
 
 
 
 
 
 

LOSS AVERSION: AN EVOLUTIONARY PERSPECTIVE 
 
 
 

 

Abstract 
 

Loss aversion is a central element of modern theories of choice. While loss 
aversion has been extensively documented experimentally and empirically, and is 
employed to explain important economic phenomena such as the equity premium, 
its origins are not yet well understood. We suggest that loss aversion is a 
consequence of the evolutionary objective of minimizing the probability of 
extinction of one's line of descendants. A simple relationship is derived between 
the equilibrium loss aversion coefficient and the extinction probability. Empirical 
estimates of the extinction probability imply a loss aversion coefficient of 2.17, a 
value close to the estimates obtained experimentally.  
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1. Introduction 
 

 One of the key elements of Prospect Theory is that the choice among risky 

prospects is based on the change of wealth, rather than on the total wealth. In addition, 

gains and losses are evaluated differently, and losses are overweighed relative to gains of 

the same magnitude (Kahneman and Tversky 1979, Tversky and Kahneman 1992). 

These two properties are captured by the following streamlined value function 

introduced by Benartzi and Thaler (1995): 
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where x is the change of wealth relative to the current wealth,   is the loss-aversion 

coefficient, and the objective is the maximization of )]x(V[E .1 An individual with 

these preferences is indifferent to a gamble with a 50% probability of losing $1 and a 

50% probability of gaining $ . Loss aversion implies 1 , i.e. losses are weighed more 

heavily than gains. Experimental and empirical studies typically estimate   to be in the 

range 1.81-2.61 (see Table I).  

(Please insert Table I about here) 

 

 The evidence for loss aversion is overwhelming. Loss aversion is generally 

inconsistent with the standard expected utility framework, in which choice is based on 

total wealth, and it has numerous implications for economics, psychology, sociology, 

marketing and even politics. For example, Benartzi and Thaler (1995) show that loss 

aversion can provide an explanation for the equity premium puzzle. The combination of 

loss aversion and myopia have a dramatic affect on savings behavior (Gneezy and Potters 

(1997), Benartzi and Thaler (1999), and Haigh and List (2005)). Barberis and Huang 

(2001) and Berkelaar, Kouwenberg, and Post (2004) derive the implications of loss 

aversion for optimal portfolio choice and for stock returns. Hardie, Johnson, and Fader 

(1993) and Ho and Zhang (2008) study the implications of loss aversion for marketing. 

Genesove and Mayer (2001) examine the effects of loss aversion on housing markets. 

Jervis (1992) analyzes the political implications of loss aversion. Rabin (2000) and Rabin 

                                                 
1In addition to loss aversion, Prospect Theory also implies risk-aversion for gains and risk-seeking for 
losses (i.e. V(x) that is concave for x>0 and convex for x<0), and also allows for subjective probability 
weighting. As our focus in this paper is loss aversion, we abstract from these features to simplify the 
analysis and we employ the Benartzi and Thaler (1995) piecewise linear value function. 
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and Thaler (2001) show that loss aversion offers a solution to a paradoxical set of choices 

that arises in the expected utility framework. 

 While loss aversion is a cornerstone of the current theory of choice, very little is 

known about the origin of this behavior. Choices between risky alternatives are probably 

affected by education, age and life experience. However, more and more evidence is 

accumulating about the central role of genetics in determining preferences. For instance, 

empirical studies have shown that the asset allocation of identical twins are much more 

correlated than those of twins who are not identical. Furthermore, the asset allocations of 

identical twins who where raised apart are also highly correlated (see Cesarini et. al. 2009, 

2010, and Barnea, Cronqvist, and Siegel 2010). In recent years biologists and economists 

have identified specific “risk-attitude” genes (see Kuhnen and Chiao 2009, and Zhong et. 

al. 2009). If preferences are (at least partially) genetically determined, one can view the 

observed loss aversion as the result of an evolutionary process selecting for the 

evolutionary most advantageous risk attitude.2 This is the idea followed in the present 

paper. While there is a rapidly growing literature on the evolution of preferences, most of 

these studies analyze the implications for risk aversion, time preference, and group 

effects.3 In contrast, the focus of the present paper is on loss aversion. 

