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Abstract

This paper focuses on the study of decision making under risk. We, first, recall

some model-free definitions of risk aversion and increase in risk. We propose a new

form of behavior under risk that we call anti-monotone risk aversion (hereafter

referred to as ARA) related to the concept of anti-comonotony a concept investi-

gated in Abouda, Aouani and Chateauneuf (2008). Note that many research has

already been done in this field e.g. through the theory of comonotonicity. We give

relationships between comonotone, strict comonotone, anti-comonotone and strict

anti-comonotone random variables. Then, after the motivation of ARA, we show

that this new aversion is weaker than monotone risk aversion while stronger than

weak risk aversion.
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1 Introduction

The paper is organized as follows: In Section 2 we give some notations and
preliminaries that are useful to our study and we recall rapidly the set of ax-
ioms that are usual and natural requirements whatever the attitude towards
risk may be. In Section 3, some models of decision under risk are presented
with more details. In Section 4, we explicitly give definitions of increase
in risk and different form of risk aversion that are model-free e.g, indepen-
dently of any model of decision under risk and we give some fundamental
properties related to the concept of comonotonicity. Here, we establish the
relationships that ties comonotone, strict comonotone, anti-comonotone and
strict anti-comonotone random variables. In section 5 and 6, which are the
focus of our paper, we propose a new form of risk aversion that we call "Anti
monotone risk aversion". After the motivation of ARA, we compare it with
other forms of risk aversion namely monotone and weak risk aversion. ARA
is based on reducing the risk degree of a lottery hence we get what we call
a "hedging" and we show that this aversion takes place between monotone
risk aversion and weak risk aversion.

2 Notations and preliminaries

We suppose that we have a decision-maker faced with choices among risky
assets X, the set V of such assets consisting of all bounded real random
variables defined on a probability space (S,A, P )1 assumed to be sufficiently
rich to generate any bounded real-valued random variable. S is the set of
states of nature, A is a σ-algebra of events (i.e. of subsets of S), and P is a
σ-additive non-atomic probability measure. Let V0 containing only discrete

1we assume that the decision maker is in a situation of risk. He knows the probability

distribution P , which is exogenous, on the set of states of nature: The set (S ; A) endowed

with this probability measure is thus a probability space (S; A ;P )
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elements of V .

Definition 2.1. A family A of subsets of the universe S is called a sigma-

algebra if it fulfils the three following properties:

• S ∈ A (i.e, S itself is an event);

• E ∈ A ⇒ E ∈ A (i.e, E is called the complement of the event E);

• E1, E2, E3, ... ∈ A ⇒
⋃

i≥1Ei ∈ A.

A risk can be described as an event that may or may not take place,
and that brings about some adverse financial consequences. It is thus nat-
ural that the modeling of risks uses probability theory. Thus, any X of
V is then a random variable and has then a probability distribution de-
noted PX . Let FX

2 denote the cumulative distribution function of PX such
that FX(x) = P{X ≤ x}. Even if the distribution function FX does not
tell us what is the actual value of X, it thoroughly describes the range of
possible values for X and the probabilities assigned to each of them. Let
GX(x) = P (X > x) = 1 − FX(x) be the survival function (also called tail
function) and E(X) the expected value of X.
For each Decision maker there exists a binary preference relation � (i.e. a
nontrivial weak order) over V . � is then transitive and complete. The re-
lation � is said to be “nontrivial” if there exists X and Y ∈ V such that
X � Y ; “complete” if ∀X, Y ∈ V , X � Y or Y � X and “transitive” if
∀X, Y, Z ∈ V , X � Y and Y � Z ⇒ X � Z. Thus for any pair of assets
X, Y ; X � Y means that X is weakly preferred to Y by the DM, X � Y

means that X is strictly preferred to Y and X ∼ Y means that X and Y are
2In words, FX(x) represents the probability that the random variable X assumes a

value that is less than or equal to x.
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considered as equivalent by the DM.

First we state three axioms which are usual and natural requirements,
whatever the attitude towards risk may be.

(A.1) � respects first-order stochastic dominance

∀X, Y ∈ V , [P (X ≥ t) ≥ P (Y ≥ t) ∀t ∈ IR] ⇒ X � Y .

In words, if, for each amount t of money, the probability that lottery X
yields more than t is greater than the probability that lottery Y yields more
than t, then X is preferred to Y . This implies that identically distributed
random variables are indifferent to the decision maker.

