, it is not difficult to
see that this order satisfies condition (i) of Lemma 2.1.

This order on Ṽi defines an order on Ti by (1). More concretely, for
ti = (ei, vi, δi) and t′i = (e′i, v

′
i, δ
′
i), we define

ti <i t
′
i ⇐⇒ vi < v′i and δi = δ′i, (12)

28 Observe that Vi ≡ Ei × Ṽi corresponds to the “preference” part of the type.
29 A partial order set (X,6) generates (or is) a lattice if for any x, y ∈ X there is lowest

upper bound x ∨ y and a greatest lower bound x ∧ y for any pair {x, y}. To see that the
order above is not a lattice, it is enough to consider ` = 2. Consider the points x = (1, 0)
and y = (0, 1). Then x, y 6 zε ≡ (1 + ε, 1 + ε) for any ε > 0 but ¬(x 6 z0) and ¬(y 6 z0).
Therefore, there is no lowest upper bound for {x, y}.
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and ti 6i t′i iff ti <i t′i or ti = t′i. Note that (12) is a variation of definition (1)
given in section 2.1.

Although we will use this order below, we should emphasize that this
is not the only case where our techniques apply. Actually, any order that
is stronger than (12) could be automatically used. For instance, in games
with risk aversion, one could consider the order defined by Reny (2011).

Additionally, we assume either condition (ii) of Lemma 2.1 or condition
(ii)’ of Lemma 2.3, that is, that τ i is absolutely continuous with respect to the
product γi × νi, where γi be the marginal of τ i over Ṽi and νi, the marginal
over ∆i. As discussed in section 2.1, these conditions are sufficient for
implying (∗). (∗) is essentially the only extra assumption that we require
with respect to JS.30

The assumptions and description above are maintained for our results
in this section, even without explicit reference.

5.1.2 Game description

We will now describe the general private value auction model introduced by
JS. It will be useful to explicitly consider the non-strategy player 0. Each
bidder places a bid bi ∈ Ai ⊆ [b, b]`. The order on the action space is the
standard coordinate-wise order on R`. Let A = A0 × ... × AN . The set of
allocations is Ω ≡ {0, 1, ...., `}N+1. Given types t ∈ T ⊂ E × Ṽ × ∆, bids
b ∈ A and allocation ω = (h0, ..., hN ) ∈ Ω, player i’s ex post utility is:31,32

ui(t, b, ω) ≡
hi∑
j=0

vij − pi(hi, e, b), (13)

where pi : {0, ...., `}×Ω×A→ R is player i’s payment function, which can
depend not only on how many objects she gets, but also on everybody’s bids
and endowments. We will introduce restrictions on the payment functions
pi below.

30We do require an extra technical assumption—see assumption 5.1 below. However, this
is done more for simplicity.

31Define vi0 = 0 for all i.
32 For simplicity, we do not consider risk aversion, although our techniques could be

extend to this setting as well.
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The outcome correspondence O : Ω×A→ Ω is defined by:

O(e, b) ≡ {m ∈ Ω :

N∑
i=0

mi =

N∑
i=0

ei, and(
bjh′ > bih and mi > h

)
=⇒ mj > h

′}. (14)

The first condition above is just the requirement that objects are not created
nor destroyed. The second condition amounts to requiring that higher bids
are given priority over lower bids in allocating objects. A tie-breaking rule is
just a selection of this correspondence.33 More formally, a tie-breaking rule
will be denoted by a profile of functions h∗ = (h∗i )

N
i=0 such that h∗(e, b) ∈

O(e, b). Note that the only points were there are some freedom for the value
of h∗ (O(e, b) is not a singleton) occur when there is some “relevant tie,”
that is, a tie that occurs exactly at the number of units

∑N
i=0 ei available

for negotiation.
When there is a tie, (14) still determines maximum and minimum values

for the number of units h∗i (e, b) that player i can receive. We will denote
these values by hi(e, b) and hi(e, b). For simplicity of notation, we will
constantly omit e in the argument of the functions h∗i , hi and hi below. No
confusion should arise.

We assume the following for the payment rule:

Assumption 5.1 The payment function is given by:

pi(h, e, bi, b−i) =
h∑
j=1

pij(h, bij) + qi(h, b−i) + ri(h, p) + ri(h, p), (15)

where p denotes the highest losing bid and p denotes the lowest winning bid,
if there is no competitive tie; if there is a competitive tie at β, p = p = β.
Moreover, all these functions are nondecreasing.

The first term in the sum above corresponds to “pay-your-bid” elements
and will not be zero in discriminatory auctions. The second term, qi(h, b−i)
depends exclusively (and arbitrarily) on the bids of other players. This
allows us to cover Vickrey auctions, for instance. The other two terms,
ri(h, p) and ri(h, p), allow to capture the two distinct formats of uniform

33The formal definition given by JS is not exactly this, as they allow for randomizations on
the allocations. They also allow for “omniscient” tie-breaking rules, that is, rules that may
vary depending on the values. However, they prove that the actual tie-breaking rule is not
important in their setting. Therefore, this formulation is enough for our purposes.
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price auctions: the ones where the clearing price is the highest losing bid
p or the lowest winning bid p. Note that these values are not determined
exclusively by b−i and, therefore, cannot be captured only on qi(h, b−i).
Note also that all terms can vary with the total number of allocated objects
h. Therefore, variations and combinations of the payment rules of standard
auctions are allowed.

5.2 Pure Strategy Equilibrium Existence

Consider the framework described in subsections 5.1.1 and 5.1.2, which
is essentially the same as JS’, with their assumptions 1-9. We have the
following:

Theorem 5.1 Let assumptions (∗) and 5.1 hold, together with JS’ assump-
tion 10.34 Then, there exists a monotonic pure strategy equilibrium in undom-
inated∗ strategies with a zero probability of competitive ties, which is an equi-
librium under any omniscient and effectively trade-maximizing tie-breaking
rule, including the standard tie-breaking rule.

Note that the main difference from Theorem 5.1 above and JS’ Corollary
14 is that they assume that the distribution of types is independent.

The proof of Theorem 5.1 goes as follows. We first establish that the
auction is modular, using Proposition 5.4 and Assumption 5.1.

The first difficulty in proving Theorem 5.1 comes from the fact that auc-
tions do not satisfy in general increasing differences in Ti×Ai, although they
satisfy nondecreasing differences. Therefore, our ID or SC-monotonicity
properties may fail to hold. To circumvent this problem, we consider mod-
ified auctions (n-auctions), which are auctions where with a probability 1

n ,
a non-strategic player bids uniformly on [b, b]. Actually, the n-modified
auction includes also a modification of the tie-breaking rule. Since the dis-
cussion about the tie-breaking requires modification requires many more
details, we discuss this issue in section 5.3 below.

We show that our ID-monotonicity property holds in each of the n-
modified auctions. This allows us to conclude that each n-auction has an
equilibrium in pure strategies which are monotonic when restricted to the
set of types sharing the same beliefs.

When n → ∞, there is a pointwise convergent subsequence of strate-
gies because the set of strategies is compact. Pointwise convergence leads

34 JS’ assumption 10 specifies a technical measurability condition to ensure the existence
of equilibrium in undominated∗ strategies. For a definition of this class of strategies and an
explicity statement and discussion of JS’ assumption 10, we refer the reader to that paper.
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(through Lebesgue theorem) to convergence of the (interim) payoffs, both
for strategies in the optimum, as deviating strategies. In fact, the argu-
ment needs to be more careful here, because of the possibility of ties with
positive probability. For this, we need to define a special tie-breaking rule
that guarantees convergence of the payoffs. After this, we are able to argue
that the tie-breaking rule does not matter. Finally, we show that if there
is a deviating strategy that does better, it would also do better along the
sequence, which is a contradiction. The appendix details this argument.

Remark 5.2 . Theorem 5.1 states the existence of a monotonic pure strategy
equilibria. This is possible because of the order (12) considered. If we use
instead (1), then the equilibrium could fail to be monotonic. This is just to
highlight that there is a subtlety when we talk about “monotonicity” in multi-
dimensional spaces. Since we may have more than one “reasonable” order in
some spaces, we may have different notions of monotonicity.35 For instance,
Reny (2011) proposes a different order for cases with risk aversion and argues
that it is a natural order. When we do have a clear unique candidate for the
types’ order (for instance, in unidimensional settings), then the monotonicity
question is important. For this reason, section 6 address the existence of
monotonic equilibrium in first price auctions.

Remark 5.3 Theorem 5.1 is stated only for private values auctions, as in
the JS setting. However, the existence of pure strategy equilibrium can be
extended to interdependent values if we are willing to allow special kinds
of tie-breaking rules, as Araujo and de Castro (2009) did. In other words,
Theorem 5.1 is stated only to private values to prevent us from dealing with
special tie-breaking rules.

5.3 Tie-breaking rule for the modified auction

To establish our ID-monotonicity property, we will need an assumption on
the tie-breaking rule. This assumption generalizes a rule that was intro-
ducec by McAdams (2003) and used by him and by Reny (2011) to estab-
lish equilibrium existence for the uniform price auction. McAdams (2003,
p.1198) describes his rule as follows:36

Each bidder is assigned at least hi(b) and randomly ordered into
a ranking ρ to ration the remaining quantity r ≡ K−

∑N
i=1 hi(b).

35Actually, if we have complete freedom in defining the types’ order, any pure strategy
equilibrium a = (ai, a−i) can be monotonic: just define ti 6 t′i if and only if ai(ti) 6 ai(t′i).

36We adapted his notation to ours.
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If r = 0, stop. Else the first bidder in order, i1 = ρ(1), receives
q∗i1 = hi(b) + min{hi(b)− hi(b), r}. Decrement r by hi(b)− hi(b)
and repeat this process with bidder i2 = ρ(2) and so on until all
quantity has been assigned.

It is not difficult to see that this rule satisfies the following:

Assumption 5.2 Let b̃i, b̂i ∈ Ai and fix b−i ∈ A−i and h ∈ {1, ..., `}. The
following holds:

1. If b̃i 6i b̂i then h∗i (b̃i, b−i) 6 h
∗
i (b̂i, b−i);

2. If h∗i (b̃i, b−i) > h− 1, h∗i (b̂i, b−i) > h− 1 and b̃ih = b̂ih = sih, then:

h∗i (b̃i, b−i) > h ⇐⇒ h∗i (b̂i, b−i) > h. (16)

The first requirement in Assumption 5.2 is just a mild monotonicity
condition: no bidder can receive more units by bidding less. Most tie-
breaking rules satisfy this condition. The second condition is a little bit
more restrictive. It requires that a bidder wins unit h-th irrespective of
what are his bids for the (h+ 1)-th unit and above, and also it depends on
her bids for units below h only through the fact of winning or not winning
those units. It is easy to see that McAdams’ rule satisfies Assumption 5.2
. Another rule that satisfies Assumption 5.2 is the following. Let bidders
be ordered in some arbitrary fashion. If there is a tie, give one object to
the first bidder in the tie, according to this order; then give the second unit
to the second one in the order, and so on. If all bidders in the tie receive
one object, but there are still unassigned objects, repeat the process, until
no object is left unassigned. Since the allocation of the h-th unit does not
depend on the bids after the h-th, it is easy to see that this rule also satisfies
Assumption 5.2 . On the other hand, consider the following rule: in the case
of a tie, divide the number of objects in the tie by the tying bidders and give
to each of those bidders the integer part of this division.37 The remaining
objects are randomly allocated. This rule does not satisfy Assumption 5.2
and also fails to have the property described in the following:38

37This is similar to the pro-rata on the margin rule that is used in some real auctions.
38 For an example of the failure of Proposition 5.4, assume that we have two bidders, four

units, bidder 2 bids 2 for all units and b1i = (4, 3, 1, 1), b2i = (2, 2, 2, 2). Then, b1i ∧ b2i =
(2, 2, 1, 1), b1i ∨ b2i = (4, 3, 2, 2), h∗i (b1i , b−i) = h∗i (b

2
i , b−i) = 2, but h∗i (b1i ∧ b2i , b−i) = 1 and

h∗i (b
1
i ∨ b2i , b−i) = 3.
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Proposition 5.4 Let Assumption 5.2 hold. Let b1i , b
2
i ∈ Ai and assume

(w.l.o.g.) that h∗i (b
1
i , b−i) 6 h

∗
i (b

2
i , b−i). Then,39

h∗i (b
1
i , b−i) = h∗i (b

1∧2
i , b−i) and h∗i (b

2
i , b−i) = h∗i (b

1∨2
i , b−i).