 In the next section we discuss several possible evolutionary objective functions, 

with a special emphasis on the objective of "having descendants forever", i.e. the 

objective of not having one's line of descendants cut-off. While there is no single 

objective function that is dominant over all others, evolutionary biologists argue that the 

having-descendants-forever objective has likely played a central role in human evolution. 

In Section 3 we develop the implications of this evolutionary objective function to risky 

choice. We show that it implies basing choices on change in wealth rather than total 

wealth, exactly as found in Prospect Theory. It also yields loss aversion. Furthermore, we 

develop a simple theoretical relationship between the equilibrium loss aversion 

coefficient   and the probability of extinction of one's line of descendants. In Section 4 

we examine this theoretical relationship by comparing the empirical extinction 

probabilities reported in the literature with the estimates of . Perhaps surprisingly, we 

                                                 
2 It is interesting to note that loss aversion has been documented not only in humans, but in monkeys as 
well (Chen, Lakshminarayanan, and Santos 2006). Tom, Fox, Trepel, and Poldrack (2007) identify specific 
regions in the brain that correspond to loss averse behavior. 
 
3 A comprehensive review of this literature is beyond the scope of this paper. An excellent overview of the 
literature of the evolution of preferences can be found in Robson and Samuelson (2010). 
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find good agreement between these apparently completely unrelated parameters. Section 

5 concludes.  

 

2. The Evolutionary Objective Function 

 In an evolutionary context, organisms can be viewed as vessels for carrying their 

genes (Dawkins 1989).  Genes are “successful” if they manage to perpetuate from one 

generation to the next. Thus, one possible evolutionary “objective function” that can be 

considered is the maximization of the expected number of offspring – the more 

offspring, the more copies of the organism’s genes are transmitted to the next 

generation. While this is a simple and intuitively appealing objective function, it may lead 

to unreasonable results. To illustrate, consider the following simplified example. Suppose 

that there are only two possible reproduction prospects or “gambles” to choose from. 

Gamble A yields 0 offspring with probability 0.3 and 2 offspring with probability 0.7. 

Gamble B yields 0 offspring with probability 0.8 and 9 offspring with probability 0.2. 

Suppose also that there are two types of preference genes: gene A that implies the 

preference of gamble A, and gene B that implies the preference of gamble B. 4 Assume 

that the gamble realizations are independent across individuals.5 Then, after T 

generations the expected number of individuals with gene A will be 

  TT ... 41270030  , while the expected number of individuals with gene B will be 

T.81 . Clearly, after some time the expected number of individuals with gene B becomes 

much larger than that of gene A, and the ratio of the expected numbers goes to infinity 

as T . This may be interpreted as “B dominates the population in the long run”, 

and it is the motivation for the criterion of maximizing the expected number of 

offspring.  

However, it is far from obvious that this criterion is evolutionary advantageous. 

Note that in the above example population B has a much larger probability than 

population A of becoming completely extinct. Let us elaborate. A direct calculation of 

the probability that A’s line becomes extinct is quite cumbersome, because there are 

infinitely many possible realizations that lead to extinction.6 Fortunately, it is much easier 

                                                 
4 As is typical in this literature, reproduction is assumed to be asexual, i.e. the offspring have the same 
preferences as their parent. 
5  In addition to this idiosyncratic randomness, individuals and species may also be exposed to “macro” or 
aggregate environmental risk. Robson (1996) and Brennan and Lo (2011) provide illuminating discussions 
of aggregate risk effects.  
6  For example, one possible scenario for extinction is that the original parent has two offspring, each one 
of these offspring has two offspring, but in the third generation all four offspring die. Of course, there are 
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to solve this problem recursively. Let us denote the probability that the line of 

descendants of an individual with gene A will become extinct by Ax .  It is possible, with 

probability 0.3, that the initial individual will have no offspring, and this will imply the 

end of his line of descendants. However, even if he survives to have 2 offspring, (and 

this occurs with probability 0.7), it is possible that the lines of both of these offspring will 

eventually become extinct.  As the offspring carry gene A, for each one of them the 

probability that his line of descendants will eventually become extinct is also by definition 

Ax . As the gambles are assumed to be independent, the extinction of one offspring is 

independent of the extinction of the other, and therefore the probability that both lines 

eventually become extinct is 2

Ax . Thus, Ax  is the solution to: 