(A.2) Continuity with respect to monotone simple convergence

∀Xn, X, Y ∈ V
[Xn ↓ X, Xn � Y ∀n] ⇒ X � Y

[Xn ↑ X, Xn � Y ∀n] ⇒ X � Y

Xn ↓ X (resp Xn ↑ X) means that Xn is a monotonic decreasing (resp.
monotonic increasing) sequence simply converging to X.

(A.3) Monotonicity

[X ≥ Y + ε.S, ε > 0] 3⇒ X � Y

One can show that any preference relation satisfying the axioms above
may be characterized by a unique real number c(X) to be referred to as the
certainty equivalent of X : X ∼ c(X).S, where c(.) satisfies :

• X � Y ⇔ c(X) ≥ c(Y ).

• X ≥ Y ⇒ c(X) ≥ c(Y ) and X ≥ Y + ε.S, ε > 0⇒ c(X) > c(Y ).

3For A ∈ A, De Finetti’s use of A to denote the characteristic function of A [A(s) = 1

if s ∈ A, A(s) = 0 if s /∈ A] will be adopted.
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• Xn, X, Y ∈ V ; Xn ↓ X ⇒ c(Xn) ↓ c(X) ; Xn ↑ X ⇒ c(Xn) ↑ c(X).

• X �FSD Y ⇒ c(X) ≥ c(Y ).

Note that the existence of this certainty equivalent is guaranteed by the con-
tinuity and monotonicity assumptions, and it can be used as a representation
of �.

3 Models of decision under risk

Decision theory under risk has always for objective to describe agent’s be-
haviors using several uncertain perspectives and assuming that every agent
is characterized by his own preferences. Since, to completely describe these
preferences is difficult, we aim at representing them. Thus, by assigning
a numerical value to every uncertain perspective, we can easily rank one
agent’preferences. In fact, the resort to a representative function of pref-
erences form, appears to be, since a long time ago, the usual method to
describe behaviors in a uncertainty context. The evident interest is to al-
low the direct integration of these data into a formalized model and, by
extension, to understand the optimization process witch is subjacent to ev-
ery decision. Nevertheless, the determination of the preference representative
function have to rely on an axiomatic foundation. Using these axioms, we
will derive a precise specification of the value function. Let us first introduce
the classical model of decision under risk, the expected utility model.

3.1 The expected utility model (EU)

The Expected Utility (EU) model, first introduced in the seminal work of von
Neumann and Morgenstern (1944)[43] is the classical model of decision un-
der risk, witch furthermore satisfies the central sure thing principle of Savage,
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(A.4) Sure thing principle:
Let X,Y ∈ V0 such that L(X) = (x1, p1; . . . ;xi, pi; . . . ;xn, pn) and L(Y ) =

(y1, p1; . . . ; yi, pi; . . . ; yn, pn), with x1 ≤ ... ≤ xi ≤ ... ≤ xn, pi ≥ 0, y1 ≤ ... ≤
yi ≤ ... ≤ yn, pi ≥ 0 and

∑n
i=1 pi = 1 and suppose that for a certain i0, we

have xi0 = yi0 .
The axiom tells us that the preference between X and Y are unchanged if
we replace xi0 and yi0 by a common t ∈ IR.
In this model, preferences can be represented (see Fishburn and Wakker
(1995)[28]), due both to the independence axiom and the von Neumann Mor-
genstern (vNM) theorem, by the expected utility denoted E(u(X)) such that:

E(u(X)) =

∫ 0

−∞
[(P (u(X) > t))− 1] dt+

∫ ∞
0

(P (u(X) > t)dt (1)

where u is the utility function of von Neumann Morgenstern; u : IR→ IR, is
continuous, strictly increasing and unique up to an affine increasing transfor-
mation. The best decision being the one maximizing this Expected Utility.
For a discrete random variable X ∈ V0 ( X is a lottery ) with law of prob-
ability L(X) = (x1, p1; . . . ;xi, pi; . . . ;xn, pn), with x1 < ... < xi < ... < xn,
pi ≥ 0 and

∑n
i=1 pi = 1, the formula (1) reduces to:

E(u(X)) =
n∑

i=1

pi.u(xi) (2)

Even if the EU model has the advantage to be parsimonious (neverthe-
less any kind of risk aversion is characterized by a concave utility function),
many observed economic behaviors cannot be explained in the framework of
this model. Consequently, we will present, next, the Rank-Dependent Ex-
pected Utility model(RDU), a more general model, less parsimonious but
more explanatory. But above all, we rapidly investigate the Dual Yaari’s
model which is proved to be more flexible than EU theory.
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Remark 3.1. Note that in the framework of expected utility, it’s impossible to

distinguish the agent’s attitude towards risk from the agent’s attitude towards

wealth (since u is concave). By contrast, in the dual theory of choice under

risk proposed by Yaari (1987), we see easily that these two notions are kept

separate from each other.