Proposition 5.4’s proof is simpler and more direct than McAdams’ argu-
ment.

As a step in the proof of Theorem 5.1, we show in the appendix (see
Lemma 8.11 and Corollary 8.13) that Assumption 5.2 and (15) lead to the
following property for any i, b1i , b

2
i and b−i:

pi(h, e, b
1
i , b−i)−pi(h, e, b1∧2

i , b−i) = pi(h, e, b
1∨2
i , b−i)−pi(h, e, b2i , b−i). (17)

It should be noted that this result is more complex than in McAdams
(2003) and Reny (2011), because they focused exclusively on the uniform
price auction, with its simpler payment rule.

6 Existence of SMPSE

Given the result presented in the last section (Theorem 5.1), it is natural to
ask whether (and when) it is possible to establish existence of equilibrium
in monotonic pure strategies. In this section we give a complete answer
to this question in a more particular setting, that of very simple or grid
distributions, defined in section 2.1.2.

To consider the relevant issues, first recall the standard result of auc-
tion theory on SMPSE in private value auctions: if there is a differentiable
symmetric increasing equilibrium, it satisfies the differential equation (see
Krishna 2002 or Menezes and Monteiro 2005):

b
′
(v) =

v − b (v)

F (v|v)
f (v|v) .

If f is Lipschitz continuous, one can show that this equation has a
unique solution. Under some assumptions (affiliation or, a little bit more
generally, Property VI’ in de Castro (2011)), it is possible to ensure that this
solution is, in fact, equilibrium. Now, if the distribution is very simple (
f ∈ D∞), the right hand side of the above equation is not continuous, and
one cannot directly apply standard techniques. We proceed as follows.

First, we show that if there is a symmetric increasing equilibrium b,
under mild conditions (satisfied by f ∈ D∞), b is continuous. We also

39 Hereafter, b1∧2i denotes b1i ∧ b2i and b1∨2i denotes b1i ∨ b2i .
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prove that b is differentiable at the points where f is continuous. Thus,
for f ∈ D∞, b is continuous everywhere and differentiable everywhere but,
possibly, at the points of the form m

k . See Figure 4.
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k

2
k

... k−1
k

1

b
(

1
k

)b
(

2
k

)
b (1)

...

Figure 4: Bidding function for
f ∈ Dk.

With the initial condition b (0) = 0 and the above differential equation
being valid for the first interval

(
0, 1

k

)
, we have uniqueness of the solution

on this interval and, thus, a unique value of b
(

1
k

)
. Since b is continuous,

this value is the initial condition for the interval
(

1
k ,

2
k

)
, where we again

obtain a unique solution and the uniqueness of the value b
(

2
k

)
. Proceeding

in this way, we find that there is a unique b which can be a symmetric
increasing equilibrium for an auction with f ∈ D∞.

To formalize this result, assume that we have a first price auction with
n symmetric players, such that if player i with signal vi ∈ Vi = [v, v] wins
the object with the bid bi, her utility will be u(vi− bi). Types are distributed
according to the density function f : [v, v]N → R+. We have the following:

Theorem 6.1 Assume that u is twice continuously differentiable, u′ > 0,
f ∈ Dk, f is symmetric and positive (f > 0).40 If b : [v, v]→ R is a symmetric
monotonic pure strategy equilibrium (SMPSE), then b is continuous in (0, 1)
and is differentiable almost everywhere in (0, 1).41 Moreover, b is the unique
symmetric increasing equilibrium. If u (x) = x1−c, for c ∈ [0, 1), b is given by

b (x) = x−
∫ x

0
exp

[
− 1

1− c

∫ x

α

f (s | s)
F (s | s)

ds

]
dα. (18)

Proof. See the supplement to this paper.

40In fact, it is not necessary that f has full support. See the supplement of the paper for
details.

41b may be non-differentiable only in the points m
k

, for m = 0, 1, ..., k.
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Having established the uniqueness of the candidate for equilibrium, our
task is reduced to verifying whether this candidate is, indeed, an equilib-
rium. We begin with the two bidders case and then, generalize it to the n
bidders case. Although it is possible to extend our results for risk averse
bidders, specially if u (x) = x1−c for c > 0, we focus below on the case of
risk neutrality u(x) = x.

6.1 Two risk neutral players case

Theorem 6.1 establishes the uniqueness of the candidate for symmetric in-
creasing equilibrium for f ∈ D∞ = ∪∞k=1Dk. We have now only to check if
the unique candidate is indeed equilibrium. In economics, this is usually
done by checking the second order condition. In auction theory, it is more
common to appeal to monotonicity arguments based on a single crossing
condition (see, among others, Milgrom and Weber (1982) and Athey (2001)).
These methods give sufficient conditions for equilibrium, but these condi-
tions are, in general, not necessary. Sufficient and necessary conditions
would not only provide grounds to understand what really entails equilib-
rium existence, but also to work with the more general possible setup that
yields equilibrium existence. Thus, we take here another approach, which
gives necessary and sufficient conditions for equilibrium existence. This is
done by checking directly the equilibrium conditions, as we explain next.

Let b (·), given by (18) with c = 0, denote the candidate for equilibrium.
Let Π (y, b (x)) = (y − b (x))F (x|y) be the interim payoff of a player with
type y who bids as type x, when the opponent follows b (·). Let ∆ (x, z)
represent the expected interim payoff of a player of type x who bids as a
type z, that is, ∆ (x, z) ≡ Π (x, b (z)) − Π (x, b (x)). It is easy to see that
b (·) is equilibrium if and only if ∆ (x, y) ≤ 0 for all x and z ∈ [0, 1]2. In
other words, the equilibrium condition requires checking an inequality for
an infinite pair of points. Of course, it is not possible to check an inequality
at an infinite number of points.

If ∆ (x, z) is continuous, then an approximation algorithm could check
the inequality only at some points and, with some confidence, ensure equi-
librium existence. Of course, this method would not be exact in the sense
that approximation errors are inherent to the algorithm. However, for n = 2
players, the next theorem shows that when f ∈ Dk there is an exact algo-
rithm, that does not introduce errors, and it is fast because it requires only
a small number of comparisons.
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Theorem 6.2 Consider Symmetric Risk Neutral Private Value Auction with
two players with f ∈ D∞ = ∪k≥1Dk. There exist an algorithm that decides in
finite time if there is or not a symmetric monotonic pure strategy equilibrium
for this auction. For f ∈ Dk, the algorithm requires less than 3

(
k2 + k

)
comparisons. The algorithm is exact, in the sense that errors can occur only
in elementary operations.42

Proof. See the supplement to this paper.

We should emphasize that Theorem 6.2 gives necessary and sufficient
conditions for SMPSE existence. This is what we mean by “decides” above.
Unfortunately, these necessary and sufficient conditions are long. Theorem
9.5 below contains an explicit statement of those conditions.

The use of the term “algorithm” above should not be confused with a
complex procedure for deciding equilibria. On the contrary, the theorem
reduces the verification of equilibrium to a set of simple conditions that
can be explicitly given. Thus, we can state Theorem 6.2 just through this
reduction and even avoid the use of the word “algorithm.” This is exactly
what Theorem 9.5 does.

Remark 6.3 It is useful to compare this result with the best algorithms
for solving simpler games as bimatrix games (see Savani and Von Stengel
(2006)). While best known algorithms for bimatrix games require operations
that grow exponentially with the size of the matrix, the number of our com-
parisons increases with k2. We do not state that the algorithm runs in poly-
nomial time because our problem is in continuous variables, not in discrete
ones. “Polynomial time” would be slightly vague here, since errors of ap-
proximations are possible. Nevertheless, as stated, the possible errors are
elementary and require a small number of operations. This allows one to
realize the important benefits of working with continuous variables but den-
sity functions in Dk, as we propose. The characterization of the strategies
obtained through differential equations allows one to drastically reduce the
computational effort, by reducing the equilibrium candidates to one. The fact
that we work on Dk allows us to precisely characterize a small number of
points to be tested for the equilibrium condition. The speed of the method al-
lows auction theorists to run simulations for a big number of trials and get a
good figure of what happens in general. From this, conjectures for theoretical
results can also be derived.

42By elementary operations we mean sums, multiplications, divisions, comparisons and
square roots.
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The proof of this theorem is long and complex, because ∆ (x, y) is not
monotonic in the squares

(
m−1
k , mk

]
×
(
p−1
k , pk

]
. Indeed, the main part

of the proof is the analysis of the non-monotonic function ∆ (x, y) in the
sets

(
m−1
k , mk

]
×
(
p−1
k , pk

]
and the determination of its maxima for each of

these sets. It turns out that we need to check a different number of points
(between 1 and 5) for some of these squares. Section 9.3 in the appendix
outlines the proof. The complete proof is given in a supplement to this
paper.

6.2 Equilibrium results for n players

The ideas in the proof of Theorem 6.2 generalize from 2 to n players with
minor complications. Thus, one can use grid distributions (those in D∞) to
study auctions in a more general setup.

As before, the equilibrium candidate is unique and we have an ex-
pression for it. Thus, SMPSE will be established if and only if ∆ (x, z) =
Π (x, b (z)) − Π (x, b (x)) is non-positive. We can test the signal of ∆ (x, z)

for (x, z) ∈
(
m−1
k , mk

]
×
(
p−1
k , pk

]
, for m, p ∈ {1, ..., k}. This is simplified to

check non-positiveness of a polynomial over [0, 1]2. The only difference from
the n = 2 case is that in this last case the polynomial is of degree 3 and we
can analytically solve it. For n > 2, the polynomial (in the two variables,
x and z) has a degree of at least n + 1 and we have to rely on numerical
methods for finding minimal points. The following establishes the existence
of an algorithm that solves for this, that only makes errors in numerical
approximations:

Theorem 6.4 Consider symmetric risk neutral private value auction with
n players with f ∈ D∞. There exists an algorithm that decides in finite
time if there is or not a symmetric monotonic pure strategy equilibrium for
this auction. Errors are commited in finding roots of polynomials and in
elementary operations.
Proof. See the supplement to this paper.

Note that we did not make statements about the speed of the method.
This is just because this speed depends on the numerical method used to
find roots of polynomials. We were unable to find good characterizations of
the running time of solutions to this problem.

