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Abstract

This paper presents the outcome of a dynamic price-descending auction when
the distribution of the private values is uncertain and bidders exhibit ambiguity
aversion. In contrast to sealed-bid auctions, in open auctions the bidders get in-
formation about the other bidders’ private values and may therefore update their
beliefs on the distribution of the values. The bidders have smooth ambiguity pref-
erences and update their priors using consequentialist Bayesian updating.

It is shown that ambiguity aversion usually affects bidding behavior the same
way risk aversion does, but the main result is that this is not the case for continu-
ous price descending auctions. This is new among a few theoretical cases where
ambiguity aversion does not reinforce the risk aversion implications.

Keywords: Ambiguity Aversion Auctions Revenue Equivalence Smooth Ambigu-
ity

1 Introduction
A strong but unavoidable assumption done in Auction Theory states that bidders know
the distribution from which the private values are drawn. If this distribution is un-
certain, a subjective distribution of possible distributions is still needed for modeling
purposes, which can then be reduced to a single distribution.

This is not the case under ambiguity aversion, the case where a decision maker is
averse to uncertainty about the risk. Ambiguity aversion is portrayed by the seminal
experiment in Ellsberg (1961), where decision makers prefer to bet on lotteries with
known probabilities, instead of unknown, even if a priori their expected payoff is the
same.

This paper studies the consequences of relaxing the assumption of knowledge of the
distribution of private values, on equilibrium bidding behavior. Ambiguity averse pref-
erences are modeled using the smooth ambiguity model developed in Klibanoff et al
(2005). In the first-price sealed-bid auctions, ambiguity aversion leads to higher bids
even if bidders are risk neutral, whereas ambiguity has no consequence on dynamic
auctions, either price ascending or descending, if the price changes continuously. This
latter result is independent of the risk attitude of bidders, and it is a new qualitative
result on ambiguity aversion.
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There results have implications on the use of first-price sealed-bid auctions as a
sale procedure. On one side the expected revenue is higher for the auctioneer if the
distribution of the private values is ambiguous to the bidders. On the other side there
might be some crowding out of bidders if one considers costs of participation, given
that the expected utility of the participating is lower.

This paper is structured as following. Section 2 describes the evolution of the
literature and some of its issues, Section 3 presents and explains the basics, Section 4
discusses static auctions under ambiguity aversion, Section 5 goes through a dynamic
auction, and Section 6 concludes.

2 Literature
Knight (1921) makes apparently the first distinction between risk and ambiguity, call-
ing the latter uncertainty, reason for which the terms ambiguity, uncertainty and Knigh-
tian uncertainty are used interchangeably in the literature. Knight refers to “measurable
uncertainty” as risk, whereas uncertainty should be restricted to cases not “susceptible
of measurement“. Ellsberg (1961) provides on the other hand the first formal defini-
tion of ambiguity, through some experiments that violate Savage’s Subjective Expected
Utility Axioms. In these experiments, later called the Ellsberg paradox, subjects tend
to prefer unambiguous lotteries in a way that cannot be reproduced by risk aversion.

The Ellsberg’s paradox consists in an experiment with an urn with 30 red balls and
60 being either black or yellow with unknown distribution. Define lotteries as the vec-
tor (rR,rB,rY ) which pays ri, i ∈ {R,B,Y}, if a ball of color i is drawn. Subjects are
to make two choices, first between lottery (1,0,0) and lottery (0,1,0), second between
lottery (1,0,1) and lottery (0,1,1). Typically subjects prefer (1,0,0) over (0,1,0) im-
plying that their subjective probability for red is higher than that for black. However
they tend to prefer lottery (0,1,1) over (1,0,1) which implies the opposite, their sub-
jective probability for red is lower than that for black. This paradox is independent of
the risk aversion of the subjects and thus cannot be explained by it. Intuitively subjects
have a preference towards known risks, i.e. unambiguous lotteries. Ellsberg’s results
have been replicated by other experiments, see Camerer and Weber (1992) for a survey.

Schmeidler (1989) suggests that individuals act as if their subjective probability for
ambiguous events were lower than for objective equivalent ones. That is, the subjective
probability attached to black in the experiment, is lower than that for red. This leads to
non-additive probabilities, i.e. subjective probabilities that do not add up to one. Taking
this to calculate the expected utility using the usual Riemann Integral with a probabil-
ity measure leads to inconsistencies like discontinuities in the integrand and violation
of monotonicity (see Chapter 16 in Gilboa (2009)). Schmeidler (1989) uses therefore
capacities, generalized probabilities. The expected utility of an act using capacities is
given by the Choquet Integral, from which this model derives its name, Choquet Ex-
pected Utility. Taking v to be the capacity (probability), the Choquet Expected Utility
of a given act (a mapping from the states of nature to outcomes) f , with f (ω)≥ 0 for
all ω ∈Ω, is given by

V ( f ) = (C)
∫

Ω

f dv≡
∫

∞

0
v( f ≥ t)dt,

where (C)
∫

stands for the Choquet Integral and Ω is the state space. If the capacity
of event A, v(A), is interpreted as the worth of coalition A in a Transferable Utility
Cooperative Game, the Choquet Integral can be written in a more intuitive way. Given
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the non-additivity of v(·) and its ambiguity aversion interpretation given above, v(·)
should be convex - some authors take this convexity as the definition of ambiguity
aversion (for a discussion on the formal definition of Ambiguity Aversion see Epstein
(1999)). Schmeidler (1986) shows that in this case, the above Choquet integral can be
written as

(C)
∫

Ω

f dv = min
p∈Core(v)

∫
Ω

f d p. (1)

As in the core of a transferable utility game where the allocation of a player should not
only be checked against its value alone but also against all coalitions she may belong
to, the probability of a state should not enter directly but checked over all the capacities
of subsets of the states of nature to which it belongs.