3.2 The Yaari model

One of the most successful nonexpected utility models is the dual theory
of choice under risk due to Yaari (1987). In this model, the comonotone
independence axiom will be substituted to the sure thing principle
axiom. Let us first define comonotonicity.

Definition(A.4)’ Comonotonicity
Two real-valued functions X and Y on S are comonotone if for any s and

s′ ∈ S,
[X(s)−X(s′)] [Y (s)− Y (s′)] ≥ 0.

Axiom (A.4)’ Comonotone Independence
[X and Z are comonotone, Y and Z are comonotone, X ∼ Y ]⇒ X+Z ∼

Y + Z

Under axioms (A.1),(A.2),(A.3) and (A.4)’, Chateauneuf (1994) showed that
the function c(X) which represent preferences is not other than the certainty
equivalent of Yaari(1987):

c(X) =

∫ 0

−∞
[f(P (X) > t))− 1] dt+

∫ ∞
0

f(P (X) > t))dt (3)

Where f : [0, 1]→ [0, 1] is the probability transformation function, is contin-
uous, increasing and such that f(0) = 0 and f(1) = 1.
We can interpret the function f differently as the probability distortion or
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perception function since it is an adjustment of the underlying objective
probability due to the subjective risk perception of the decision maker.
For a discrete random variable X ∈ V0 with law of probability L(X) =

(x1, p1; . . . ;xi, pi; . . . ;xn, pn), with x1 < ... < xi < ... < xn, pi ≥ 0 and∑n
i=1 pi = 1, the formula (3) reduces to:

c(X) = x1 +
n∑

i=2

[
(xi − xi−1).f(

n∑
j=i

pj)

]
(4)

This theory, while eliminating some of expected utility’s drawbacks, shares
with expected utility the completeness assumption: the decision maker must
be able to rank any pair (X, Y ) of lotteries.

3.3 The Rank Dependent Expected Utility model(RDU)

In order to take into account the paradoxes of Allais (1953)[7] and to separate
perception of risk from the valuation of outcomes (which ones are taken into
account by the same tool, the utility function in EU theory) an alternative
theory the rank dependent expected utility(RDU) first elaborated by Quiggin
(1982)[35] under the denomination of "Anticipated Utility" has been devel-
oped since the early eighties. The Rank Dependent Expected Utility model
is the most widely used, and arguably the most empirically successful, gen-
eralization of the expected utility model(EU). Variants of this model are due
to Yaari(1987)[46] and Allais (1988)[8]. More general axiomatizations can be
found in Wakker (1994)[44], Chateauneuf (1999)[13].
Let us recall that a RDU DM weakly prefersX to Y , X, Y ∈ V if and only if
E(u(X)) ≥ E(u(Y )), where E(u(Z)) is defined for every Z ∈ V by :

E(u(Z)) =

∫ 0

−∞
[f(P (u(Z) > t))− 1] dt+

∫ ∞
0

f(P (u(Z) > t))dt (5)
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Roughly speaking, in RDU theory, individuals’ preferences over risky prospects
are represented by the mathematical expectation of a utility function u with
respect to a transformation f of the outcomes cumulative probabilities. u

utility of wealth, u : IR→ IR is assumed to be cardinal (i.e., defined up to a
positive affine transformation), strictly increasing and continuous.
f : [0, 1] → [0, 1] the probability transformation function (as in Yaari) is
assumed to be strictly increasing, continuous and such that f(0) = 0 and
f(1) = 1. Note that, in this model, the transformation function f is defined
under cumulative probabilities rather than simple probabilities. That’s why
the ranking of outcomes is fundamental (which explains the denomination of
Rank Dependent Expected Utility).
For a discrete random variable Z with probability law
L(Z) = (z1, p1; . . . ; zk, pk; . . . ; zn, pn), where z1 ≤ z2 ≤ · · · ≤ zn, pi ≥ 0 and
n∑

i=1

pi = 1, the formula (5) reduces to :