Grid distributions are also useful to study asymmetric auctions. How-
ever, since an explicit expression for b(·) is not available in this case, the
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above described method needs some adaptation, but the main idea remains
the same. Instead of working with explicit solutions that allow us to speed
up the algorithm, we can just work with numerical simulations. The differ-
ence is that the errors can happen now not only in the roots of polynomials,
as in the case above, but also in numerical integrations and the determi-
nation of functions of two variables. This difference impacts the speed and
accuracy of the method (it is not possible to state a “if and only if” result any-
more). However, as long as these numerical problems are well understood,
the method does not present particular difficulties.

6.3 The Revenue Ranking of Auctions

As a further illustration of our approach, we show how grid distributions
can be used to address the problem of revenue ranking of the first price
and second price auctions. Let us denote by Rf2 the expected revenue (with
respect to f ∈ Dk) of the second price auction.43 Similarly, Rf1 denotes the
expected revenue (with respect to f ∈ Dk) of the first price auction. When
there is no need to emphasize the pdf f ∈ Dk, we write R1 and R2 instead
of Rf1 and Rf2 . Below, µ refers to the natural measure defined over D∞ =
∪∞k=1Dk, as further explained in the supplement to this paper.

The following theorem gives the expression of the expected revenue dif-
ference ∆f

R ≡ R
f
2 −R

f
1 between the second and the first price auctions and

it is not restricted to densities in f ∈ D∞.

Theorem 6.5 Assume that f has a SMPSE in the first price auction. The
revenue difference between the second and the first price auction is given by∫ 1

0

∫ x

0
b
′
(y)

[
F (y|y)

f (y|y)
− F (y|x)

f (y|x)

]
f (y|x) dy · f (x) dx

where b (·) is the first price equilibrium bidding function, or by∫ 1

0

∫ x

0

[∫ y

0
L (α|y) dα

]
·
[
1− F (y|x)

f (y|x)
· f (y|y)

F (y|y)

]
· f (y|x) dy · f (x) dx, (19)

where L (α|t) = exp
[
−
∫ t
α
f(s|s)
F (s|s)ds

]
.

Proof. See the appendix.

43Remember that, since we are working with private values, second price auctions are
equivalent to English auctions.
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In order to make a relative comparison, we define r ≡ Rf
2−R

f
1

Rf
2

, for each

f . Generating a uniform sample of f ∈ Dk, we can obtain the probabilistic
distribution of ∆f

R or of r. The procedure to generate f ∈ Dk uniformly
is described in the supplement to this paper. The results are shown in
subsection 6.4 below.

Moreover, we can also obtain theoretical results about what happens for
Dk for a large k and even for D∞ = ∪∞k=1Dk. Nevertheless, for the last case,
one has to be careful with the meaning of the “uniform” distribution. In the
supplement to this paper we show that a natural measure can be defined
for D∞, which is analogous to Lebesgue measure, although it cannot have
all the properties of the finite dimensional Lebesgue measure.

In this fashion, we are able to obtain previsions based on simulations
and also theoretical results. One possible objection to this approach is
that it considers too equally the pdf’s in the sets Dk. But this is just
because we are not assuming any specific information about the context
where the auction runs—in some sense, this is a “context-free”approach. If
one has information on the environment where the auction runs, so that
one can restrict the set of suitable pdf’s, then the uniform measure should
be substituted by the empirical measure obtained from this environment.
Obviously, the method can be easily adapted to this, once one has such
“empirical measure” of the possible distributions.

Now, we present the results that one can obtain using this approach.

6.4 Numerical results

The method developed in this paper allows us to compare the revenue rank-
ing of first and second price auction with general dependence. In the figure

below, we show the histograms of r ≡ Rf
2−R

f
1

Rf
2

where f ∈ Dk is drawn from a

uniform distribution among the distributions inDk, for k = 3, ..., 10. By this
we mean that each f ∈ Dk is equally likely to be drawn in our simulation.
The results remain qualitatively the same if, instead of the uniform distri-
bution in Dk, we choose some normal distribution in Dk with peak centered
around the independent and symmetric f ∈ Dk (i.e., f(x, y) ≡ 1, ∀(x, y)).44

In the figure, two curves are shown in the graph of each k: one corresponds
44We use the euclidean metric for defining a distance between densities in Dk. Then,

we use this distance from the f ≡ 1 as the parameter of a unidimensional normal with
zero average and some positive variance. We tested many variances and the results do not
change much. When the variance is big, the numbers become very similar to the previous
case, where all distributions in Dk are equally likely.
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to the histogram for all f such that there is a SMPSE in the first price auc-
tion; the other curve corresponds to all f such that there is a SMPSE in the
first price auction and the correlation implied by f is non-negative. As the
reader can see, this restriction does not change significantly the results,
that is, the difference between the two histograms is small. Although we do
not include the graphics here, the results are also stable for n > 2.

6.5 Approximation

Although this is not our preferred view of our approach, one could see it as
an approximation, especially in the context of grid distributions.

Theorem 6.6 The set of grid distributions is dense in ∆(V ), endowed with
its natural (weak?) topology. Also, the set D∞ of grid densities is dense in:

(i) D, the set of densities f : T → R+, endowed with the pointwise topology.

(ii) Lp, the set D endowed with the Lp-norm (w.r.t. Lebesgue measure).

(iii) C, the set of continuous densities, endowed with the sup-norm.45

Theorem 6.6 shows that by restricting the set of distributions on types
that we consider to grid distributions, we do not lose much: we can ap-
proximate any measure as well as we want. An immediate corollary of this
result is that an econometrician cannot reject grid distributions with any
amount of finite data.

The transformation Tk is stable for some conditions like affiliation.46

Indeed, let A ⊂ D denote the set of affiliated density functions; we have the
following:

Proposition 6.7 Assume that f is continuous. Then f is affiliated if and only
if for all k, Tk (f) also is. In mathematical notation: f ∈ A ⇔ Tk (f) ∈ A,

∀k ∈ N or yet, A = ∩k∈N
(
Tk
)−1 (A ∩Dk).

More importantly, the approximation given by Tk preserves pure strat-
egy equilibria for all continuous Bayesian games.47

45This is a slight abuse of terminology, since that D∞ is not contained in C. What we
show is that for each f ∈ C and ε > 0, there exists k ∈ N and fk ∈ Dk such that
‖f − fk‖ ≡ supt |f(t)− fk(t)| < ε.

46We say that f ∈ D is affiliated if for all x, y ∈ T , f(x)f(y) 6 f(x ∧ y)f(x ∨ y).
47 Whenever discontinuities occur in zero probability sets, as in the private value auctions

covered by Theorem 5.1, the conclusion of Propositions 6.8 and 6.9 still hold.
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Figure 1: Histogram of Revenue Differences

36



Proposition 6.8 Assume that f and the ex post utility ui : T × A → R
are continuous, ∀i ∈ I. Assume that there is a sequence {kn} such that
Tkn (f) has an equilibrium skn = (skn1 , ..., sknN ) for all n and the sequence
{skn} converges pointwise to s ∈ F . Then, s is a pure strategy equilibrium
under f .

Although a complete converse of the above result is not possible, be-
cause the equilibrium inequality can be approximated by above, the follow-
ing provides a partial converse.

Proposition 6.9 Let f ∈ D have an equilibrium s ∈ F and assume that ui
is continuous for every i. Then for each ε > 0, there exists kε ∈ N such that
s is a ε-equilibrium for Tk(f), for all k > kε.

The above result is satisfactory for numerical applications, because nu-
merical calculation will involve errors anyway. Thus, in this case the above
restriction is innocuous.

7 Discussion

This section discusses the relation of our work to existing literature. We
begin by discussing Neemans’s “beliefs do not determine preferences” in
section 7.1. Section 7.2 comments on the differences and similarities with
Athey-McAdams-Reny’s approach to establishing equilibrium existence in
Bayesian games. Other papers are discussed in section 7.3.

7.1 Beliefs do not determine preferences

Neeman (2004) and Heifetz and Neeman (2006) study the circumstances
under which a seller can extract full surplus from informed buyers with
correlated types, as demonstrated by Crémer and McLean (1985).

They show that full extraction of surplus requires that “beliefs deter-
mine preferences.” That is, it requires a setting where almost all types
have different beliefs; if types share beliefs, full extraction is not possible.
This suggests that models where beliefs do not determine preferences (non-
BDP) are more realistic and desirable from a mechanism design point of
view. This paper argues essentially the same, but from the point of view of
applications to general Bayesian games.

It should be noted that our (∗) is stronger than their non-BDP in two
aspects. First, while it is enough for them that a positive mass of types

37



share beliefs, we require that every set with a positive mass contains types
sharing beliefs. Second, (∗) requires that types are strictly ordered, while
they do not need any order on types. Despite these technical differences,
which are necessary to establish our results, we view the general message of
both works as very similar: we should give more attention to models where
beliefs do not determine preferences.

The economic intuition for why this is reasonable was given by Neeman
(2004, p. 67-8) in the following terms:

Issues of generality notwithstanding, preferences and beliefs
have traditionally been considered to be independent of one
another in both economic and decision theory. This tradition
presumably reflects the idea that the processes that generate
utilities and beliefs are cognitively distinct and causally “inde-
pendent,” or at least should be treated as such.

There is a natural way of interpreting that preferences and beliefs are
“independent,” as Neeman puts it: that types are formed as in a product
structure of preferences and beliefs. In this interpretation, one should
require that the measure on types is absolutely continuous with respect to
the product of the marginals over preferences and types. As established by
Lemma 2.3, this implies our (∗). Therefore, (∗) also captures their intuition.

7.2 Relation to Athey-McAdams-Reny’s approach

Athey (2001), McAdams (2003), Reny and Zamir (2004) and Reny (2011)
consider the best reply of each player to monotonic strategies played by
the opponents. Since they are interested in proving only the existence of
monotonic equilibria, this is enough and convenient. They work with differ-
ent (increasingly weaker) assumptions on interim payoff functions when the
opponents play monotonic strategies and use different forms of single cross-
ing conditions to obtain their equilibrium results. Their conditions are then
checked on specific games, leading to pure strategy equilibrium results for
those games. Assumptions on distributions are in general not necessary at
the interim level, so they appear only at the examples given. An exception
is Reny and Zamir (2004), who mainly consider first price interdependent
values auctions with n bidders and affiliated types, while Athey (2001) had
considered the case of n = 2 bidders. With respect to multi-unit auctions,
all of these papers contain results assuming that types are independent.

Since their general model is on the interim stage and no correlation as-
sumption is needed at this level, these authors seem to aim results that do
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not require independence. Therefore, it is very understandable that they
did not consider properties that seem to crucially depend on independence.
Namely, they did not explore the property that if types are independent,
then a best reply to any strategy—not only to monotonic ones—needs to be
monotonic (under standard monotonicity assumptions on the utility func-
tions). This property was first observed for first price auction by Maskin and
Riley (2000) and later generalized by Araujo and de Castro (2009). Theorem
4.1, which generalizes this result, seems to be the first of its kind for general
action spaces.48 Note that the property leads to a much stronger kind of
result: every equilibrium, if it exists, is in pure strategies. It seems that the
fact that these authors, not being interested primarily on independence, did
not consider such kind of implication.

What is perhaps more surprising is that a general approach to depen-
dence can be worked out from independence ideas. The key is to look at
beliefs, as (∗) clarifies. However, even if the strategies are not overall mono-
tonic,49 comparative statics results are possible, in the same fashion as the
case of monotonic strategies.50

This still opens the question of when an actually monotonic equilibrium
exists. Note that this question is not very important for the previous au-
thors, because they were interested in providing sufficient conditions for
the existence of a monotonic strategy. With the results of this paper, we
know that a pure strategy equilibria always exists; the question now is
whether there are only non-monotonic strategies equilibria or maybe there
is a monotonic strategy equilibria. In a particular setting, we are able to
provide a complete characterization of the existence of monotonic equilib-
ria. Since this setting is now a special case of the standard approach of
unidimensional types, it allows us to answer a question that has not been
tackled before by the literature.