The Multiple Priors or Maxmin Expected Utility model proposed by Gilboa and
Schmeidler (1989), while derived from independent axioms, has an intuition which
is related to expression (1). It assumes that the individual acts as if she had multiple
(additive) priors for the subjective probability. The expected utility of an act is the
minimum expected utility across the priors. The individuals then proceed to maximize
across these minima, therefore the name Maxmin Utility. Utility of act f over the set
of priors P is given by

V ( f ) = min
p∈P

Ep[ f ].

This model coincides with the Choquet Expected Utility if the set of priors P equals
the core of some capacity v. As Gilboa (2009) points out the set of priors should not
be interpreted as the set of all possible (given the available information) probability
distributions, which would be too broad, but as implicit subjective probabilities in line
with Savage’s Subjective Probability Framework.

Variational Preferences by Maccheroni et al (2006) are inspired on the Multiplier
Preferences from Hansen and Sargent (2001) which draws from Robust Control, in-
troduce the idea of assigning different weights to different priors. Recursive Expected
Utility or Second Order Beliefs is a further set of models weighting priors, in a similar
way that outcomes are weighted with their probability of occurring in the Expected
Utility Model. Each prior is assigned a (second-order) probability of being the correct
one, these second-order being distributed with probability measure µ . Usually priors
are indexed through some parameter θ ∈ Θ and pθ is the probability distribution for
prior θ . The utility of an act will be calculated by aggregating the certainty equivalent
of each probability prior, across all priors. The most common model in this category,
the Smooth Ambiguity Preferences, is proposed in Klibanoff et al (2005) where this ag-
gregation is a concave (convex for ambiguity loving preferences) functional φ(·) which
could be interpreted as a second order Bernoulli function. Its concavity represents the
aversion to uncertainty on the correct prior. The utility of act f is defined as

V ( f ) =
∫

Θ

φ

(∫
Ω

u( f )d pθ

)
dµ.

While clearly routed in the multiple priors model, the smooth ambiguity prefer-
ences have a straightforward intuition. In terms of attitude towards risk, a concave
Bernoulli utility function performs the task of assigning lower weight to high outcomes
and higher weight to low ones when adding the outcomes up, so that a risk averse indi-
vidual focuses more on the bad results. With ambiguity, an ambiguity averse individual
with a concave φ(·) will analogously stress those priors, i.e. those possible probability
distributions, that yield the worst scenarios in terms of expected outcome.
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Ambiguity aversion and dynamics, i.e. preference updates as new information is
gathered, have been two concepts difficult to be reconciled. The main issue can be
discussed using a dynamic version of the Ellsberg paradox proposed by Epstein and
Schneider (2003). Consider the same experiment but with an additional step after the
ball is taken from the urn, where the individual gets to know whether the ball is yellow
or not. Initially an ambiguity averse individual prefers lottery (0,1,1) over (1,0,1).
After the ball is drawn, she will have (0,1,1) ∼ (1,0,1) if the ball is yellow. In the
other case, if she bayesianly updates the priors for the remaining balls, she shall have
(1,0,1) � (0,1,1). Take for instance the Maxmin Expected Utility model with the
following set of priors P = {( 1

3 ,
1
2 ,

1
6 ),(

1
3 ,

1
6 ,

1
2 )}. Conditional on not being yellow

these priors become {( 2
5 ,

3
5 ,0),(

2
3 ,

1
3 ,0)} using Bayes rule. So the maxmin expected

utility for (0,1,1) is initially 2
3 and then 1

3 , while for (1,0,1) it decreases only from 1
2 to

2
5 . Thus, the individual does not keep his preferences in none of the intermediate states,
that is the preferences do not satisfy dynamic consistency. In this context dynamic
consistency may be loosely defined as the non-reversal of preferences from period t to
t + 1 between two acts which are equal until t, but one is preferred for every possible
prior in t +1.

Different solutions have been proposed in the literature. One enforces dynamic
consistency through the choice of the time aggregating functional (as in Klibanoff et al
(2009) for the Smooth Ambiguity Model), backward induction like the sophisticated
agents in Pollak (1968) (as in Siniscalchi (2010)), the imposition of consistency con-
ditions on the priors (as in Epstein and Schneider (2003)), or discretionary priors up-
date rules which depend on the preferences, the events and the choice problem (as in
Klibanoff and Hanany (2007) and Hanany and Klibanoff (2009)). In the above ex-
ample, a dynamically consistent ambiguity averse individual would then compulsory
prefer (1,0,1) over (0,1,1) in the beginning.

Another approach is to discard dynamic consistency, accept the above apparent
preference change and impose consequentialism, which states that the decision maker
is indifferent between two acts which yield the same payoffs for all priors, irrespec-
tively of what happened in the previous periods. To understand the implication of this
assumption in the above example, consider the preference on (1,0,0) vs. (0,1,0). The
intermediate step bares no change, either the ball is yellow and payoff is zero in both
or it is not yellow and the two available lotteries are still between red and black, so an
ambiguity averse individual should prefer the first over the second in both periods. If
now compared to the preferences (0,1,1)� (1,0,1) in the first period, consequential-
ism then states that the ambiguity averse decision maker should switch its preference
in the intermediate step if the ball is not yellow, because (1,0,1) and (0,1,1) coincide
with (1,0,0) and (0,1,0), respectively, in the remaining nodes. Consequentialism is
satisfied if the decision maker follows a Bayesian update rule for the priors.

Consequentialist priors update rules have been axiomatized according to different
requirements. Gilboa and Schmeidler (1993) axiomatize the Dempster-Shafer update
rule for the Multiple Priors Model. As new information becomes available for the de-
cision maker, she picks those priors that assign maximum likelihood to the information
and updates them with Bayes rule. They also show this coincides with Bayesian updat-
ing for capacities, provided that the Choquet and Maxmin preferences coincide. Pires
(2002) axiomatizes a different Bayesian update rule where all priors are kept and all
are updated according to Bayes rule.