E(u(Z)) = u(z1) +
n∑

i=2

(u(zi)− u(zi−1))

[
f(

n∑
j=i

pj)

]
(6)

Such a formula is meaningful : the DM takes for sure the utility of the
minimum payoff, and then add the successive possible additional increments
of utility weighted by his personal perception of the related probability.
RDU theory reduces to EU theory if f is the identity function, and RDU
theory reduces to the dual theory of Yaari if u is the identity function. Unlike
EU, RDU preferences allows us to discriminate amongst different notions of
risk aversion.
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4 Model-free concepts of risk aversion

Along this section, we rapidly give different concepts and definitions of some
risk aversion and increase in risk that are independent to any model (e.g.
model-free). Let us first define stochastic orders.

Definition 4.1. First order stochastic dominance 4

Let X and Y the elements of V , X is said to dominate Y for the first

order stochastic dominance to be denoted (X �FSD Y ) if :

Pr[X > t] ≥ Pr[Y > t] ∀t ∈ IR

i.e, FX(t) ≤ FY (t) ∀t ∈ IR

The second concept is weaker than FSD and is called second-order stochas-
tic dominance (SSD).

Definition 4.2. Second order stochastic dominance [Rothschild and

Stiglitz, 1970[40]]

Let X, Y ∈ V , X is said to dominate Y for the second order stochastic

dominance to be denoted (X �SSD Y ) if :∫ x

−∞
FX(t)dt ≤

∫ x

−∞
FY (t)dt ∀x ∈ IR.

Definition 4.3. Weak Risk Aversion [Arrow(1965)[10], Pratt(1964)[34]]

A DM exhibits Weak Risk Aversion (WRA) if, for any random variable

X of V , he prefers to the random variable X, its expected value E(X) with

certainty:

∀X ∈ V, E(X) � X

4Stochastic dominance is a term which refers to a set of relations that may hold between

a pair of distribution
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To introduce the notion of strong risk aversion, we have first to define
Mean Preserving Spread based on second order stochastic dominance already
defined.

Definition 4.4. Mean Preserving Spread [Rothschild and Stiglitz

(1970)[40]]

For X and Y with the same mean, Y is a general mean preserving increase

in risk or Mean Preserving Spread (MPS) of X if :

∫ x

−∞
FX(t)dt ≤

∫ x

−∞
FY (t)dt , ∀x ∈ IR

E(X) = E(Y ) and X SSD Y ⇒ Y MPS X

Remark 4.5. This notion of increase in risk is considered as a special case,

for equal means, of second order stochastic dominance and it could be ex-

plained by the fact that the more risky Y is obtained by adding a noise Z5 to

X.

Definition 4.6. Strong Risk Aversion [Hadar and Russell (1969)[30],

Rothschild and Stiglitz (1970)[40]]

A DM exhibits Strong Risk Aversion (SRA) if for any pair of random

variables X, Y ∈ V with Y being a Mean Preserving Spread of X, he always

prefers X to Y :

∀X, Y ∈ V, Y MPSX ⇒ X � Y

Quiggin (1992) introduced an alternative notion of monotone (mean-
preserving) increase in risk, defined in terms of co-monotonic random vari-
ables instead of mean-preserving spreads. However, the notion of strong

5E(Z | X) = 0
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risk aversion is always considered as too strong by some DMs. As a con-
sequence, Quiggin(1991) proposed the weaker notion called monotone risk
aversion based on comonotonicity.

Definition 4.7. Mean Preserving Monotone Spread [Rothschild and

Stiglitz (1970)[40], Quiggin (1991)[36]]

For X, Y ∈ V , the distribution of Y is a monotone increase in risk of

the distribution of X, or, Y is a mean preserving monotone spread of X, if

∃ Z ∈ V such that E(Z) = 0, Z and X are comonotone and Y =d
6X + Z.

Thus, X is said to be less risky than Y for the monotone risk order denoted

X �M Y .

Definition 4.8. Monotone Risk Aversion [Quiggin (1991)[36]]

A DM is monotone risk averse if for any X, Y ∈ V with equal means such

that Y is a monotone mean preserving spread of X, the DM weakly prefers

X to Y .

i.e, ∀X, Y ∈ V, X �M Y ⇒ X � Y

Abouda and Chateauneuf (2002)[3], Abouda (2008)[1] have introduced a
new concepts of risk aversion namely symmetrical monotone risk aversion.