 27030 AA x..x  ,        (2) 

which yields 4280.xA  . This value captures all of the possible scenarios leading to 

eventual extinction. The probability of A Having Descendants Forever, )HDF(pA , is 

the probability that A's line of descendants does not become extinct, and it is given by 

57201 .x)HDF(p AA  . Similarly, the probability that individual B’s line of 

descendants eventually becomes extinct is given by the solution to: 

 92080 BB x..x  .        (3) 

Solving eq.(3) numerically yields 8430.xB  , which implies 

15701 .x)HDF(p BB  .7 Thus, while the ratio of the expected population of A to 

the expected population of B converges to zero as T , type A has a much higher 

probability of surviving forever. How can these two facts be reconciled? Note that as T  

becomes large the probability distribution of the number of B descendants becomes very 

skewed – there is a large probability that B will become extinct, but there is a small 

probability that B will have a very large number of descendants. This extreme low-

probability event drives the high expected value of B descendants.   

 Extinction plays an obvious central role in the evolutionary dynamics. One may 

suspect, though, that once the population of a given type reaches a certain size, the 

probability of extinction in the i.i.d. reproduction framework is negligible. However, 

evolutionary biologists show that the p(HDF) criterion may be very important even after 

                                                                                                                                            
infinitely many such scenarios leading to extinction, and the probability of eventual extinction, xA in the 
notation below, is the sum of probabilities for all these events. 
7 Equations (2) and (3) are special cases of the general Galton-Watson (1875) equation for the probability 
of extinction of a family line. 
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the number of individuals in each preference type has become large, for at least three 

reasons: i) genetic diversity8,  ii) population "bottlenecks"9, and iii) the “founder effect”10.  

 Another evolutionary objective function suggested in the literature is the 

geometric mean growth rate. Note, however, that this criterion is applied to the growth 

rate of the entire population, rather than to individual choice, and these two frameworks 

can be very different, depending on the correlation between the individuals. Moreover, if 

there is any probability of extinction, the geometric mean is 0, and the comparison of 

gambles becomes meaningless. 

 Each of the different evolutionary objective functions employed in the literature 

has its pros and cons. Evolutionary biologists argue that the p(HDF) objective plays a 

central role (see, for example, Cohen 1993, and references therein).  We do not presume 

to determine that maximizing p(HDF) is the “correct” objective function, nor that it is 

the only one that should be considered. Our standpoint is that the p(HDF) criterion 

likely plays an important role in the evolutionary process, and should therefore be given 

careful consideration. This is the path followed in this paper. The viewpoint that both the 

number of descendants and the p(HDF) are important is beautifully captured by the 

following biblical blessing: 

 

                                                 
8 Consider, for example, the types A and B discussed above. Suppose that there are 100 individuals with 
risk preference gene A, and 100 individuals with gene B. Furthermore, assume that individuals carry many 
other genes in addition to the risk preference gene, i.e. each individual represents a unique combination of 
genes (or alternatively, each “individual” actually represents a sub-type). After many generations, out of the 
100 sub-types carrying gene A, on average 57.2 will survive (recall that 5720.)HDF(pA  ) . In contrast, 
out of the initial 100 sub-types carrying gene B, on average only 15.7 will survive. Thus, the preference for 
higher p(HDF) maintains more genetic diversity, which is an obvious evolutionary advantage. For example, 
environmental conditions may drastically change, making only a very small number of sub-types viable. 
The type with more genetic diversity has a higher probability to survive such a change.  
 
9 When viewed in a short-run perspective, populations usually grow at rather steady rates. However, when 
viewed at a longer-run perspective, the population size sometimes changes abruptly and dramatically, 
typically due to changes in the environmental conditions. There are known instances where populations 
that were very large underwent drastic declines, reaching the verge of extinction. If extinction is eventually 
avoided, these episodes are called "population bottlenecks". Evolutionary biologists believe that the human 
population experienced a population bottleneck some 60,000-70,000 years ago, a rather short time in 
evolutionary terms, possibly due to the eruption of the Toba super-volcano in Indonesia (see Ambrose 
1998, Hawks et. al. 2000, and Dawkins 2004). This may explain the fact that all human males can trace 
their ancestry back to a single male, the so-called “Y-chromosomal Adam” that lived around 60,000 to 
90,000 years ago (Dawkins 2004). Clearly, in a near-extinction situation maximization of p(HDF) becomes 
a very important evolutionary objective function: the family lines that survived the bottleneck are likely 
those with genes "programmed" to maximize the probability of having descendants forever (Cohen 1993). 
 