7.3 Related literature and conclusion

In this paper we advocated for the use a special class of distributions that
allows general dependence and asymmetry in general games with incom-

48The generalization for infinite-dimensional action spaces is not trivial. Among other
things, it requires some form of restriction on the metric space considered, as Assumption
3.2. Also, our argument is quite different from previous results.

49Note that the pure strategy equilibria shown to exist for private values auctions can be
considered monotonic in the order defined. See Remark 5.2.

50Space limitations refrain us from detailing further comments on this, but the reason for
why comparative statics is as easy (or difficult) as before, is that we also work with orders
and obtain (constrained) monotonic equilibria.

39



plete information. This class of distribution is more general than normally
considered ones, but can be treated both with theoretical and numerical
methods. We illustrated the potential applications with theoretical results
and computer experiments (simulations). It is shown that a fast algorithm
exists for determining symmetric pure strategy equilibrium existence in
auctions with n players. We also proved the existence of pure strategy
equilibrium in Bayesian games with a new monotonicity condition.

The grid distributions discussed here appeared first in de Castro (2008)
and were used by de Castro and Paarsch (2010) to test for affiliation.

Fang and Morris (2006) study the revenue ranking of first and second
price auctions in a model with finite correlated types, who share some be-
liefs. They obtain equilibrium in mixed strategies because they work with
finite types, but one of the characterizations of the equilibrium (monotonic-
ity of best replies) could be obtained using our Theorem 4.1. Notice that
they also write the types as consisting of two parts: the preference part vi
and the belief part δi (in our notation).

Although we focused mainly (but not exclusively) on equilibrium exis-
tence results, so that most of our results are deeply related to equilibrium
existence papers like Athey (2001), McAdams (2003), Jackson and Swinkels
(2005) and Reny (2011), our main contribution is to offer a new framework
for working with correlation of types. This contribution can also be explored
in applied works.
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Appendix

8 Appendix A: Main Proofs

8.1 Proofs for Sections 2.1 and 3.1

8.1.1 Proofs for Section 2.1

Proof of Lemma 2.1: Given a measurable E ⊂ Vi satisfying γi(E) > 0, for each
δ ∈ ∆i define Eδ ≡ {v ∈ E : δ ∈ Γ(v)}. Let E′ ≡ ∪δ∈∆′i

Eδ ⊂ ∪δ∈∆iE
δ = E. Since

the set V ′i = ∪δ∈∆′i
V δi has full measure by (ii), γi(E′) = γi(E ∩ V ′i ) > 0. Since

∆′i is countable and
∑
δ∈∆′i

γi(E
δ) > γi(E

′) > 0, for at least one δ ∈ ∆′i, we have
γi(E

δ) > 0. By (i), there exist v, v′ ∈ Eδ such that v′ � v. Since δ ∈ Γ(v) ∩ Γ(v′),
there exist ti and t′i such that V̂i(ti) = v, δ̂i(ti) = δ, V̂i(t′i) = v′ and δ̂i(t′i) = δ. By
the order definition, (1), the existence of these ti, t′i establishes (∗).

Proof of Lemma 2.3: For a set E ∈ Ti, let Eδ denote projection of E over Vi, that
is, Eδ ≡ {v ∈ Vi : (v, δ) ∈ m(E)}. Let πi denote the product measure γi × νi.
By Fubini’s Theorem, πi(m(E)) =

∫
∆i
γi(Eδ)νi(δ). Thus, if τ i(E) > 0, which

implies πi(m(E)) > 0, the set of δ ∈ ∆i such that γi(Eδ) > 0 has νi-positive
measure. Fix any δ in this set. Since γi(Eδ) > 0, by condition (i) of Lemma 2.1,
there exist v, v′ ∈ Eδ such that v′ � v. By the definition of >i, we have that
ti ≡ (v, δ), t′i ≡ (v′, δ) satisfy (∗).

An inspection of the above proof shows that we actually need less than absolute
continuity with respect to πi = γi × νi. It is enough that τ i(E) > 0 imply the
existence of a δ such that γi(Eδ) > 0. But this is essentially just a restatement of
(∗) for this particular setting with a product structure.

8.1.2 Proofs for Section 3.1

It is useful to recall some definitions.

Definition 8.1 (Supermodularity) g is supermodular in Y if for any x ∈ X and
z ∈ Z and any pair y, y′ ∈ X, we have:

g(x, y, z)− g(x, y ∧ y′, z) 6 g(x, y ∨ y′, z)− g(x, y′, z).

Also, we say that g is strictly supermodular if the inequality above is strict whenever
x and x′ are incomparable.
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It is well-known and easy to verify that supermodularity is preserved under in-
tegration. It is also easy to see that supermodularity implies quasi-supermodularity:

Definition 8.2 (Quasi-supermodularity) Assume that Y is a lattice and consider
the following implication, implicitly supposed to hold ∀x ∈ X,∀y, y′ ∈ Y, ∀z ∈ Z:

g(x, y, z) R g(x, y ∧ y′, z) =⇒ g(x, y ∨ y′, z) R′ g(x, y′, z). (20)

We say that g is:

• weak quasi-supermodular in Y if (20) holds with (R,R′) = (>,>);

• strictly quasi-supermodular in Y if (20) holds with (R,R′) = (>, >);

• quasi-supermodular in Y if (20) holds both with (R,R′) = (>,>) and (R,R′) =
(>,>).

Although x does not a play a role in supermodularity and quasi-supermodularity,
it is important for nondecreasing differences and single-crossing properties.

Definition 8.3 (Nondecreasing differences) g satisfies the non-decreasing differ-
ences property in X × Y if for any x, x′ ∈ X y, y′ ∈ Y ′ and z ∈ Z, such that x < x′

and y < y′,
g(x, y′, z)− g(x, y, z) 6 g(x′, y′, z)− g(x′, y, z). (21)

It satisfies increasing differences in X × Y if (21) holds with < instead of 6.

As it is well known (and easy to see), the nondecreasing differences implies
single-crossing, while increasing differences implies strict single-crossing.

Definition 8.4 (Single-crossing property) Consider the following implication, sup-
posed to hold for any x, x′ ∈ X y, y′ ∈ Y ′ and z ∈ Z, such that x < x′ and y < y′:

g(x, y′, z) R g(x, y, z) =⇒ g(x′, y′, z) R′ g(x′, y, z); (22)

We say that g satisfies:

• weak single-crossing in X × Y if (22) holds with (R,R′) = (>,>);

• strict single-crossing in X × Y if (22) holds with (R,R′) = (>, >);

• single-crossing inX×Y if (22) holds both with (R,R′) = (>,>) and (R,R′) =
(>,>).
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Proof of Proposition 3.2: Let x, x′ ∈ X, such that x < x′; y, y′ ∈ Y such that
¬(y′ > y), and z ∈ Z. Since Y is a lattice, there exists y ≡ y ∨ y′ and y ≡ y ∧ y′.
From supermodularity, we have:

g(x, y, z)− g(x, y, z) 6 g(x, y, z)− g(x, y′, z). (23)

Since ¬(y′ > y), y 6= y′, that is , y > y′. By increasing differences, we have

g(x, y, z)− g(x, y′, z) < g(x′, y, z)− g(x′, y′, z). (24)

Then, (23) and (24) imply (8). In the case of strict supermodularity and non-
decreasing differences, (23) holds with a strict inequality sign while (24) holds with
weak inequality, still giving (8).

Proof of Proposition 3.4: Let x, x′ ∈ X, such that x < x′; y, y′ ∈ Y such that
¬(y′ > y), and z ∈ Z. Since Y is a lattice, there exists y ≡ y ∨ y′ and y ≡ y ∧ y′.
From weak quasi-supermodularity, we have:

g(x, y, z) > g(x, y, z) =⇒ g(x, y, z) > g(x, y′, z). (25)

Since ¬(y′ > y), y > y′. By strict single crossing, we have

g(x, y, z) > g(x, y′, z) =⇒ g(x′, y, z) > g(x′, y′, z); (26)

Then, (25) and (26) imply (9). In the case of strict quasi-supermodularity and
single crossing, (25) holds with a strict inequality sign on the left, while (26) holds
with strict inequalities in both sides, still giving (9).

Recall that S−i is the set of behavioral strategies by players j 6= i. Fix δ ∈ ∆i ≡
δ̂i(Ti) and define Tiδ ≡ {ti ∈ Ti : δ̂i(ti) = δ}.

Lemma 8.5 If ui : Tiδ ×Ai× T−i×A−i → R satisfies the ID-monotonicity property
in Tiδ ×Ai, so does Πi : Tiδ ×Ai × S−i → R.

Proof. Consider ti, t′i ∈ Tiδ such that ti < t′i, and ai, a′i ∈ Ai such that ¬(a′i > ai).
Then, there exists ai, ai ∈ Ai such that ai 6= a′i and

ui(ti, ai, ·)− ui(ti, ai, ·) < ui(t
′
i, ai, ·)− ui(t′i, a′i, ·), (27)

where “·” stands for t−i, a−i. Now, integrating with respect to a mixed strategy
µ−i ∈ S−i and the belief δ ∈ δ̂i(Ti) ⊂ ∆(T−i), we obtain:

Π(ti, ai)−Π(ti, ai)

=

∫
T−i

∫
A−i

[ui(ti, ai, t−i, a−i)− ui(ti, ai, t−i, a−i)]µ−i(t−i, da−i)δ(dt−i)

<

∫
T−i

∫
A−i

[ui(t
′
i, ai, t−i, a−i)− ui(t′i, a′i, t−i, a−i)]µ−i(t−i, da−i)δ(dt−i)

= Π(t′i, ai)−Π(t′i, a
′
i), (28)
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as we wanted to show.

Eventually, we want to establish the monotonicity property of Πi without hav-
ing the exact monotonicity property on ui. The following Lemma can be useful in
this case.51

Lemma 8.6 Assume that ui : Tiδ ×Ai × T−i ×A−i → R satisfies the following:

(i) it is supermodular in Ai;

(ii) it satisfies non-decreasing differences in Tiδ ×Ai;

(iii) for any t1i , t
2
i ∈ Tiδ and a1

i , a
2
i ∈ Ai and µ−i ∈ S−i satisfying t1i < t2i , a

1
i <i a

2
i ,

we have δ(T ′−i) > 0, where T ′−i is the set defined by those t−i ∈ T−i for which∫
A−i

[
ui(t

1
i , a

2
i , t−i, a−i)− ui(t1i , a1

i , t−i, a−i)
]
µ−i(t−i, da−i)

<

∫
A−i

[
ui(t

2
i , a

2
i , t−i, a−i)− ui(t2i , a1

i , t−i, a−i)
]
µ−i(t−i, da−i).

Then Πi : Tiδ ×Ai × S−i → R has the ID-monotonicity property in Tiδ ×Ai.

Proof. Using (i) and (ii), we can repeat the proof of Proposition 3.2, where both (23)
and (24) are with weak inequalities. Now, following the proof of Lemma 8.5, we have
(27) holding with weak inequality, which also implies (28) with weak inequality.
However, because of (iii), (28) actually holds with strict inequality. This concludes
the proof.