Ozdenoren and Peck (2008) further suggests that dynamic inconsistent behavior of
ambiguity averse individuals can be interpreted as consistent subgame perfect equilib-
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rium strategies in a game against nature, which influences ambiguous outcomes.
There is also a rich empirical, applied and experimental literature on Ambiguity

Aversion.
Hey et al (2007) use an inventive device to simulate ambiguity in the lab. Subjects

can see a bingo blower and estimate the number of balls with different colors. Not
only do the authors confirm a widespread existence of ambiguity averse preferences
but conclude, through a series of binary tests, that Choquet Expected Utility fits the
data the best, but also claim that the decisions vary a lot across individuals.

In a portfolio choice application, Dow and Werlang (1992) show that an agent with
Maxmin Expected Utility has a price range for which she chooses not to buy and not
to sell an asset, a result unexplainable by standard preferences. This behavior is not
due to some status quo bias (as in the Bewley (2002) model) but as a safe allocation
consideration.

Epstein and Schneider (2003) claim that ambiguity aversion may explain the home
bias that investors exhibit. Ju and Miao (2009) use ambiguity aversion in an asset
pricing model to show that it can explain the equity premium and its volatility.

This is not to say that this literature is consensual. For instance, the experiments in
Halevy (2007) show that there is a significant positive correlation between displaying
ambiguity aversion and violating the reduction of compound objective lotteries. See
Al-Najjar and Weinstein (2009) for further criticism.

In terms of dynamics, Dominiak et al (2009) test the dynamic version of the Ells-
berg experiment and find that most subjects tend to follow consequentialism, meaning
that they are not acting in a dynamically consistent way. Liu and Colman (2009) com-
pare decisions between single-choice and repeated-choice Ellsberg urn choices. In the
latter, decision makers tend to pick the ambiguous option more frequently.

For a more comprehensive review on the literature see Etner et al (2009).
Few work has been put forward assessing the impact of ambiguity aversion on

auctions. Using Choquet Expected Utility, Salo and Weber (1995) show that ambiguity
aversion may explain the (beyond risk aversion) overbidding in first-price sealed-bid
auctions when the distribution of private values or the number of bidders is ambiguous.
Lo (1998) examines first and second-price sealed-bid auctions when both the bidders’
and the auctioneer’s preferences follow the Maxmin model, indicating that the effects
of ambiguity attitudes are similar, but not equal, to those of risk in terms of bidding and
revenue. Bose et al (2006) study the optimal static auction mechanism with ambiguity.
Chen et al (2007) compare experimentally the bidding behavior of bidders that know
the distribution of the opponents and bidders that have to learn it through repeated
auctions. They find that the latter have lower bids. Bose and Daripa (2009) is the first
analyzing dynamic auctions with ambiguity (bidders choose strategies from backward
induction), but from the optimal auction point of view. They show that with ambiguity,
modeled with Maxmin preferences, the auctioneer can extract almost all surplus, in
contrast to the unambiguous case.

The experiments in Armantier and Treich (2009) indicate that probabilistic bias are
the main drive of overbidding in first-price sealed-bid auctions. Some experimental
literature use compound lotteries to simulate ambiguity. While theoretically they are
very different concepts, most ambiguity aversion models can also have a bad reduction
of compound lotteries interpretation. Kocher and Trautmann (2011) run an experiment
where subjects can choose to participate in a risky or in an ambiguous first-price sealed-
bid auction. While the equilibrium price is the same in both, bidders tend to avoid the
ambiguous auction.
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3 Framework
In conventional Auction Theory the bidders (and the auctioneer) have limited informa-
tion of each other. They are not aware of the value that the auctioned object represents
for the other players and therefore they do not know the other players’ payoffs. For
any results to be established one must clearly make quantitative assumptions, so it
is assumed that the probabilistic distribution of these values is common knowledge.
While the assumption of perfect information on the probabilistic distribution may be
too strong, any more elaborate assumptions end up being equivalent to it through com-
pound lottery reduction.

It is known that, risk aversion aside, individuals display aversion to risky choices
when the probability distribution of the outcomes is not perfectly known, i.e. they
display Ambiguity Aversion. A popular method to generalize Expected Utility Theory
to allow for these preferences to be included, is the Smooth Ambiguity Model from
Klibanoff et al (2005). Instead of using a single distribution of the unknown parameters,
ambiguity is introduced through multiple possible distributions.

Formally there are multiple prior probability measures πθ , where θ ∈ Θ indexes
the priors, over the possible states of nature ω , with ω ∈ Ω. Particular to this am-
biguity model is the assumption of a probability measure over the different priors,
represented by µ defined from 2Θ to [0,1]. Ambiguity Aversion is then modeled in a
similar way as Risk Aversion, that is, using a concave function φ(·) to aggregate the
(certainty equivalent of the) outcomes of act f over all priors with µ , that is aggregat-
ing

∫
Ω

u( f (ω))dπθ over θ . Act f maps a state of nature ω ∈ Ω to an outcome f (ω)
yielding utility u( f (ω)), where the utility function u(·) is taken to be (weakly) concave
to represent risk aversion. The utility of f in the smooth ambiguity model is given by

U( f ) =
∫

Θ

φ

(∫
Ω

u( f (ω))dπθ

)
dµ. (2)

This model is chosen for several reasons. It is a smooth model, meaning that differ-
entiable functionals may be used so that the utility itself is differentiable, in opposition
to most Ambiguity Aversion models. Moreover the model allows to distinguish be-
tween the consequences of different levels of ambiguity, given by the spread of the
prior, and those of idiosyncratic ambiguity aversion, given by the shape of φ(·). A fur-
ther reason is related to dynamic decisions under ambiguity, namely the update of priors
as new information is received. Having a probability measure on the priors allows to
put more weight on priors that seem to be more credible with the new information1,
whereas other models discard some priors altogether.

In all the basic auctions being considered here an indivisible good is being auc-
tioned. The private values of the good to the n bidders are randomly drawn from
distribution Fθ with support [0,1], with θ ∈ Θ. Private values are assumed to be in-
dependently drawn across agents. The probability of each possible distribution Fθ is
given by the measure µ on 2Θ.