10 This effect refers to the situation where a small group becomes separated from the main population, 
and explains, for example, the very limited gene pool in Iceland, or the extraordinarily high percentage of 
deaf individuals in Martha’s Vineyard (Mayr 1959). 
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Your descendants would have been like the sand, your children like its numberless grains; their 

name would never be cut off nor destroyed from before me.     

Isaiah 48:19 

 

This blessing is composed of two parts: the first is the promise of many descendants (like 

the number of grains of sand); the second is the promise of Having Descendants Forever 

(their name would never be cut off). The two parts have different meaning, and both 

parts are important.  

To the best of our knowledge, the first to introduce the concept of HDF to 

economics was Meginniss (1977), who analyzed p(HDF) in the framework of a constant 

birth probability per unit time and a constant death probability per unit time. Perhaps 

surprisingly, in the long time that has passed since Meginniss’s innovative work, the 

p(HDF) criterion has not received much attention11. The purpose of this paper is to 

develop the concept of p(HDF) in a general setting, and to examine the implications of 

this criterion for the evolutionary foundations of loss aversion. 

 

 

3. Loss Aversion and Minimization of the Extinction Probability 

   

From an evolutionary standpoint, the objective function is defined in terms of 

the number of offspring. Standard economics defines utility in terms of consumption. Of 

course, there is a close relation between consumption and the number of offspring – the 

more resources at an individual’s disposal, the more offspring s/he can raise. While the 

exact relation between the level of consumption and the number of offspring is not 

obvious, here we adopt the standard, and the most simple, assumption that raising each 

offspring requires a certain level of consumption, C, and hence the number of offspring 

is proportional to consumption12. 

Consider an individual with N existing offspring, each of which has a probability 

x of having his line of descendants eventually becoming extinct. The individual faces a 

probability of Nx that his line of descendants will become extinct (i.e. p(HDF)=1- Nx ; as 

                                                 
11  A few exceptions are Lesourne (1977) and  Rubin and Paul (1979). 
12 This assumption clearly does not hold in modern human societies, where the relationship between 
wealth and number of offspring is often reverse. However, it is probably a reasonable approximation for 
the era during which our preferences have evolved, and indeed, this is the assumption made in most 
studies. For example, Sinn (2003) writes: “… it is assumed that the number of children a parent has is 
proportional to the amount of resources he commands”.  
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before, we assume independence across offspring). Now, the following risky gamble 

presents itself: gain m additional offspring with probability mp , m-1 additional offspring 

with probability 1mp , …, lose k offspring with probability kp . I.e. the gamble is: 

)k,p;,p;,p;m,p;m,p( kmm    101 101 .13 From the perspective of 

minimizing the probability of extinction, when should such a gamble be accepted? 

Without the gamble the probability of extinction is Nx . With the gamble, there is a 

probability of mp  for having N+m offspring, a probability of 1mp  for having N+m-1 

offspring, etc., and therefore the extinction probability is: 

kN
k

mN
m

mN
m xpxpxp 





  1

1 . Thus, the gamble should be accepted if and only if: 

NkN
k

mN
m

mN
m xxpxpxp  





 1

1 ,         (4) 

or: 

11
1  





k

k
m

m
m

m xpxpxp  .       (5) 

Equation (5) implies that the decision about the gamble is independent of the number of 

existing offspring, N. This result has a profound implication. Just as in the Prospect 

Theory framework a gamble is evaluated based on the change of wealth, independently of 

the existing wealth, in the evolutionary framework we find the same result: gambles are 

evaluated based on the change in the number of offspring, independently of the existing 

number. This suggests an evolutionary basis for the experimentally revealed reference-

point behavior as described by Prospect Theory.  

 We would like to go further, and relate the loss aversion coefficient,  , to the 

evolutionary objective function. Note, however, that there is no analytical solution to the 

criterion for a general gamble as described in eq.(5). Hence, we will restrict ourselves to a 

more basic gamble which can be treated analytically. Namely, consider a gamble by which 

there is a probability p of gaining one additional offspring, and a probability of 1-p of 

losing one offspring. In this case, eq.(4) becomes: NNN xx)p(px   11 1 ,  and 

eq.(5) becomes 11 1  x)p(px , or: 

 012  )p(xpx ,                     (6) 

which yields:  

                                                 
13 As the number of offspring can not be negative, we have a restriction k<N. 
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 p
x


1

1
.14           (7) 

Thus, the gamble should be accepted if and only if the success probability exceeds 
x1

1
, 

where x is the probability of eventual extinction for each offspring.  