Definition 4.9. Symmetrical Monotone Risk Order [Abouda and

Chateauneuf 2002[4]]

Let X, Y ∈ V , X is less risky than Y for the symmetrical monotone risk

order denoted X �SM Y , if there exists Z ∈ V such that E(Z) = 0, Z

comonotone with X, Z =d −Z and Y =d X + Z.

6Y has the same probability distribution than X + Z

12



Definition 4.10. Symmetrical Monotone Risk Aversion [Abouda and

Chateauneuf 2002[4]]

A DM is said to be symmetrical monotone risk averse denoted SMRA if:

∀X, Y ∈ V, X �SM Y ⇒ X � Y

Definition 4.11. Preference For Perfect Hedging [Abouda and Chateauneuf

2002[3], Abouda 2008[1]]

The definition of preference for perfect hedging can take one of the three

following assertions:

(i) [X, Y ∈ V, α ∈ [0, 1], αX + (1− α)Y = a.S, a ∈ IR] ⇒ a.S � X or Y .

(ii) [X, Y ∈ V,X � Y, α ∈ [0, 1], αX + (1− α)Y = a.S, a ∈ IR] ⇒ a.S � Y .

(iii) [X, Y ∈ V,X ∼ Y, α ∈ [0, 1], αX + (1− α)Y = a.S, a ∈ IR] ⇒ a.S � Y .

Remark 4.12. Preference for perfect hedging means that if the decision

maker can attain certainty by a convex combination of two assets, then he

prefers certainty to one of these assets.

Chateauneuf and Tallon (2002)[21], Chateauneuf and Lakhnati (2007)[20]
have introduced a generalization of preference for perfect hedging which is
called preference for sure diversification.

Definition 4.13. Preference For Sure Diversification (Chateauneuf

and Tallon (2002)[21])

� exhibits preference for sure diversification if for any X1, ..., Xn ∈ V ;

α1, ..., αn ≥ 0 such that
∑n

i=1 αi = 1 and a ∈ IR

[X1 ∼ X2 ∼ ... ∼ Xn and
n∑

i=1

αiXi = a]⇒ a � Xi, ∀i

.

13



Remark 4.14. Preference for sure diversification means that if the deci-

sion maker can attain certainty by a convex combination of equally desirable

assets, then he prefers certainty to any of these assets.

5 From comonotonicity to Anti-comonotonicity

Two random variables are comonotone if they move in the same directions.
The notion of comonotonicity can be of great use for finance, insurance and
actuarial issues since it can lead to an increase of the risk of a random vari-
able. Hence, the necessity of anti-comonotonicity which plays a crucial role
in terms of hedging. In our context, we show how it contributes to reduce
the risk of a random variable and may even lead to a perfect hedging. In
what follows, different notions of comonotonicity that are dispersed in a wide
range of literature are reviewed. We gather different definitions and prop-
erties that have been given in various contexts then we introduce new ones
namely strict comonotonicity and strict anti-comonotonicity.

Definition 5.1. Comonotonicity [Yaari (1987), Schmeidler (1989)]

Two real-valued functions X and Y on S are comonotone if for any s

and s′ ∈ S,

[X(s)−X(s′)] [Y (s)− Y (s′)] ≥ 0.

Remark 5.2. Note that comonotonicity is not a transitive relation because

constant functions are comonotone with any function. Consistent with the

usual conventions, random variables are said to be comonotone if they are

comonotone functions almost everywhere.

Example 5.3. Let X, Y and Z ∈ V with Y constant and assume that there

exist two states of nature s and s′ in S such that:
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X(s) > X(s′) and Z(s) < Z(s′).

We see easily that X is comonotone with Y and Y is comonotone with Z but

X is not comonotone with Z.

Now, we introduce a new definition related to the concept of comono-
tonicity witch is transitive.

Definition 5.4. Strict comonotonicity

Two real-valued functions X and Y on S are strictly comonotone if for any

s and s′ ∈ S,

X(s) > X(s′) ⇔ Y (s) > Y (s′).

Remark 5.5. If X and Y are strictly comonotone then they are comonotone.

Now, we give a first definition of anti-comonotonicity as introduced in
Abouda, Aouani and Chateauneuf (2008)[2] .