To enable a comparison with the unambiguous case, an equivalent subjective prob-
ability distribution FU will be defined, satisfying∫

Fn−1
θ

(x)dµ = Fn−1
U (x), ∀x ∈ [0,1]. (3)

1For a critic on the Smooth Ambiguity Model see Epstein (2010) and a reply to it Klibanoff et al (2011).
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FU can be interpreted as the reduced probability distribution that an ambiguity neutral
bidder considers. Let Gθ (x) = Fn−1

θ
(x) and similarly for GU (x),∫

Gθ (x)dµ = GU (x), ∀x ∈ [0,1].

Notice that this implies∫ d
dx

Gθ (x)dµ =
d
dx

GU (x), ∀x ∈ [0,1].

Moreover it is assumed that all priors θ , θ ∈Θ, are such that an auction with Fθ as
the value distribution has a unique monotonic equilibrium pricing strategy.

It should be underlined that these priors are the same across all bidders and they
represent the beliefs that the bidders have after learning their own value. Otherwise,
given their own value, they would update their second order beliefs µ according to it.

4 Static ambiguous auctions
The two most common types of static auctions are considered, the first-price sealed-bid
auction and the second-price sealed-bid auction.

4.1 First-price sealed-bid auction
In the first-price sealed-bid auction, all bidders submit one bid at the same time. The
good is then given to the bidder with the highest bid, for which she pays the offered
price.

Ambiguity neutrality

Consider the case of ambiguity neutral bidders with Fθ for priors and µ the measure on
the priors. The first-price sealed-bid auction will be equivalent to the unambiguous case
where values follow the FU distribution defined in equation (3). This follows directly
from the usual reduction of compound lotteries, or mathematically as the combination
of the two integrals in (2) to a single measure. With ambiguity neutrality, that is with
φ(y) = y, any expectation becomes simply

U( f ) =
∫

Θ

φ

(∫
Ω

f (ω)dFθ

)
dµ

=
∫

Θ

∫
Ω

f (ω)dFθ dµ

=
∫

Ω

f (ω)dFU ,

which is the ambiguity neutrality case.

Ambiguity aversion

If bidders have ambiguity aversion modeled as in (2), the priors cannot be reduced to a
single distribution. Consider a given increasing differentiable strategy for the first-price
sealed-bid auction β1(·), where the index 1 stands for first-price, followed by the n−1

7



opponents. A bidder with value v who chooses to bid as if she had value z, will win the
auction with probability Gθ (z), yielding in that case a utility of u(v−β1(z)), according
to prior θ ∈ Θ. The certainty equivalent of this choice is then, still according to prior
θ , Gθ (z)u(v− β1(z)). To compute the expected utility one has to aggregate over all
priors, which leads to the expected utility∫

φ (Gθ (z)u(v−β1(z)))dµ.

The best response for the strategy β1(·) will therefore solve

max
z

∫
φ (Gθ (z)u(v−β1(z)))dµ.

First order condition yields ∫
φ
′ (Gθ (z)u(v−β1(z)))×[

G′θ (z)u(v−β1(z))−Gθ (z)u′(v−β1(z))β ′1(z)
]

dµ = 0. (4)

The term in the second bracket is the optimum condition for the unambiguous case for
each prior θ . The equilibrium can be seen as a weighted mean, the φ ′(·) terms being
the weights. Introducing ambiguity aversion renders φ ′(·) decreasing, stressing those
terms in the integral where Gθ (z) is lower.

In equilibrium the bidders bid according to their value, i.e. z = v, hence the above
equation may be rewritten as

β
′
1(v) =

∫
φ ′ (Gθ (v)u(v−β1(v)))G′

θ
(v)dµ∫

φ ′ (Gθ (v)u(v−β1(v)))Gθ (v)dµ
× u(v−β1(v))

u′(v−β1(v))
.

Assume for this section that φ(·) is such that φ ′(ab) = φ ′(a)φ ′(b), for example of the
usual exponential form, φ(h) = 1

α
hα , for some α ∈ (0,1), this simplifies to

β
′
1(v) =

∫
φ ′ (Gθ (v))G′

θ
(v)dµ∫

φ ′ (Gθ (v))Gθ (v)dµ
× u(v−β1(v))

u′(v−β1(v))
. (5)

Suppose now that all priors are such that they can be ordered in the following
way, Fθ1(x) < Fθ2(x) for any x > 0 if θ1 < θ2. This implies that Gθ1(x) < Gθ2(x) for
any x > 0. Thus for higher θ , the term φ ′(Gθ (v)) will be lower for the same v > 0.
Following this assumption on the ordering of the cumulative distribution functions, it
is also assumed2 that for the hazard rate

F ′
θ1
(x)

Fθ1(x)
>

F ′
θ2
(x)

Fθ2(x)
∀x > 0, if θ1 < θ2.

Following the definition of Gθ (·), its derivative G′
θ
(x) equals (n− 1)Fn−2

θ
(x)F ′

θ
(x) so

that
G′

θ
(x)

Gθ (x)
= (n−1)

F ′
θ
(x)

Fθ (x)
.

Using the last assumption this implies that

G′
θ1
(x)

Gθ1(x)
>

G′
θ2
(x)

Gθ2(x)
.

2The second assumption while independent from the first, is not a strong one. To see this notice that the
numerators are ordered in an increasing way.
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See below for some examples.
Now, it is easy to see that the expression a−i+cai

b−i+cbi
moves monotonously from a−i

b−i
to

ai
bi

as c goes from 0 to ∞. Think of c as θ and ai
bi

as G′
θ
(x)

Gθ (x)
in the integrals of the first

fraction of expression (5). The terms of priors with lower θs will thus have a higher
weight as ambiguity aversion increases. Given that lower θs have a higher G′

θ
(x)

Gθ (x)
ratio,

the first fraction in (5) will be higher for higher ambiguity aversion. Therefore the
concavity of φ(·) implies∫

φ ′ (Gθ (v))G′
θ
(v)dµ∫

φ ′ (Gθ (v))Gθ (v)dµ
>

∫
G′

θ
(v)dµ∫

Gθ (v)dµ
, (6)

and the ratio on the left-hand side is decreasing with the ambiguity aversion parameter
α , i.e. increasing with ambiguity aversion. The ratio in the right-hand side is the
ratio that appears in the differential equation defining the ambiguity neutral bidding
equilibrium strategy, β1,N(·), where the index N stands for Neutrality, that is the one in
case of linear φ(·),

β
′
1,N(v) =

∫
G′

θ
(v)dµ∫

Gθ (v)dµ
× u(v−β1(v))

u′(v−β1(v))
.