8.2 Proofs for Section 4

8.2.1 Proof of Theorems 4.1 and 4.2

By Lemma 8.5, ID-monotonicity on ui implies ID-monotonicity on Πi which trivially
implies SC-monotonicity on Πi. Thererfore, Theorem 4.1 is implied by Theorem 4.2
and it is enough to prove this last one.

The proof will be divided in a number of lemmas. In all results below, we fix
δ ∈ ∆i ≡ δ̂i(Ti) and define Tiδ ≡ {ti ∈ Ti : δ̂i(ti) = δ}.

Lemma 8.7 Assume that Πi satisfies the SC-monotonicity property in T ′i×Ai, where
T ′i ⊂ Ti. Let BRi : T ′i → Ai denote the correspondence of i’s best replies to µ−i.
Then any selection of BRi is monotone nondecreasing, that is, for any ti, t

′
i ∈ Ti

such that t′i > ti and ai ∈ BRi(ti), a′i ∈ BRi(t′i), we have a′i > ai.

51It is actually used in our proof of Theorem 5.1.
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Proof. Let ti, t′i ∈ Ti be such that t′i > ti and let ai ∈ BRi(ti) and a′i ∈ BRi(t′i). We
want to prove that a′i > ai. Suppose otherwise. By the SC-monotonicity property,
there exist ai, ai ∈ Ai safisfying

Πi(ti, ai) > Πi(ti, ai) implies Πi(t
′
i, ai) > Πi(t

′
i, a
′
i).

Since ai ∈ BRi(ti), the first inequality holds, which implies Πi(t
′
i, ai) > Πi(t

′
i, a
′
i),

contradicting that a′i ∈ BRi(t′i). This concludes the proof.

The following technical result about chains will be used below.

Lemma 8.8 Let C be a chain in a partially ordered set (X,>) with at least three
elements. Then there exist disjoint sets C1, C2 and C3 such that C1 ∪ C2 ∪ C3 = C
and for any two points x, y ∈ Ci with x > y, for i = 1, 2, 3, there exists z ∈ C \ Ci
such that x > z > y.

Proof. Let E denote the class of pair of sets (C1, C2) such that C1 ∩ C2 = ∅,
C1, C2 ⊂ C and satisfying the following:

(•) for i = 1, 2 and any x, y ∈ Ci with x > y, there exists z ∈ C3−i such that
x > z > y.

Order E by inclusion, that is, (E1, E2) < (C1, C2) if Ei ⊃ Ci for i = 1, 2.
Consider a chain {(Cλ1 , Cλ2 )λ∈Λ} in E . DefineD1 = ∪λ∈ΛC

λ
1 andD2 = ∪λ∈ΛC

λ
2 .

We claim that (D1, D2) ∈ E . Indeed, trivially D1, D2 ⊂ C. If there exists x ∈
D1 ∩ D2, then x ∈ Cλ1 and x ∈ Cλ

′

2 for some λ, λ′ ∈ Λ, but since Λ determines
a chain, either (Cλ1 , C

λ
2 ) < (Cλ

′

1 , C
λ′

2 ) or (Cλ
′

1 , C
λ′

2 ) < (Cλ1 , C
λ
2 ). Thus, we have

either x ∈ Cλ1 ∩ Cλ2 ⊃ Cλ1 ∩ Cλ
′

2 or x ∈ Cλ′1 ∩ Cλ
′

2 ⊃ Cλ1 ∩ Cλ
′

2 , but this contradicts
Cλ1 ∩ Cλ2 = Cλ

′

1 ∩ Cλ
′

2 = ∅. Thus, D1 ∩D2 = ∅. Finally, we observe that (D1, D2)
satisfies (•). Indeed, fix i = 1 or 2 and pick x, y ∈ Di with x > y. Similarly to
the previous argument, there exists λ ∈ Λ, such that x, y ∈ Cλi . But because
(Cλ1 , C

λ
2 ) ∈ E , then there exists z ∈ Cλ3−i such that x > z > y. But then z ∈ D3−i,

which completes the proof of the claim.
Trivially, (D1, D2) is an upper bound for the chain {(Cλ1 , Cλ2 )λ∈Λ}. Therefore,

by the Zorn’s Lemma, there exists a maximal element (C1, C2) on E . We will need
to establish some facts about such maximal element.

Suppose that there exists x ∈ C \ (C1 ∪ C2). Since (C1, C2) is maximal in E ,
we must have (C1 ∪ {x}, C2) 6∈ E and (C1, C2 ∪ {x}) 6∈ E . This means that (•) fails
for both pairs, that is,

(?)i: ∃yi ∈ Ci such that x > yi and C3−i ∩ [yi, x] = ∅ or yi > x and
C3−i ∩ [x, yi] = ∅52

52 Here, [w, z] ≡ {u ∈ X : w 6 u 6 z}. Observe that since y1, x 6∈ C2, C2 ∩ [y1, x] =
C2 ∩ (y1, x), where (w, z) ≡ {u ∈ X : w < u < z}.
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holds for both i = 1 and i = 2. Fix y1 ∈ C1 and y2 ∈ C2 satisfying (?)1 and (?)2

respectively. Since C is a chain, we may assume, without loss of generality, that
y1 > y2. If x > y1 > y2 then (?)2 would be false; therefore, we must have y1 > x.
Similarly, if y2 > x, we would have y1 > y2 > x, contradicting (?)1. Therefore, we
must have y1 > x > y2. Observe that C2 ∩ (x, y1) = ∅ and C1 ∩ (y2, x) = ∅. Also,
C1 ∩ (x, y1) = ∅; otherwise, let y′ ∈ C1 ∩ (x, y1). Since (C1, C2) ∈ E , by (•) there
would exist z ∈ C2 such that y1 > z > y′ which would imply z ∈ C2 ∩ (x, y1), an
absurd. Similarly, we have C2 ∩ (y2, x) = ∅. Therefore, (C1 ∪ C2) ∩ (y2, y1) = ∅.
Actually, we claim that more is true, namely, C ∩ (y2, y1) = {x}.

To see this, suppose that x, x′ ∈ C ∩ (y2, y1) for some x′ 6= x. Since (C1 ∪
C2) ∩ (y2, y1) = ∅, it must be the case that x′ ∈ C \ (C1 ∪ C2). Assume x′ > x—
the case x > x′ is analogous, switching x and x′. We will prove that (C ′1, C

′
2) ≡

(C1∪{x}, C2∪{x′}) ∈ E . To see this, it is enough to verify (•). Indeed, let u, v ∈ C ′1
be such that u > v. If u, v ∈ C1 there is nothing to prove. If u = x, then y2 > v,
which implies that x > y2 > v, that is, (•) is satisfied. On the other hand, if v = x,
then u > y1 > x′ > x with x′ ∈ C ′2 and (•) is also satisfied. The argument for
u, v ∈ C ′2 is analogous. Therefore, (C ′1, C

′
2) ∈ E , but this contradicts the fact that

(C1, C2) is maximal on E . Therefore, C ∩ (y2, y1) = {x}.
Let {xλ}λ∈Λ denote the setC3 ≡ C\(C1 ∪ C2). By the above reasoning, for each

xλ ∈ C3, there exist yλ and yλ such that (i) yλ > x > yλ; (ii) C ∩ (yλ, yλ) = {xλ}
and (iii) yλ ∈ Ci and yλ ∈ C3−i for either i = 1 or i = 2.

Let xλ, xλ
′ ∈ C3 be such that xλ

′
> xλ. Thus, xλ

′
> yλ

′
> yλ > xλ. Therefore,

there exists yλ ∈ C1 ∪ C2 between xλ
′

and xλ. This shows that the C1, C2 and C3

just defined satisfy the required property.

Given a set S ⊂ Ai, its diameter will be denoted diam(S) and defined by:

diam(S) ≡ sup
ai,a′i∈S

ρi(ai, a
′
i).

For each n, j ∈ N and i ∈ I, let Tniδ denote the set {ti ∈ Tiδ : diam (BRi(ti)) >
1
n}. Recall that a set C ⊂ R` is a chain if a, b ∈ C implies a > b or b > a. Also, |C|
denotes the number of elements of the set C, with |C| =∞ if C is not finite.

Lemma 8.9 There is a number Ln such that if C ⊂ Tniδ is a chain, then C has at
most Ln elements.53

Proof. Let us denote the elements of the chain C ⊂ Tniδ by {tki }k∈K , where K is an
arbitrary set. For each k ∈ K, fix a pair aki , ã

k
i ∈ BRi(tki ) such that

ρi(a
k
i , ã

k
i ) >

1

n
. (29)

53Note that this is stronger than to say that any chain has a finite number of elements.
We need the stronger claim, in order to apply Lemma 8.10 below.
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If C has less than three elements, there is nothing to prove. Otherwise, by Lemma
8.8, we have three disjoint sets K1,K2 and K3 such that K1 ∪K2 ∪K3 = K and
for j = 1, 2 and any k, k′ ∈ Kj such that tk

′

i > tki , there exists k′′ ∈ K \Kj such
that tk

′

i > tk
′′

i > tki . In this case, by Lemma 8.7, aki , ã
k
i 6 ak

′′

i , ãk
′′

i 6 ak
′

i , ã
k′

i .54

Therefore, by Assumption 3.2 and (29), we have ρi(a
k
i , a

k′

i ) > 1
n ; ρi(ãki , a

k′

i ) >
1
n ; ρi(aki , ã

k′

i ) > 1
n and ρi(ã

k
i , ã

k′

i ) > 1
n . That is, any point in the set Bj ≡

∪k∈Kj{aki , ãki }, for j = 1, 2, 3, has a distance of at least 1
n to any other point in

the same set.
Now, consider the open cover of Ai by balls of radius 1

2n , with center in each
of the points of Ai. Since Ai is ρi-compact by Assumption 3.1, it is covered by just
`n ∈ N of these balls. Since ρi(x, y) > 1

n for any x, y ∈ Bj , j = 1, 2, 3, there are no
two points of Bj in the same ball. Therefore, there are at most `n points in each
Bj , which shows that there are at most Ln = 3`n points in K.

The height of a partially ordered set (poset) (X,>) is the number of elements
in the highest chain contained in X. Recall that a set A is an antichain if a, b ∈ A
implies that a 6> b and b 6> a (of course, it could be a = b). The following result is
due to Dilworth (1950); for this version of the result, see Trotter (1992).

Lemma 8.10 (Dilworth’s Theorem) If (X,>) is a poset with height m, then there
exists a partition X = A1 ∪ ... ∪Am, where Ai is an antichain for i = 1, ...,m.

Proof of Theorem 4.2: The first part of Theorem 4.2 was proved in Lemma 8.7.
By Lemma 8.9, for each δ and n, Tniδ has height Ln. By Lemma 8.10, Tniδ is formed
by the union of Ln antichains. The set of those ti ∈ Tiδ that can possibly play
mixed strategies, that is, those ti for which BR(ti) contains more than one point is
contained in ∪n∈NTniδ and, therefore, this is a denumerable union of antichains.

8.2.2 Proof of Theorem 4.3

Proof of Theorem 4.3: By Lemmas 8.9 and 8.10, for each δ and n, Tniδ is formed
by the union of Ln antichains, that is, we can write Tniδ = ∪Ln

m=1T
n,m
iδ , where Tn,miδ

is an antichain. By defining Tn,miδ = ∅ for m > Ln, we can consider Tn,miδ well
defined for all m ∈ N and write Tniδ = ∪m∈NTn,miδ .