Definition 5.6. Anti comonotonicity

Two real-valued functions X and Y on S are anti-comonotone if for any s

and s′ ∈ S,

[X(s)−X(s′)] [Y (s)− Y (s′)] ≤ 0.

Remark 5.7. Note that if X is anti-comonotone with Y and Y is anti-

comonotone with Z then, X and Z need not be comonotone. Such a result is

obtained, for example, because a constant random variable is anti-comonotone

with all random variables.

As it was done earlier with comonotonicity and strict comonotonicity,
we bring a new concept related to anti-comonotonicity that we call strict
anti-comonotonicity.
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Definition 5.8. Strict anti-comonotoniciy

Two real-valued functions X and Y on S are strictly anti-comonotone if for

any s and s′ ∈ S,

X(s) > X(s′) =⇒ Y (s) < Y (s′)

and X(s) = X(s′) =⇒ Y (s) = Y (s′).

i.e, X(s) > X(s′) ⇐⇒ Y (s) < Y (s′).

Remark 5.9. If X and Y are strictly anti-comonotone then they are anti-

comonotone.

We have, thus, the following property:

Property 5.10. Let X, Y and Z ∈ V .

• i) If X is strictly anti-comonotone with Y and Y is strictly anti-comonotone

with Z then X is strict comonotone with Z.

• ii) If X is strictly anti-comonotone with Y and Y is strictly comonotone

with Z then X is strictly anti-comonotone with Z.

• iii) If X is comonotone with Y and Y is strictly comonotone with Z

then X is comonotone with Z.

Proof.

• i) Suppose that X is strictly anti-comonotone with Y and Y is strictly

anti-comonotone with Z.

Let s, s′ ∈ S
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X(s) > X(s′) ⇐⇒︸ ︷︷ ︸
strict anti−com

Y (s) < Y (s′) ⇐⇒︸ ︷︷ ︸
strict anti−com

Z(s) > Z(s′).

Then X is strict comonotone with Z.

• ii) Suppose that X is strictly anti-comonotone with Y and Y is strictly

comonotone with Z

Let s, s′ ∈ S

X(s) > X(s′) ⇐⇒︸︷︷︸
strict anti−com

Y (s) < Y (s′) ⇐⇒︸ ︷︷ ︸
strict com

Z(s) < Z(s′).

Then X is strictly anti-comonotone with Z.

• iii) Suppose that X is comonotone with Y and Y is strictly comonotone

with Z.

Let s, s′ ∈ S

X(s) < X(s′) =⇒︸︷︷︸
com

Y (s) ≤ Y (s′) =⇒︸ ︷︷ ︸
strict com

Z(s) ≤ Z(s′).

Then X is comonotone with Z.

Example 5.11.

Assume that we have the following random variables defined over the set S,

set of states of nature, by:

s1 s2 s3 s4

X 1 2 3 4

X1 -2 0 0 2

X2 -2 -1 1 3

X3 4 2 -1 -3

X4 5 2 2 1

C 2 2 2 2
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Clearly, X and X1 are comonotone but not strictly comonotone.

X and X2 are strictly comonotone while X and X3 are strictly anti-comonotone.

X and X4 are anti-comonotone and not strictly anti-comonotone.

Nevertheless, constant random variables (C) does not show any relation of

strict comonotonicity or strict anti-comonotonicity with other random vari-

ables.

6 Anti monotone risk aversion in model free

In this paper, using anti comonotonicity, we define a new form of behavior
which performs a useful role in modeling behavior under risk. This aversion
to risk is called "Anti-monotone risk aversion" (ARA). Thus, a DM is said
to be anti monotone risk averse if X is weakly preferred to Y when X is less
risky than Y for the anti monotone risk order denoted X �AMO Y . In what
follows, we first, define anti monotone risk order AMO then we discuss its
properties and motivations. Finally, we show that ARA takes place between
weak and monotone risk aversion.

Definition 6.1. Anti-monotone risk order

Let X, Y ∈ V , X is more risky than Y for the anti-monotone risk order

denoted Y �AMO X, if X and Y are comonotone and there exists Z ∈ V

strictly anti-comonotone with X such that E(Z) = 0 and Y =d X + Z.

Definition 6.2. Anti-monotone risk aversion

A DM is anti-monotone risk averse denoted ARA if:

∀ X, Y ∈ V, X �AMO Y =⇒ X � Y.