Now if β1(v) < β1,N(v) then u(v−β1(v))
u′(v−β1(v))

>
u(v−β1,N(v))
u′(v−β1,N(v))

, and given (6) one gets β ′1(v) >

β ′1,N(v). But at v = 0 it is easy to see that β1(0) = β1,N(0) = 0. One can therefore
not have β1(v) < β1,N(v) for any v > 0 because that would imply β ′1(v) > β ′1,N(v), a
contradiction. Thus it must be that β ′1(v) is higher than β ′1,N(v) for any v > 0. This
implies the following result.

Lemma 1 In the First-Price Sealed-Bid Auction with Smooth Ambiguity the equilib-
rium bid increases as ambiguity aversion arises.

The following examples illustrate the lemma.

4.1.1 Ambiguous order with linear priors

Consider a set of priors in [0,1] where values are drawn from distributions with the
following probability density functions F ′

θ
(x) = (1+θ)− 2θx, with θ ∈ [−1,1]. For

θ1 < θ2 it holds that Fθ1(x)< Fθ2(x) and

F ′
θ1
(x)

Fθ1(x)
>

F ′
θ2
(x)

Fθ2(x)
,

because F ′
θ
(x)

Fθ (x)
= 1

x −
1

1/θ+1−x for any x.
Recall that the ambiguity aversion term φ ′(Fθ (x)) stresses those priors with lower

Fθ (x), i.e. those with lower θ . Take for instance θ = −1. According to this prior, the
value of the opponent will be drawn from F−1(x) = x2, meaning that there is higher
probability of confronting a bidder with a higher value, in comparison to the other
extreme case θ = 1, when F1(x) = 2x− x2 for example. There is so to say ambiguity
regarding the ordering of the values of the opponents. The ambiguity averse bidder
will therefore choose to place a higher bid in equilibrium.
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Ambiguous order with exponential priors

Consider the priors Fθ (x) = xθ for 0≤ x≤ 1 with θ > 0. The hazard rate will be

F ′
θ
(x)

Fθ (x)
=

θ

x
.

The assumptions are clearly satisfied (in reverse order though), i.e. Fθ1(x)> Fθ2(x) and
F ′

θ1
(x)

Fθ1 (x)
<

F ′
θ2
(x)

Fθ2 (x)
for any x if θ1 < θ2.

Ambiguous mean

Consider the case with two equally likely priors θ = 1,2 with uniform distribution of
length a < 1, whose total support is [0,1]. These priors create the following conceptual
problem to a bidder whose private value v is not included in the support of all priors,
for instance if v = 0.1 and there are two priors with support [0,0.8] and [0.2,1]. This
bidder will reject the second prior from the start, so that the ambiguity is not the same
across bidders.

It is therefore assumed that the prior distributions are of the following type for some
0 < ε < 1

1−a ,

F ′θ (x) =

{
a−1− 1−a

a ε if x ∈ [0,a] for θ = 1 or if x ∈ [1−a,1] for θ = 2,
ε otherwise.

As ε → 0, some of the fractions F ′
θ
(x)

Fθ (x)
become undetermined. Using φ(h) = 1

α
hα ,

α ∈ (0,1), it can still be proved that

∑θ φ ′ (Gθ (v))G′
θ
(v)

∑θ φ ′ (Gθ (v))Gθ (v)

weakly decreases with α . See the appendix.

4.1.2 Closed-form solutions

One can get an explicit solution for the equilibrium bidding strategies if the priors
are chosen appropriately. Take n risk neutral bidders and a finite set of priors P =
{F1, . . . ,Fm}, all equally probable (i.e., µi =

1
m for all i= 1, . . . ,m), such that 1

m ∑
m
i=1 F ′i (x)=

1 for all x ∈ [0,1]. Such set of priors satisfies 1
m ∑

m
i=1 Fi(x) = x, meaning that for an am-

biguous neutral bidder with only one opponent (n = 2), these priors correspond to a
uniform distribution. For n > 2 and x ∈ (0,1) one has that 1

m ∑
m
i=1 Fn−1

i (x) ≥ xn−1 or
FU (x)n−1 ≥ xn−1, with strict inequality if there are at least two priors with different
values.

In words, with this set of priors P the reduced cumulative distribution of the op-
ponents, FU , has a higher value for any value x than a uniform distribution with n− 1
opponents would have. That is for any value v that the bidder may have, there is here
a lower probability of having opponents with higher values than it would happen with
a uniform distribution. In an auction with ambiguous neutral bidders, the equilibrium
bidding strategy would therefore assign lower bids for each value than the correspond-
ing bid in an auction with uniform distribution.
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Choosing the ambiguity aversion parameter α = 1
n−1 , simplifies the equilibrium

conditions considerably,

β
′
1(v) =

∫
φ ′ (Gi(v))G′i(v)dµ∫
φ ′ (Gi(v))Gi(v)dµ

× u(v−β1(v))
u′(v−β1(v))

= (n−1)
∑

m
i=1 Fi(v)(α−1)(n−1)Fi(v)n−2F ′i (v)
∑

m
i=1 Fi(v)(α−1)(n−1)Fi(v)n−1

(v−β1(v))

= (n−1)
∑

m
i=1 Fi(v)α(n−1)−1F ′i (v)

∑
m
i=1 Fi(v)α(n−1) (v−β1(v))

= (n−1)
∑

m
i=1 F ′i (v)

∑
m
i=1 Fi(v)

(v−β1(v))

=
n−1

n
(v−β1(v)).