Now, let E denote the set of types ti ∈ Ti which play strictly mixed strategies
as a best reply. This set is included in ∪n∈NTni , where Tni denotes the set {ti ∈
Ti : diam (BRi(ti)) >

1
n}. Thus, to show that τ i(E) = 0 it is enough to argue that

τ i(T
n
i ) = 0 for every n ∈ N. Actually, it is enough to prove that τ i(T

n,m
i ) = 0,

where Tn,mi ≡ ∪δ∈∆i
Tn,miδ .

To see that τ i(T
n,m
i ) = 0, assume otherwise; that is, there exist n,m such that

τ i(T
n,m
i ) > 0. By (∗), there exist δ ∈ ∆i and ti, t

′
i ∈ T

n,m
i ∩ δ̂

−1

i (δ) = Tn,miδ such
that ti < t′i, but this is an absurd, because Tn,miδ is an antichain.

54 Of course x, y 6 z, w is an abbreviation for four inequalities.
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8.3 Proofs for Section 5

8.3.1 Tie-breaking rule

Hereafter, let b1∧2
i be an abbreviation for b1i ∧ b2i and b1∨2

i , for b1i ∨ b2i .

Proof of Proposition 5.4: By the first part of Assumption 5.2 , h∗i (b
1
i , b−i) >

h∗i (b
1∧2
i , b−i) and h∗i (b

2
i , b−i) 6 h∗i (b

1∨2
i , b−i). For a contradiction, suppose that

h∗i (b
1
i , b−i) > h∗i (b

1∧2
i , b−i). Let h − 1 = h∗i (b

1∧2
i , b−i). By Assumption 5.2 , this

implies that either (i) b1∧2
ih 6= sih or that (ii) b1ih 6= sih. We need the following

two observations. First, since h∗i (b
1∧2
i , b−i) < h, then b1∧2

ih 6 sih. Also, since
h∗i (b

1
i , b−i) > h, we have b1ih > sih. Therefore, b1ih > sih > b1∧2

ih . This implies that
in case (i) we must have b1∧2

ih < sih and in case (ii), we must have b1ih > sih. In
any case, b1ih > b1∧2

ih , which implies that b1∧2
ih = b2ih. Since h∗i (b

1∧2
i , b−i) < h 6

h∗i (b
1
i , b−i) 6 h∗i (b

2
i , b−i), and b1∧2

ih = b2ih 6 sih, another application of Assumption
5.2 leads to b2ih < sih. However, this would imply h∗i (b

2
i , b−i) < h, a contradiction.

The proof that h∗i (b
2
i , b−i) = h∗i (b

1∨2
i , b−i) is analogous.

8.3.2 Payment

Before we establish the proof of (17), it will be useful to introduce some notation.
For this, fix (e, b) and let m = h∗(e, b). If mi < ei, player i has sold ei−mi units in
the auction, while she has bought mi − ei if mi > ei. No negotiation is made by i
if mi = ei. Define K ≡

∑N
i=0 ei and let si = (si,1, si,2, ..., si,K) be the profile of the

K-highest bids made by players j 6= i, such that si,1 ≤ si,2 ≤ ... ≤ si,K . In other
words, si denotes the (inverse) residual supply curve facing bidder i; si,K is the
highest of the bids by players j 6= i, si,K−1 is the second highest and so on. Thus,
for getting (for sure) at least one unit, bidder i’s highest bid must be above si,1,
that is, bi,1 > si,1. For bidder i winning at least two units for sure, it is necessary
bi,2 > si,2 and so on. Figure 1 illustrates this.
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0 units0

bids

1 2 3 ... K

bi,1

bi,2

bi,3

bi,4

bi,K
si,1

si,2

si,3

si,4

si,K

...

...

Figure 1: Bid ( bi) and supply (si) curves for bidder i. In
the situation displayed, bidder i receives three units, because
bi,3 > si,3 but bi,4 < si,4.

Given b ∈ A and i ∈ I, let h = hi(b) ≡ max{j : bi,j > si,j}. Define p(b) ≡
max{si,h, bi,h+1} and p(b) ≡ min{bi,h, si,h+1}. These definitions do not depend
on i. Indeed, first notice that p(b) 6 p(b). If there is a competitive tie, that is,
bih = sih, then p(b) = p(b) and both are equal to the tying bid (thus, they do not
depend on i). Consider now the case with non-competitive ties, that is, bih > sih
and bi,h+1 < si,h+1. In this case, p(b) is the highest losing bid and p(b) is the lowest
winning bid and, as such, both p(b) and p(b) do not depend on i. Finally, note that
the definition would not have changed if we have used h = h∗i (b) instead of hi(b),
because these two quantities are different only when there is a competitive tie and,
in this case, even if h = h∗i (b) < min{j : bi,j = si,j}, that is, i does not receive any
object in the tie, we still have bi,h+1 = si,h+1, which is sufficient to imply that both
p(b) and p(b) are equal to the competitive tie.

Lemma 8.11 Fix b1i , b
2
i , b−i and let pk = p(bki , b−i) and pk = p(bki , b−i), for k =

1, 2, 1 ∧ 2 and 1 ∨ 2. Without loss, assume that h1 = h∗i (b
1
i , b−i) 6 h2 = h∗i (b

2
i , b−i).

We have the following: if h1 < h2, then

p1∨2 = p2; p1∧2 = p1; p1∨2 = p2; and p1∧2 = p1; (30)

and if h1 = h2, b1∨2
ih = bkih and b1∧2

ih = bk
′

ih for (k, k′) = (1, 2) or (2, 1), then p1∨2 =

pk; and p1∧2 = pk
′
; and a similar condition holds for p.

Proof. By Proposition 5.4, h∗i (b
1∧2
i , b−i) = h1 and h∗i (b

1∨2
i , b−i) = h2.

Let’s consider first the case that h1 < h2. This means that b1∨2
i,h2 = b2i,h2 ,

otherwise, b2i,h2 < b1∨2
i,h2 = b1i,h2 , which would imply b1i,h2 > si,h2 . In this case,

Assumption 5.2 would imply h1 > h2, a contradiction. Therefore, p1∨2 = p2.
Next, we want to show that p1∧2 = min{b1∧2

i,h1 , si,h1+1} = min{b1i,h1 , si,h1+1} = p1.
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Suppose otherwise, that is, min{b1∧2
i,h1 , si,h1+1} < min{b1i,h1 , si,h1+1}. Then, b1∧2

i,h1 <

b1i,h1 and b1∧2
i,h1 = b2i,h1 < si,h1+1. But this implies si,h2 > si,h1+1 > b2i,h1 > b2i,h2 ,

which contradicts h2 = h∗i (b
2
i , b−i). This shows that p1∧2 = p1.

Analogously, suppose that p1∧2 = max{b1∧2
i,h1+1, si,h1} < max{b1i,h1+1, si,h1} =

p1. This implies that b2i,h1+1 = b1∧2
i,h1+1 < b1i,h1+1 6 si,h1+1, which contradicts

h2 > h1 ⇒ b2i,h1+1 > b
2
i,h2 > si,h2 > si,h1+1. Thus, p1∧2 = p1.

Now, assume p1∨2 = max{b1∨2
i,h2+1, si,h2} > max{b2i,h2+1, si,h2} = p2. This

implies that b1∨2
i,h2+1 > b2i,h2+1 and b1i,h2+1 = b1∨2

i,h2+1 > si,h2 , but this implies
b1i,h1+1 > b1∨2

i,h2+1 = b1i,h2+1 > si,h2 > si,h1+1, contradicting the assumption that
b1i receives only h1 and not h1 + 1. Thus, p1∨2 = p2.

Now, assume that h1 = h2 = h. Let b1∨2
ih = bkih, b1∧2

ih = bk
′

ih for (k, k′) = (1, 2)
or (k, k′) = (2, 1). Thus, p1∨2 = min{b1∨2

ih , si,h+1} = min{bkih, si,h+1} = pk and
p1∧2 = min{b1∧2

ih , si,h+1} = min{bk′ih, si,h+1} = pk
′
. Analogously, let b1∨2

i,h+1 = bki,h+1,
b1∧2
i,h+1 = bk

′

i,h+1.55 Thus, p1∨2 = max{b1∨2
i,h+1, si,h} = min{bki,h+1, si,h} = pk and

p1∧2 = max{b1∧2
i,h+1, si,h} = max{bk′i,h+1, si,h} = pk

′
.

Remark 8.12 As the statement of this lemma should suggest, (30) is not necessarily
true when h1 = h2. To see this, consider the following example. There are two
objects, the two highest bids by opponents are (6, 2), b1i = (7, 3) and b2i = (5, 4).
Then h1 = h2 = 1, b1∧2

i = (5, 3), b1∨2
i = (7, 4), p1∧2 = p2 = 5; p1∨2 = p1 = 6,

p1∧2 = p1 = 3 and p1∨2 = p2 = 4, which shows that (30) is not true, even relabeling
the bids. Note also that this example does not depend on the specification of the
tie-breaking rule, because there are no ties.

Corollary 8.13 Let Assumption 5.1 hold. Then,

pi(h, e, b
1
i , b−i)− pi(h, e, b1∧2

i , b−i) = pi(h, e, b
1∨2
i , b−i)− pi(h, e, b2i , b−i).

Proof. Using Lemma 8.11, a straightforward inspection of (15) leads to the con-
clusion.

8.3.3 Proof of Theorem 5.1

The proof of Theorem 5.1 requires two lemmas. The first one generalizes an argu-
ment first given by McAdams (2003, p. 1210). For the discussion below, let ui be
given by (13).

Lemma 8.14 Under assumptions 5.1 and 5.2, ui is modular.

Proof. Fix b−i and let h1, h2, h1∧2 and h1∨2 be the final allocation given by b1i , b
2
i ,

b1∧2
i and b1∨2

i . Without loss of generality, assume h1 6 h2. By Proposition 5.4,

55These k and k′ could be different from the first part.
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h = h1 = h1∧2 and h′ = h2 = h1∨2. For simplicity, define p1 ≡ pi(h, e, ·, b1i );
p1∧2 ≡ pi(h, e, ·, b1∧2

i ); p2 ≡ pi(h′, e, ·, b2i ) and p1∨2 ≡ pi(h′, e, ·, b1∨2
i ).

We want to show that

ui(ti, b
1
i , ·)− ui(ti, b1∧2

i , ·) = ui(ti, b
1∨2
i , ·)− ui(ti, b2i .·), (31)

that is, h∑
j=1

vij − p1

−
 h∑
j=1

vij − p1∧2

 =

 h′∑
j=1

vij − p1∨2

−
 h′∑
j=1

vij − p2


⇐⇒ p1∧2 − p1 = p2 − p1∨2,

but the last expression is true by Corollary 8.13.

Lemma 8.15 (i) ui has nondecreasing differences.
(ii) If h1 = h∗i (b

1
i , b−i) < h∗i (b

2
i , b−i) = h2, then the inequality defining nonde-

creasing differences is actually strict.

Proof. Let t1i < t2i and assume that b1i <i b
2
i and let h = h∗i (b

1
i , b−i) = h∗i (b

2
i , b−i).

For simplicity, define p1 ≡ pi(h, e1, ·, b1i ) and p2 ≡ pi(h, e2, ·, b2i ). Then, h∑
j=1

v1
ij − p2

−
 h∑
j=1

v1
ij − p1


=

 h∑
j=1

v2
ij − p2

−
 h∑
j=1

v2
ij − p1

 .