Note that for p 1/2 the gamble is refused for any value of 10  x , i.e. if the 

gamble is fair (or worse) it is refused, in line with the notion of loss aversion. Eq.(7) 

implies that the smaller x is, the larger the probability p required to make the gamble 

acceptable. The intuition for this is as follows. An addition of one offspring increases 

p(HDF) less than the reduction of one offspring diminishes it. This is why a fair gamble 

is not accepted, and why p must be larger than 1/2 for the gamble to be accepted. If x is 

close to 1, the difference between 1nx and 1nx  is not very large, and therefore p does 

not have to exceed 1/2 by much. However, if x is small the above difference is 

(relatively) large, and p must be large to compensate. In other words, when most 

offspring are likely to have descendants forever, an additional offspring does not 

contribute much to p(HDF), but a reduction of one offspring does have a large effect on 

p(HDF). Thus, a large p is required to make the gamble acceptable. 

 How would the above gamble be evaluated in the Prospect Theory framework? 

Given that an additional offspring corresponds to an additional consumption of C, and 

that a loss of an offspring corresponds to –C, the value function (1) implies that the 

gamble should be accepted if and only if: 

 01  C)p(pC  ,        (8) 

or:  p



1

.         (9) 

                                                 
14  The expression on the r.h.s.  of eq.(6) is an upward facing parabola, so the x's solving eq.(6) are those 

between the two roots of the equation 012  )p(xpx . These roots are: 

 
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p

p
x

p

)p(

p

p

p

)p(p
x , 1

1

2

121

2

121

2
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21

2

21 











  Thus, any x in the 

relevant range 0<x<1 that satisfies p/)p(x  1  also satisfies eq.(6). Rearranging, we obtain: 

p
x


1

1
. 
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Comparing eqs.(7) and (9) reveals that 
x1

1
 in the evolutionary framework plays 

the role of 



1

 in the Prospect Theory framework. Simplifying the relation between x 

and  , we obtain:  



 


11

1

x
 

   

1

x .                (10) 

Hence, 
x

1
 plays the role of the loss-aversion parameter  . The value of   has been 

experimentally and empirically estimated to be approximately 2.2 (see Table I). In the 

next section we discuss the empirical estimates of the extinction probability x that appear 

in the literature, and evaluate the theoretical relation between   and x developed above. 

 

4. Empirical Estimates of the Extinction Probability 

  

The probability of a human family line becoming extinct was discussed as early as 

1845 by Bienaymé, who analyzed the extinction of noble families, and later by de 

Candolle (1873), Galton and Watson (1875), Lotka (1931), Steffenson (1933), and 

Kolmogorov (1931) (for an excellent review of the literature on this subject see Albertsen 

(1995)). The most rigorous empirical analysis of the extinction probability was conducted 

by Keyfitz and Tyree (1967) and Keyfitz (1968) who estimate the extinction probability 

by employing statistics on the probability ip  of having i children. They use these 

probabilities to find the extinction probability as the solution to the Galton -Watson 

(1875) equation15. 

 Keyfitz and Tyree (1967) and Keyfitz (1968) estimate the extinction probabilities 

for family lines in two developing countries (Mexico and Israel), and three developed 

countries (U.S., Hungary, and Japan).16 The values they find are reported in Table II. The 

developing countries are presumably closer to the environment in which preferences 

                                                 
15 The Galton-Watson equation is given by: m

m xp...xpxppx  2
210   where ip  is the 

probability of having i offspring and x is the probability that the line of descendants eventually becomes 
extinct. This equation is a generalization of equations (2) and (3) employed to solve for the extinction 
probabilities in the specific examples of Section 2. 
16 This is the country categorization at the time corresponding to the sample period of  the Keyfitz and 
Tyree study. See http://www.census.gov/population/international/data/idb/country.php. 
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have evolved over the long history of human evolution. The average extinction 

probability for the developing countries is 460.x  . 