The equilibrium bid is thus the same as the basic non-ambiguous with uniformly
distributed values, β1(v) = n−1

n v, even if there are less opponents with higher values.
Like risk aversion, aversion to ambiguity pushes the bidders to play a safer strategy
which increases their chance to win at the expense of lower payoffs.

Take for instance the set of equally probable priors P = {F1,F2} with F1(x) = xa

and F2(x) = 2x− xa, where 0 ≤ x ≤ 1, a ∈ [1,2] and n = 3. At a = 1 the priors are
both the uniform distribution so there is no ambiguity and the usual equilibrium arises.
At a > 1, however, the reduced distribution with which an ambiguous neutral bidder
(α = 1) calculates her expected payoff is different. For a = 2 it will be F2

U (x) =
1
2 (x

4+

(2x−x2)2) = x2(1+(1−x)2)> x2 for any x > 0. Now for α = 1
2 and for any a∈ [1,2],

the ambiguity averse bidders have as equilibrium strategy the usual β1(v) = 2
3 v. Notice

that increasing the parameter a increases the probability of a low value of opponents
but increases the ambiguity, and has no effect in this solution because the two effects
cancel out.

4.2 Second-price sealed-bid auction
Lemma 2 In the ambiguous Second-Price Sealed-Bid Auction with ambiguity averse
bidders with smooth ambiguity preferences, bidding their own value, i.e. β2(v) = v, is
an equilibrium.

Proof. The proof is straightforward as in the ambiguity neutral and risk neutral case.
Provided that other bidders play according to β2(v), bidding less than v decreases the
probability of winning the auction without yielding higher payments, and bidding more
than v increases the number of chances in which the auction is won, but all of which
will yield negative payoffs.

This result is confirmed experimentally in Chen et al (2007).

5 Dynamic ambiguous auction
Dynamics and Ambiguity Aversion have been difficult to stitch together in the litera-
ture, as it was remarked in Section 2. Different approaches yield quite different fore-
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casts. In this section a consequentialist Bayesian update3 rule is adopted for various
reasons. First, the only empirical evidence available indicates that subjects follow con-
sequentialist update rules in the simple dynamic Ellsberg experiment, see Dominiak
et al (2009). Second, models with dynamically consistent preferences use recursive
update rules. In a price-descending auction where the price decreases continuously it
is not clear how this recursive rule should be applied. And if a discrete process is con-
sidered, the size of the price decrease in each period would have an important impact
on the outcome of these models4.

The setting in an open price descending auction bidders is much richer than in a
static auction, since bidders can collect information as the auction runs. When the
distributions are not ambiguous, as the auction price descends and no bid is placed,
there is only one type of information that bidders learn, namely they learn that there
are no opponents with values above some given threshold.

But that is not the case with ambiguity. Consider the case where bidders have two
priors on the distribution of the opponents. One indicates a higher probability of higher
values, and the other of lower values. As the price descends and bidders exclude the
possibility of having opponents with the highest possible values, the first prior starts to
look less likely than in the beginning, since the first prior decrees that there is a stronger
possibility of the auction ending with a high bid. As the auction goes on, bidders take
the second prior to be more believable and evaluate their strategies according to this
update believe. Conditional on the fact that no bidder stopped the auction until price p,
the prior beliefs, both Fθ , θ ∈Θ, and µ , will be ’updated’.

Let the conditional Bayesian beliefs, conditional on the fact that x ≤ y for some
given y, 0≤ y≤ 1, be represented by Fθ ,y(x), i.e.,

Fθ ,y(x) =
Fθ (x)
Fθ (y)

, x≤ y,θ ∈Θ.

The probability measure on the priors is also updated to µy. For given y, 0 ≤ y ≤ 1, it
is defined by

µy(A) =
∫

A Fn−1
θ

(y)dµ∫
Θ

Fn−1
θ

(y)dµ
=

∫
A Gθ (y)dµ∫
Θ

Gθ (y)dµ
, A ∈ 2Θ.

5.1 Ambiguity neutrality
When individuals are ambiguity neutral, the existence of ambiguity should not affect
the equilibrium, even if their probability measure µ is updated. In this section it is
shown that indeed ambiguity does not affect the equilibrium outcome.

Take βD,N(v) to be the monotonous equilibrium bidding strategy for a bidder with
value v, D standing for Dutch auctioneer. Suppose the n− 1 opponents are playing
this strategy and the descending price reaches level p, implying that the values of the

3Updating is arguably not the best term given that strictly speaking there is no new information. Put
differently, in the beginning of the auction bidders can infer what will be their beliefs at some future point,
provided that that point is reached.

4It could still be argued that forward looking decision makers could recognize their changing preferences
and choose suboptimal bidding strategies, i.e. stopping earlier, to prevent the predicted outcome if that would
maximize their expected payoff, in line with Siniscalchi (2010). While proving that that cannot be the case
is beyond the scope of this paper, all numerical simulations that were conducted show that at no point the
bidders prefer to bid at the current price instead of the equilibrium one - except obviously for the equilibrium
price bid. More on this issue later in the section.

12



opponents are smaller than β
−1
D,N(p). For a given own private value v, the bidder may

bid the good at p receiving∫
v− pdµz = v− p = v−βD,N(z),

where z is the private value for which p is the optimal bid, z = β
−1
D,N(p). The bidder

may consider to bid as a lower type y < z, whose bid wins with probability (according
to the updated priors) Gθ ,z(y) = Fn−1

θ ,z (y), receiving∫
Gθ ,z(y)(v−βD,N(y))dµz.