Given the second claim, this will be enough for the first part.
Now, let h1 = h∗i (b

1
i , b−i) < h∗i (b

2
i , b−i) = h2. For simplicity, define p1 ≡

pi(h
1, e1, ·, b1i ) and p2 ≡ pi(h2, e2, ·, b2i ). We want to show that h2∑

j=1

v1
ij − p2

−
 h1∑
j=1

v1
ij − p1


<

 h2∑
j=1

v2
ij − p2

−
 h1∑
j=1

v2
ij − p1

 ,

which is equivalent to:

h2∑
j=h1+1

v1
ij <

h2∑
j=h1+1

v2
ij .
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Since t1i < t2i , the last inequality is obviously true by (12).

Proof of Theorem 5.1: Define a modified n-auction exactly as the original, except
for two differences:

• with probability 1/n, there is a player playing uniformly in all bids; and

• the tie-breaking is modified so that it satisfies Assumption 5.2.

By JS’ Theorems 6 and 9, each n-modified auction has an equilibrium in
undominated∗ strategies with a zero probability of competitive ties, which is an
equilibrium under any omniscient and effectively trade-maximizing tie-breaking
rule, including standard tie-breaking rule. We want to argue that this equilibrium
is actually in pure strategies.

Since the tie-breaking rule of the modified auction satisfies Assumption 5.2,
by Lemma 8.14, ui is modular, hence quasi-supermodular. By Lemma 8.15, ui
has non-decreasing differences. Moreover, since in the n-modified auction there
is a player playing uniformly in all bids, then h∗i (b

1
i , b−i) < h∗i (b

2
i , b−i) occurs with

positive probability for any pair of bids b1i and b2i satisfying b1i < b2i . Again by Lemma
8.15, the inequality defining non-decreasing differences in ui is actually strict with
positive probability. Therefore, the assumptions of Lemma 8.6 are satisfied, which
implies that Πi : Tiδ ×Ai × S−i → R has the monotonicity property in Tiδ ×Ai.

Therefore, each n-auction satisfies the assumptions of Theorem 4.3 and all of
its equilibria are actually in pure strategies that are monotonic when conditioned
to each Tiδ. Let bn be the pure strategy equilibrium of the n-auction. By Jackson
and Swinkels (2005, Theorem 9), this equilibrium is competitive tie-free, which
means that it implies an allocation that does not depend on the tie-breaking rule.
This means that we could erase the second bullet point in the definition of the
n-modified auction and consider it with the original tie-breaking rule.56

An easy adaptation of Reny (2011, Lemma A.10) shows that for each i, {bni }
has a subsequence that converges pointwise to some bi, since each bni is mono-
tonic when restricted to Tiδ. Naturally, b = (bi, b−i) can involve ties with positive
probability. Let us define a specific tie-breaking rule for this case. For each t ∈ T ,
let the allocation determined by bn be denoted by an(t), which is defined up to a
set of zero measure on T . Since the allocation is discrete, we can pass to subse-
quences, if necessary, and assume that an(t) converge to some a(t), for almost all
t. Fixing this sub-sub-sequence (but maintaining the notation on n, for simplicity),
a(t) defines an omniscient tie-breaking rule. We will show below that this a does
not really matter. Therefore we can conceive of the hypothetical game in which
the knowledge to implement a is given. For this a, we have by construction that
Ui(b

n)→ Ui(b).
Now we claim that b is free of competitive ties for every agent. Indeed, suppose

that b induces a tie for player i. By Jackson and Swinkels (2005, Lemma 8), there

56The only impact of using the original tie-breaking rule in the n-modified auction is that,
besides all pure strategies equilibria, we may also have equilibria in mixed strategies.
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exists a strategy b′i that is tie-free for player i and satisfies

Ui(b
′
i, b−i) > Ui(bi, b−i). (32)

Since b′i is tie-free for player i, ui(t, b′i(ti), b
n
−i(t−i)) → ui(t, b

′
i(ti), b−i(t−i)) for al-

most all t−i. By Lebesgue dominated convergence theorem, Ui(b′i, b
n
−i)→ Ui(b

′
i, b−i)

and this, together with Ui(bn)→ Ui(b) and (32) would imply that

Ui(b
′
i, b

n
−i) > Ui(b

n
i , b

n
−i)

for all sufficiently high n. But since the modified n-auction has payoffs Uni very
close to the original auction payoff Ui, we would obtain, for sufficiently high n,

Uni (b′i, b
n
−i) > Uni (bni , b

n
−i).

However, this contradicts the assumption that bn is an equilibrium of the modified
auction. Therefore, the claim is established.

Now, we argue that b is actually an equilibrium of the original auction. For this,
we can assume that a player has a profitable deviation b′i so that (32) holds. In this
case, we can repeat the same arguments above and again obtain a contradiction.
This implies that b is actually an equilibrium of the game with the omniscient
tie-breaking rule a. However, we have argued above that b is tie free for every
player i. Therefore, a does not matter for the equilibrium condition and b is also
an equilibrium of the original game, as we wanted to show.

9 Appendix B: Grid Distributions

9.1 Formal definition and Basic Properties

Let dxe denote the minimum integer at least as large as x, for instance, d2.7e=3.
For each k ∈ N and i ∈ I, define the functions Iki : Ti → {1, ..., k}li by:

Iki (ti) =

(⌈
k
ti,1 − ti,1
ti,1 − ti,1

⌉
, ...,

⌈
k
ti,j − ti,j
ti,j − ti,j

⌉
...,

⌈
k
ti,li − ti,li
ti,li − ti,li

⌉)

and Ik : T → {1, ..., k}L, where L =
∑N
i=1 li, by Ik(t) = (Ik1(t1), ..., IkN (tN )). Note

that Iki (ti) gives the interval that contains each coordinate of ti. We already know
from the introduction that grid distributions have a constant density in each of
these intervals. The following is a formal definition of grid distributions in general.

Definition 9.1 (Grid distribution) The distribution τ is a grid distribution if it is
absolutely continuous with respect to the Lebesgue measure (in RL), with correspon-
dent Radon-Nikodym f : T → R+ satisfying the following: there exists k ∈ N such
that for almost all t, t′ ∈ T ,

Ik(t) = Ik(t′) =⇒ f(t) = f(t′). (33)

In this case, we say that f ∈ Dk. The set of densities associated to grid
distributions is then D∞ ≡ ∪∞k=1Dk.
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We will abuse terminology and say that if Ik(t) = Ik(t′) then t and t′ are in the
same grid-cube. More precisely, a grid-cube is a set {t ∈ T : Ik(t) = c} for some
c ∈ {1, ..., k}L. Also, we can define a grid-interval as a set {ti ∈ Ti : Iki (ti) = c} for
some c ∈ {1, ..., k}li and some i ∈ I.57 In this way, we can concisely define grid
distributions as those absolutely continuous distributions with density functions
that are constant in grid-cubes.

Another useful way of describing the set of grid distributions is through the
image of a transformation Tk : D → D, where D is the set of densities in T .
For simplicity, let us describe this transformation in the particular case in which
T = [0, 1]2, that is, there are two players, each with types in [0, 1]. In this case,

Tk (f) (x, y) ≡ k2

∫ p
k

p−1
k

∫ m
k

m−1
k

f (α, β) dαdβ,

whenever (x, y) ∈
(
m−1
k , mk

]
×
(
p−1
k , pk

]
, for m, p ∈ {1, 2, ..., k}. Observe that Tk (f)

is constant over each square
(
m−1
k , mk

]
×
(
p−1
k , pk

]
. Then Dk be the image of D by

Tk, that is, Dk ≡ Tk (D). Thus, Tk is a projection from the infinite dimensional
space D over the finite dimensional space Dk. Indeed, Dk is finite dimensional set
because any density function f ∈ Dk can be described by a matrix A = (aij)k×k,
as the figure 3 below illustrates.

The transformation Tk is interesting because allows us to approximate any
density f ∈ D by grid distributions in a convenient way. See section 6.5 below.

9.1.1 Basic Properties

Lemma 9.2 Let g : (a, b]× (c, d]→ R be continuous. Then, there is (x, y) ∈ (a, b)×
(c, d) such that ∫ d

c

∫ b

a

g (α, β) dαdβ = (c− d) (b− a) g (x, y) .

Proof. This is a trivial application of the mean value theorem of integration. Define
the function f : (c, d]→ R by

f (y) =

∫ b

a

g (α, y) dα.

It is clear that f is continuous. By the mean value theorem of integration, there
exists y ∈ (c, d) such that∫ d

c

∫ b

a

g (α, β) dαdβ =

∫ d

c

f (β) dβ = (c− d) f (y) .

57Of course a grid-interval is also a “(hyper)cube” in multidimensional settings, but it is
just an interval if each player’s type is unidimensional. Also, note that a grid-cube will
be just a square if there are just two players with unidimensional types. We adopt this
terminology to simplify later references.
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Fixing y, the function x 7→ h (x) = g (x, y) is continuous. Thus, there exists
x ∈ (a, b) such that

f (y) =

∫ b

a

g (α, y) dα =

∫ b

a

h (α) dα = (b− a)h (x) ,

which concludes the proof.

It is clear that the above proof easily extends to arbitrary dimensions. There-
fore, we have the following:

Corollary 9.3 Given c ∈ {1, ..., k}L and f ∈ C, there exists t ∈ T such that Ik(t) = c
and Tk(f)(t) = f(t).

9.2 Approximation results

Proof of Theorem 6.6. We first prove (iii). Given f ∈ C, since T is compact,
f is uniformly continuous. Thus, for any ε > 0 there exists k ∈ N such that
‖t − t′‖ < 2

k

√
L implies that |f(t) − f(t′)| < ε. Now, define fk ≡ Tk(f). We claim

that ‖f − fk‖ < ε, that is, |f(t)− fk(t)| < ε, ∀t ∈ T . Fix t ∈ T and let c ≡ Ik(t). By
Corollary 9.3, there exists t′ such that Ik(t′) = c and f(t′) = fk(t′) = fk(t). Since
Ik(t) = c, then ‖t− t′‖ < 2

k

√
L and we have |fk(t)− f(t)| = |f(t′)− f(t)| < ε. This

establishes (iii).58

For (ii), recall that continuous functions are dense in Lp (see, for instance,
Aliprantis and Border (1999, Theorem 12.9)). Given f ∈ Lp and ε > 0, let g ∈ C be
such that ‖f−g‖ < ε

2 and pick k such that ‖Tk(g)−g‖ < ε
2 . Then, ‖f−Tk(g)‖ < ε.

Now (i) is immediate, since Tk(f) → f in the sup-norm implies that it also
converges pointwise. It remains to show that the set of grid distributions is dense
in ∆. Given τ ∈ ∆, let f ∈ D be (a version of) its Radon-Nikodym derivative with
respect to the Lebesgue measure λ on T . Let fk ≡ Tk(f) and τk the distribution
generated by fk ∈ Dk. Then, for any continuous function g : T → R,

∫
gdτk =∫

gfkdλ→
∫
gfdλ =

∫
gdτ , by the Lebesgue Dominated Convergence Theorem (it

is not difficult to see that the sequence gfk is bounded). Since g is an arbitrary
continuous function, τk → τ in the weak? topology, which establishes the first
claim in the theorem.

As observed in footnote 58, we also have the following:

Corollary 9.4 If f ∈ C, Tk (f)→ f in the sup-norm.