18



6.1 Motivations of Anti-monotone risk aversion

Let us first give the following example

Example 6.3.

s1 s2 s3 s4

Pr 1
4

1
4

1
4

1
4

X 2 2 2 2

Z -2 -1 1 2

Y = X + Z 0 1 2 4

Z is a -zero mean- random variable defined over S and is anti-comonotone

with X.

We see here that risk has increased .

This explains why we use strict anti comonotonicity rather than anti comono-

tonicity in the definition of ARA.

Let us give now a second example

Example 6.4.

s1 s2 s3 s4

Pr 1
4

1
4

1
4

1
4

X 1 2 3 4

Z1 1 0.5 -0.5 -1

Z2 10 5 -5 -10

Z3 1.5 0.5 -0.5 -1.5
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Zi are -zero mean- random variables defined over S: X is now strict anti-

comonotone with all Zi.

Let Yi= X + Zi.

s1 s2 s3 s4

Pr 1
4

1
4

1
4

1
4

X 1 2 3 4

Y1 = X + Z1 2 2.5 2.5 3

Y2 = X + Z2 11 7 -2 -6

Y3 = X + Z3 2.5 2.5 2.5 2.5

Adding Z1 to X, leads to a decrease of the risk and we got what we call
a "hedging".
But if we add Z2 to the same random variable X, this time, the risk increases
and we obtain large gaps between the outcomes of Y2 in the opposite direc-
tion.
In definition 6.1, we have assumed X to be comonotone with Y while this
does not match with X and Y2 since, in our case, X and Y2 are not comono-
tone.
Nevertheless, Y3 = X + Z3 is called a situation of perfect hedging, such a
result can be reached by adding Z = E(X)−X to any random variable X7.

7We can see easily that E(Z) = 0 and Z is strict anti-comonotone with X. Y = E(X)

and then comonotone with X.
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6.2 Comparison between weak, monotone and anti mono-

tone risk aversion

As we will show in this part, these three kinds of behavior under risk are
logically related so that monotone risk aversion implies anti-monotone risk
aversion which in turn implies weak risk aversion. Abouda and Chateauneuf
[4] have characterized SMRA in different models of choice under risk and
they proved that SMRA is weaker than MRA. In a similar way, we estab-
lish the relation that ties monotone, anti monotone and weak risk aversion.
Theorem 6.5 and 6.6 illustrate our contribution.

Theorem 6.5.

Monotone risk aversion =⇒ Anti−monotone risk aversion.

Proof.

Let X,Z ∈ V such that Z is strictly anti-comonotone with X, E(Z) = 0 and

X + Z comonotone with X.

Given that −Z is strictly anti-comonotone with Z then, by i) of property

5.10, we have −Z is strictly comonotone with X and by iii) we get −Z is

comonotone with X + Z.

Definition 4.7 gives X + Z �M X + Z + (−Z).

Then, according to definition 4.8, we have X + Z � X.

Theorem 6.6.

Anti−monotone risk aversion =⇒ Weak risk aversion.

Proof.

Let Z = E(X)−X
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We can see easily that Z is strictly anti-comonotone with X, E(Z) = 0 and

X + Z comonotone with X.

Then, by definition 6.1, one can obtain X + Z �AMO X,

Then, following our hypothesis and definition 6.2, we have E(X) � X.

To summarize, the relation that ties anti-monotone risk aversion, weak
risk aversion and monotone risk aversion is given by the following theorem.

Theorem 6.7.

Monotone Risk Aversion

⇓

Anti-monotone risk aversion

⇓

Weak Risk Aversion

⇓8

Preference for perfect hedging

while the reciprocal assertions are not necessarily true.

Conclusion

In this paper, definitions of increases in risk, and comparative degrees of aver-
sion to such increases in risk have been presented independently to any model
of decision under risk. In this context, our contribution is to propose, using
anti-comonotonicity, a new form of risk aversion namely "Anti monotone risk

8For more details on other relationships of risk aversions see Abouda and Farhoud [5].
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aversion". We have shown that ARA is intimately related to Hedging effects.
Note that the latter is stronger than weak risk aversion while weaker than
monotone risk aversion. We give relationships between comonotone, strict
comonotone, anti-comonotone and strict anti-comonotone random variables
and we discuss some properties related to comonotonicity. Our results show
that this new aversion to risk contributes in the adjustment of risk since it
reduces the risk associated to a random variable. it participates to the re-
alization of the hedging process through the hypothesis it requires namely
strict anti-comonotonicity and comonotonicity.
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