Let y be marginally smaller than z, y = z−∆, and let ∆ go to zero. The marginal gain
from ∆ will be ∫

Gθ ,z(z)(v−βD,N(z))−

∆

(
G
′
θ ,z(z)(v−βD,N(z))−Gθ ,z(z)β ′D,N(z)

)
dµz− (v−βD,N(z))

=
∫

(v−βD,N(z))−

∆

(
G
′
θ ,z(z)(v−βD,N(z))−β

′
D,N(z)

)
dµz− (v−βD,N(z))

=
∫
−∆

(
G
′
θ ,z(z)(v−βD,N(z))−β

′
D,N(z)

)
dµz,

where Gθ ,z(z) = 1 for any θ is used. In equilibrium the optimal response has v = z
such that the marginal gain is zero,

β
′
D,N(v)− (v−βD,N(v))

∫
G
′
θ ,v(v)dµv = 0,

β
′
D,N(v)− (v−βD,N(v))

∫ G
′
θ
(v)

Gθ (v)
Gθ (v)∫

Gϑ (v)dµ
dµ = 0,

β
′
D,N(v)− (v−βD,N(v))

∫ G
′
θ
(v)

GU (v)
dµ = 0,

β
′
D,N(v) = (v−βD,N(v))

G
′
U (v)

GU (v)
.

The best response satisfies the same condition as the optimal bid in the static auction.
The equilibrium conditions for both auctions are therefore equivalent.

5.2 Ambiguity aversion
Let βD(v) be the equilibrium bid in an Open Price Descending Auction. The gains
from delaying ∆ are now

13



∫
φ
(
Gθ ,z(z−∆)u(v−βD(z−∆))

)
dµz−φ (u(v−βD(z)))

≈
∫

φ
(
Gθ ,z(z)u(v−βD(z))

)
−∆φ

′ (Gθ ,z(z)u(v−βD(z))
)

(
G
′
θ ,z(z)u(v−βD(z))−Gθ ,z(z)u′(v−βD(z))β ′D(z)

)
−φ (u(v−βD(z)))dµz

= −∆φ
′ (u(v−βD(z)))

∫
G
′
θ ,z(z)u(v−βD(z))−u′(v−βD(z))β ′D(z)dµz.

As ∆→ 0, in equilibrium the marginal gain should be zero at z = v,

φ
′ (u(v−βD(v)))

[
u′(v−βD(v))β ′D(v)−

∫
G
′
θ ,v(z)u(v−βD(v))dµv

]
= 0,

u′(v−βD(v))β ′D(v)−u(v−βD(v))
∫

G
′
θ ,z(v)dµz = 0,

u′(v−βD(v))β ′D(v)−u(v−βD(v))
∫ G

′
θ
(v)

Gθ (v)
Gθ (v)∫

Gϑ (v)dµ
dµ = 0,

u′(v−βD(v))β ′D(v)−u(v−βD(v))
∫ G

′
θ
(v)

GU (v)
dµ = 0,

β
′
D(v) =

u(v−βD(v))
u′(v−βD(v))

G
′
U (v)

GU (v)
. (7)

This result holds for any differentiable φ(·), implying that in the dynamic auction, the
optimal strategy does not depend on the ambiguity aversion level of the bidders.

Lemma 3 In a Dutch Auction with Smooth Ambiguity the equilibrium bidding strategy
is independent of the Ambiguity Attitude of the bidders, i.e. βD = βD,N .

Proof. Above.

Lemma 4 Expected utility, given by smooth ambiguity preferences, from an ambigu-
ous Dutch auction is lower than that of the equivalent unambiguous one.

Proof Given the concavity of φ , it follows that∫
φ (Gθ (v)u(v−βD(v)))dµ < φ

(∫
Gθ (v)u(v−βD(v))dµ

)
= φ

(∫
Gθ (v)u(v−βD,N(v))dµ

)
.

One important corollary follows from the previous results.

Corollary 1 If there is any participation cost in the Dutch Auction, less bidders will
choose to participate in an ambiguous auction than in the equivalent unambiguous
one.

These results also show that first-price sealed-bid auctions are not equivalent to
open price descending auctions when ambiguity and ambiguity aversion are present.
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Karni (1988) points out that that equivalence only holds necessarily with expected util-
ity maximizing agents. Moreover, this bidding difference which cannot be explained
by risk aversion, is in agreement with the experimental literature (see e.g. Kagel and
Roth (1995)) which shows that first-price sealed-bid auctions have bids and revenues
which are higher than those of the risk neutral Nash Equilibrium and of the Dutch
auctions.

5.3 Anticipating consequentialism
As discussed in the introduction of this section, it is not clear how dynamic ambiguity
should be modeled. It is possible however to see that even if the bidder anticipates his
consequentialist and therefore possibly dynamic inconsistent beliefs, she still chooses
to play the same equilibrium bidding strategy - provided that the others do the same.

A bidder who evaluates her equilibrium strategy before the bidding price arrives,
that is with previous priors, may find the equilibrium strategy to be suboptimal. That
is the case at the beginning, where the bidder would rather behave as in the first-price
sealed-bid auction. Given that there is no a priori way of setting the bid in a dynamic
auction, the bidder can only choose to bid immediately instead of bidding at the equi-
librium strategy. So one should compare the certain payoff at a higher bid b with the
expected payoff of waiting until the equilibrium, using for this the priors updated until
then.

Given that closed form solutions are needed to make this comparison it is im-
possible to establish a general result, but some examples indicate that the bidders
opt for playing the equilibrium strategy defined above. Take for instance the set of
equally probable (µ1 = µ2 = 1

2 ) priors P = {F1,F2} with F1(x) = x
m

n−1 and F2(x) =

(2xn−1− xm)
1

n−1 , with m chosen appropriately (guaranteeing that F1 and F2 are non-
decreasing and with codomain [0,1]), risk neutrality and φ(h) = 1

α
hα . The reduced

distribution will be GU (x) = xn−1 so that the equilibrium strategy is βD(v) = n−1
n v.

The updated priors conditional on the maximum value of bidders having values lower
than y, 0≤ y≤ 1, will be

Fi,y(x) =
Fi(x)
Fi(y)

, µi(y) =
1
2 Fn−1

i (y)
1
2

(
Fn−1

1 (y)+Fn−1
2 (y)

) = Fn−1
i (y)
yn−1 , i = 1,2.