Proof of Proposition 6.7. For notational simplicity, we will make the proof for
the case in which T = [0, 1]2. The same argument can be easily generalized. We
want to prove that if x > x′ and y > y′ then

Tk (f) (x, y)Tk (f) (x′, y′) ≥ Tk (f) (x, y′)Tk (f) (x′, y) .

58 This also shows that Tk(f)→ f in the sup-norm.
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Let x ∈
(
i−1
k , ik

]
, x′ ∈

(
j−1
k , jk

]
, y ∈

(
q−1
k , qk

]
and y′ ∈

(
p−1
k , pk

]
, where i > j and

q > p. Thus, the above inequality is equivalent to:∫ 1
k

0

∫ 1
k

0

f

(
α+

i− 1

k
, β +

q − 1

k

)
dαdβ ·

∫ 1
k

0

∫ 1
k

0

f

(
z +

j − 1

k
,w +

p− 1

k

)
dzdw

≥
∫ 1

k

0

∫ 1
k

0

f

(
α+

i− 1

k
,w +

p− 1

k

)
dαdw ·

∫ 1
k

0

∫ 1
k

0

f

(
z +

j − 1

k
, β +

q − 1

k

)
dzdβ.

This can be rewritten as:∫ 1
k

0

∫ 1
k

0

∫ 1
k

0

∫ 1
k

0

[
f

(
α+

i− 1

k
, β +

q − 1

k

)
f

(
z +

j − 1

k
,w +

p− 1

k

)
−f
(
α+

i− 1

k
,w +

p− 1

k

)
f

(
z +

j − 1

k
, β +

q − 1

k

)]
dαdβdzdw

≥ 0.

Now it is easy to see that affiliation implies that the integrand is non-negative for
all α, β, z, w ∈

(
0, 1

k

)
.

For the converse, suppose that Tk (f) ∈ A ∀k ∈ N but f 6∈ A. This means that
there exist x, x′, y and y′ such that x > x′, y > y′ and

f (x, y) f (x′, y′) < f (x, y′) f (x′, y) .

Since Tk (f)→ f in the sup-norm (Corollary 9.4), there exists k ∈ N such that

Tk (f) (x, y)Tk (f) (x′, y′) < Tk (f) (x, y′)Tk (f) (x′, y) ,

which contradicts Tk (f) ∈ A.

Proof of Proposition 6.8 By the Lebesgue Dominated Convergence Theorem,

Ui(s
kn) =

∫
ui(t, s

kn(t))fkn(t)λ(dt)→
∫
ui(t, s(t))f(t)λ(dt) = Ui(s).

Thus, Ui(si, s−i) > Ui(s′i, s−i) = limn→∞ Ui(s
′
i, s

kn
−i) for all s′i ∈ Fi.

Proof of Proposition 6.9 By the previous results, there exists kε such that for all
k > kε, ∫

ui(t, s(t))f
k(t)λ(dt) >

∫
ui(t, s(t))f(t)λ(dt)− ε

2

>
∫
ui(t, s

′
i(ti), s−i(t−i))f(t)λ(dt)− ε

2

>
∫
ui(t, s

′
i(t), s−i(t−i)f

k(t)λ(dt)− ε,

where the second inequality comes from the fact that s is an equilibrium for f .
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9.3 Steps in the proof of Theorem 6.2

We assume that f ∈ Dk is symmetric and can be described by the matrix (aij)k×k
as follows:

f (y, x) = amp if (y, x) ∈
(
m− 1

k
,
m

k

]
×
(
p− 1

k
,
p

k

]
, (34)

for m, p ∈ {1, 2, ..., k} . The definition of f at the zero measure set of points {(y, x) =(
m
k ,

p
k

)
: m = 0 or p = 0} is arbitrary.

For the description of the steps below, assume that x ∈
(
p−1
k , pk

]
and z ∈(

m−1
k , mk

]
, for m, p ∈ {1, ..., k}.

1. We obtain the expressions:

f (z|x) =
kamp∑k
i=1 aip

;

F (z|x) =

∫ z

0

f (α|x) dα =

∑m−1
i=1 aip + amp (kz −m+ 1)∑k

i=1 aip

and
f (z|x)

F (z|x)
=

kamp∑m−1
i=1 aip + amp (kz −m+ 1)

. (35)

2. Using (35), we integrate b (z) = z −
∫ z

0
exp

[
−
∫ z
u
g(s|s)
G(s|s)ds

]
du to obtain:

b

(
m− 1 + ζ

k

)
=
m− 1 + ζ

k
− (rm + ζ)

2k
+

(
r2
m −Dm

)
2k (rm + ζ)

. (36)

where ζ = kz −m+ 1 and, for m > 2,

rm ≡
∑m−1
i=1 aim
amm

, (37)

and

Dm ≡
m−1∑
j=1

m−1∏
l=j

(
rl+1

1 + rl

) · [(1 + rj)
2 − r2

j

]
. (38)

3. Define ∆ (x, z) ≡ Π (x, b (z)) − Π (x, b (x)), where Π (x, b (z)) is given by
Π (x, b (z)) = [x− b (z)]F (z|x). Note that b(·) is SMPSE iff ∆(x, z) 6 0
for all (x, z) ∈ [0, 1]2. Using χ ≡ kx− p+ 1 or x = p−1+χ

k and ζ ≡ kz−m+ 1

or z = m−1+ζ
k , denote 2k

∑k
i=1 aip∆ (x, z) by ∆pm (χ, ζ) and obtain:

∆pm (χ, ζ) ≡
[
2 (χ− ζ + p−m) +

ζ2 + 2ζrm +Dm

rm + ζ

]
·

(
m−1∑
i=1

aip + ampζ

)
−
(
χ2 + 2χrp +Dp

)
app. (39)
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4. We show that (39) is a quadratic function of χ ∈ (0, 1) that is: non-positive if
m = p; decreasing in (0, 1) if m < p and increasing in (0, 1) if m > p. Thus,
b(·) is SMPSE iff for all m, p ∈ {1, ..., k},m 6= p:{

∆pm (0, ζ) 6 0,∀ζ ∈ [0, 1] , if m < p;
∆pm (1, ζ) 6 0,∀ζ ∈ [0, 1] , if m > p.

(40)

Since rm + ζ > 0, the signal of ∆pm (χ, ζ) is the same as the signal of

∆̃pm (χ, ζ) ≡ (rm + ζ) ∆pm (χ, ζ) . (41)

From (40), b(·) is SMPSE iff, for all m < p we have ∆̃pm (0, ζ) 6 0 and for
m > p, ∆̃pm (1, ζ) 6 0.

5. From (39), it is easy to see that both ∆̃pm (0, ζ) and ∆̃pm (1, ζ) are polyno-
mials of third degree in ζ which do not depend on χ. We carry χ below
only to consider both cases in just one expression. We then show that
∂ζ∆̃pm (χ, ζ) = 0 can be written as

c2ζ
2 + c1ζ + c0 = 0, (42)

where

c2 = −3amp;

c1 = 4amp (χ+ p−m)− 2

m−1∑
i=1

aip;

c0 = (χ+ p−m)

[
2amprm + 2

m−1∑
i=1

aip

]
−
(
χ2 + 2χrp +Dp

)
app + ampDm.

Let ζmp (χ) denote the solution(s) to the quadratic equation (42). Now, con-
dition (40) requires us to test:

• if m < p, whether ζmp (0) ∈ (0, 1) and if this happens, test whether
∆̃pm

(
0, ζmp (0)

)
6 0;

• if m > p, whether whether ζmp (1) ∈ (0, 1) and if this happens, test
whether ∆̃pm

(
1, ζmp (1)

)
6 0.

This concludes the method.

The above definitions allow us to a more explicit statement of Theorem 6.2.

Theorem 9.5 Suppose that there are two risk neutral players and f ∈ Dk
is described by a matrix (aij)k×k as in (34). Let ∆̃pm (χ, ζ) be defined by
(41). Then f has a SMPSE if and only if all of the following inequalities are
satisfied:59

59The conditions in Table 1 already incorporate some further simplifications for the case
m = 1, not explained above.
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Case Conditions to verify
2 6 m < p 6 k ∆̃pm (0, 0) 6 0

2 6 m < p 6 k ∆̃pm

(
0, ζmp (0)

)
6 0

1 6 p < m 6 k ∆̃pm (1, 1) 6 0;

1 6 p < m 6 k ∆̃pm

(
1, ζmp (1)

)
6 0

Table 1 - Necessary and sufficient conditions for equilibrium existence.

It is easy to see that in each square, we need to check less than six points.
Thus, the number of inequalities to test is less than 6 · k(k+1)

2 = 3k2 + 3k.

9.4 Proof of Theorem 6.5.

The dominant strategy for each bidder in the second price auction is to bid his
value: b2 (t) = t. Then, the expected payment by a bidder in the second price
auction, P 2, is given by:

P 2 =

∫
[t,t]

∫
[t,x]

yf (y|x) dy · f (x) dx =

=

∫
[t,t]

∫
[t,x]

[y − b (y)] f (y|x) dy · f (x) dx+

∫
[t,t]

∫
[t,x]

b (y) f (y|x) dy · f (x) dx,

where b (·) gives the equilibrium strategy for symmetric first price auctions. Thus,
the first integral can be substituted by

∫
[t,t]

∫
[t,x]

b
′
(y) F (y|y)

f(y|y) f (y|x) dy · f (x) dx,

from the first order condition: b
′
(y) = [y − b (y)] f(y|y)

F (y|y) . The last integral can be
integrated by parts, to:

∫
[t,t]

∫
[t,x]

b (y) f (y|x) dy · f (x) dx

=

∫
[t,t]

[
b (x)F (x|x)−

∫
[t,x]

b
′
(y)F (y|x) dy

]
· f (x) dx

=

∫
[t,t]

b (x)F (x|x) · f (x) dx−
∫

[t,t]

∫
[t,x]

b
′
(y)F (y|x) dy · f (x) dx

In the last line, the first integral is just the expected payment for the first price
auction, P 1. Thus, we have

59



D = P 2 − P 1

=

∫
[t,t]

∫
[t,x]

b
′
(y)

F (y|y)

f (y|y)
f (y|x) dy · f (x) dx

−
∫
[t,t]

∫
[t,x]

b
′
(y)F (y|x) dy · f (x) dx

=

∫
[t,t]

∫
[t,x]

b
′
(y)

[
F (y|y)

f (y|y)
f (y|x)− F (y|x)

]
dy · f (x) dx

=

∫
[t,t]

∫
[t,x]

b
′
(y)

[
F (y|y)

f (y|y)
− F (y|x)

f (y|x)

]
f (y|x) dy · f (x) dx

Remember that b (t) =
∫

[t,t]
αdL (α|t) = t −

∫
[t,t]

L (α|t) dα, where L (α|t) =

exp
[
−
∫ t
α
f(s|s)
F (s|s)ds

]
. So, we have

b
′
(y) = 1− L (y|y)−

∫
[t,y]

∂yL (α|y) dα

=
f (y|y)

F (y|y)

∫
[t,y]

L (α|y) dα.

We conclude that

D =

∫
[t,t]

∫
[t,x]

f (y|y)

F (y|y)

∫
[t,y]

L (α|y) dα

[
F (y|y)

f (y|y)
− F (y|x)

f (y|x)

]
f (y|x) dy · f (x) dx

=

∫
[t,t]

∫
[t,x]

[∫
[t,y]

L (α|y) dα

]
·
[
1− F (y|x)

f (y|x)
· f (y|y)

F (y|y)

]
· f (y|x) dy · f (x) dx

This is the desired expression.
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