 This value corresponds by the theoretical prediction of eq.(10) to a loss aversion 

coefficient of 172
460

11
.

.x
 .17 This value is very close to the value of  2.20, 

which is the typical estimate for the loss aversion coefficient obtained in the very 

different experimental framework of Prospect Theory (see Table I). It is encouraging and 

perhaps even surprising that we obtain values that are so similar from two completely 

different and independent approaches. 

(Please insert Table II about here) 

 

5. Conclusion 

While most studies take preferences as exogenously given, an innovative strand 

of the economics literature suggests viewing preferences as the result of the process of 

evolution. In this literature the number of offspring is typically assumed to be 

proportional to the level of consumption, and thus there is a correspondence between 

consumption gambles and gambles on the number of offspring. Most of the studies in 

this strand take the evolutionary objective function as the maximization of the expected 

number of offspring, or alternatively, as the maximization of the geometric mean growth 

rate of the entire population. While these objectives are appealing and intuitive, in this 

paper we suggest that careful consideration should also be given to another evolutionary 

objective function advocated by evolutionary biologists: minimizing the probability of 

extinction of one’s line of descendants (or, equivalently, maximizing the probability of 

Having Descendants Forever, p(HDF)). This objective captures elements that likely play 

an important role in the evolutionary process, and are absent in the more standard 

objective functions. 

 We show that maximizing the probability of Having Descendants Forever 

implies loss aversion. The criterion for accepting/rejecting a reproduction gamble in the 

evolutionary framework is independent of the number of existing offspring,  which can 

explain why wealth (or consumption) gambles are evaluated independently of current 

                                                 
17 For the developed countries the average extinction probability is somewhat higher at 630.x   (because 
in the developed countries the average number of children is lower than in the developing countries).  This 

value corresponds to a lower loss aversion coefficient of  ..
.

591
630

1
  Note, however, that the 

environmental conditions in developed countries are probably representative only of the last few decades, 
before which they likely resembled those in developing countries. 
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wealth in the Prospect Theory framework. Moreover, we find a simple theoretical 

relationship tying the equilibrium loss aversion parameter,  , with the probability of 

extinction of one's line of descendants, x: 
x

1
 .  

 Empirical estimates of the family-line extinction probabilities in developing 

countries yield an average value of 460.x  . This corresponds to a loss aversion 

parameter of  172
460

1
.

.
 . This value is very close to the experimental and 

empirical estimates of  , which are typically in the range 2.1-2.3. While various caveats 

obviously apply, it is quite surprising and encouraging to find such an agreement between 

these two   a-priori completely unrelated parameters, from two different scientific areas.  

These findings suggest an evolutionary explanation for the experimentally and 

empirically observed loss aversion. The evolutionary origin of loss aversion may be 

further explored via several different paths. First, it may be possible to identify the exact 

gene responsible for loss aversion behavior, directly demonstrating that loss aversion is 

(at least partially) a genetically transferable trait. It may also be possible to find secluded 

populations that have developed in different environmental conditions with different 

extinction probabilities, and to examine whether the different probabilities also 

correspond to different average degrees of loss aversion across the different populations. 

Finally, agent-based simulation studies of the evolution of a heterogeneous population 

may shed light on the time it would take for the equilibrium loss aversion parameter to 

arise as a result of the evolutionary process.   
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Table I 

Experimental and empirical estimates of the loss aversion parameter,  . All of the 
studies below are experimental, except Levy (2009) which is based on empirical data 
of risk and return parameters in international capital markets. See Abdellaoui, 
Bleichordt, and Paraschiv (2007) for alternative definitions and methods of 
estimating loss aversion. 
 

 λ
Kahneman, Knettsch, and Thaler (1990) 2+ 

Tversky and Kahneman (1991) 2+ 
Kahneman and Tversky (1992) 2.25 
Pennings and Smidts (2003) 1.81 
Abdellaoui, Bleichordt, and L’Haridon (2008) 2.61 
Levy (2009) 2.3 

 

 

 

 

 

Table II 

The probability of a person's line of descendants eventually becoming extinct, x, for 
different countries, as estimated by Keyfitz and Tyree (1967) and Keyfitz (1968). 
The average value for the developing countries (shaded) is x=0.46. 

 

Mexico 0.4066 

Israel 0.5144 

USA 0.8206 

Hungary 0.7130 

Japan 0.3242 

 

 