At bid b the bidder with value v compares the payoff of stopping, 1
α
(v− b)α with

that of waiting until the equilibrium bid βD(v),

∑
j=1,2

µ j(y)
[
(Fj,y(v))

n−1
(

v− n−1
n

v
)]α

,

where y = min{1, n
n−1 b}. Notice that for b > n−1

n and assuming that all bidders play
the equilibrium strategy, there is still no value that can be discarded because b is higher
than any equilibrium bid. There is therefore no update of the priors.

Let m = 4, n = 3 and α = 1
2 . At the beginning of the auction, stopping at a future

b yields the expected utility displayed in Figure 1 for a bidder with value v = 3
4 . This

is the problem that the bidder faces in the first-price sealed-bid auction, the maximum
payoff occurs thus at a bid higher than the equilibrium strategy in the open price de-
scending auction, n−1

n v = 1
2 . There is a slight kink at b = 2

3 , which is the equilibrium
bid of the bidder with the highest value. The probability of winning has therefore a
kink because it goes below 1 for b < 2

3 .
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Figure 1: Expected utility as anticipated at the beginning of the auction, as a function
of the bid b, for a bidder with v = 3

4 .
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Figure 2: Expected utility as anticipated as bid b is reached, of playing the equilibrium
bid strategy βD (thick) and of accepting the momentary price b, for a bidder with v = 3

4 .

Figure 2 represents the expected utility of two possible strategies, equilibrium strat-
egy βD and stopping at the current bid b, at different timings of the descending auction,
more precisely at bid b. Contrary to Figure 1, here only the probability of winning is
changing with b. For b∈ [ 2

3 ,1] there is no type of opponent that can be discarded, there
is thus no update of the priors and the probabilities are fixed. The important aspect of
this graph is to show that the equilibrium strategy βD (even if not being the optimal
bid for any point in time with b > βD) always outperforms the only possibility that the
bidder at ongoing bid b has, to stop at b. At each point the bidder that anticipates his
changing preferences, cannot do better than wait and play βD.

6 Conclusion
In Auction Theory one of the basic assumptions is that of common knowledge of the
distribution of the private values of the bidders, that is each bidder knows the distri-
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bution from which the values of her opponents are drawn. This paper relaxes this
assumption in the spirit of the literature in Ambiguity Aversion with multiple priors
and derives the equilibrium bids in basic single-good auctions.

It is shown that ambiguity aversion increases the bid in the first-price sealed-bid
auction, but ambiguity has no impact in open price descending auctions. While the
first result is intuitive, the second result follows from the fact that as the auction occurs
and the price descends, the bidders learn about the distribution of the values of their
opponents, eroding thus the ambiguity that was present in the beginning.

This entails two important results. The first concerns Auction Theory, it indicates
that first-price sealed-bid auctions and open price descending need not to be theoret-
ically equivalent. This implies that, in the presence of ambiguity, there is no revenue
equivalence between those auctions.

The second is a significant result in Ambiguity Aversion, because the paper pro-
vides a new example where ambiguity aversion and risk aversion do not have the same
qualitative effect on the outcomes of a model. Gollier (2009) in a portfolio choice
model, shows that ambiguity aversion may lead to an increased demand of a risky or
ambiguous asset. The present paper sustains that ambiguity aversion has the same
qualitative consequence on static auctions as risk aversion, but that it is not the case for
dynamic auctions.

17



7 Appendix

7.1 Ambiguous mean
Here it will be proven that for the example with ambiguous mean, the ratio

∑θ φ ′ (Gθ (v))G′
θ
(v)

∑θ φ ′ (Gθ (v))Gθ (v)

weakly decreases with α . For any v with v≤ 1−a, the fraction is

∑θ φ ′ (Gθ (v))G′
θ
(v)

∑θ φ ′ (Gθ (v))Gθ (v)
=

∑θ F(n−1)(α−1)
θ

(v) · (n−1)Fn−2
θ

(v)F ′
θ
(v)

∑θ F(n−1)(α−1)
θ

(v) ·Fn−1
θ

(v)

= (n−1)
1
a

( v
a

)α(n−1)−1
+0( v

a

)α(n−1)
+0

= (n−1)
1
v
,

which is independent of α .
For any v with 1−a < v≤ a, the fraction is

∑θ φ ′ (Gθ (v))G′
θ
(v)

∑θ φ ′ (Gθ (v))Gθ (v)
=

∑θ F(n−1)(α−1)
θ

(v) · (n−1)Fn−2
θ

(v)F ′
θ
(v)

∑θ F(n−1)(α−1)
θ

(v) ·Fn−1
θ

(v)

= (n−1)
1
a

( v
a

)α(n−1)−1
+ 1

a

(
v−(1−a)

a

)α(n−1)−1

( v
a

)α(n−1)
+
(

v−(1−a)
a

)α(n−1)

= (n−1)
1+
(

v−(1−a)
v

)α(n−1)−1

v+
(

v−(1−a)
v

)α(n−1)

=
n−1

v
1+
(
1− 1−a

v

)α(n−1)−1

1+
(
1− 1−a

v

)α(n−1) . (8)

The following derivative

∂

∂q
1+ yq−1

1+ yq =
(1− y)yq−1 lny

(1+ yq)2 ,

with y ∈ (0,1) and q > 0 is negative. Substituting y = 1− 1−a
v and q = α(n−1), it is

concluded that (8) is decreasing in α for any v ∈ (1−a,a].
For any v with v > a,

∑θ φ ′ (Gθ (v))G′
θ
(v)

∑θ φ ′ (Gθ (v))Gθ (v)
= (n−1)

0+ 1
a

(
v−(1−a)

a

)α(n−1)−1

1+
(

v−(1−a)
a

)α(n−1)

= (n−1)
1

a
(

v−(1−a)
a

)1−α(n−1)
+(v− (1−a))

.

18



Given that a < v≤ 1 it follows 0 < v−(1−a)
a ≤ 1, so the above fraction is decreasing in

α .
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