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Ambiguous choice problems which involve three or more outcome 

values can reveal aspects of ambiguity aversion which cannot be 

displayed in the classic two-outcome Ellsberg urn problems, and 

hence are not always captured by models designed to accommodate 

them. This is primarily due to features of the models which have 

little bite in the classic examples but which impose strong 

restrictions in choice over more general prospects. This paper 

considers several such examples and examines how the standard 

models of ambiguity aversion perform in such cases. 
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Consider the following decision problems. The Slightly Bent Coin Problem 

involves two sources of ambiguity. One source is a balanced coin which has been 

slightly bent. It still has some well-defined probability, in the sense that if it were 

to be flipped millions of times, there is some fixed value to which the proportion 

of heads would converge – you just don’t know what that value is, and you only 

get to flip once. In this sense it exhibits exactly the same type of ambiguity as 

displayed by the event black (or yellow) in the classic Three-Color Ellsberg Urn – 

repeated sampling with replacement would also yield some fixed limiting 

proportion of black draws, but again, you don’t know what that proportion is. The 

only difference is that since the coin is only slightly bent, you know that its 

unknown proportion is very close to one half. The other source of ambiguity in 

the problem is an urn containing a ball, which could be either black or white. The 

mechanics of the coin flip does not depend upon the contents of the urn, and the 

coin is flipped and the ball drawn simultaneously. The bets are based on the 

outcome of the flip and the color of the ball.  

     SLIGHTLY BENT COIN PROBLEM 

                BET I                  BET II 

   black   white      black     white 

 heads  +$8,000   $0 
vs. 

heads     $0         $0 

tails  –$8,000   $0  tails   –$8,000   +$8,000 

 
The next problem, the Thermometer Problem, involves bets on the temperature 

in Timbuktu at noon next May Day. The thermometer is more than just a very 

accurate digital thermometer – it’s a perfectly accurate analogue thermometer, 

which can exactly report any value in the continuum. Divide the continuum of 

feasible temperatures into an extremely large number of equal-length intervals. 

Bet 1 yields its prize if the temperature t lands in the left 45% of any interval and 

$0 otherwise, and Bets 2, 3 and 4 have a similar structure. 



 

3 

 

THERMOMETER PROBLEM 

45 90
100 100

1 2
1,000 1,000

ET ET 

ET ET 

B 1  ($6,000 if  in left  of any interval) vs. B 2  ($3,000 if  in left  of any interval)

B 3  ($6,000 if  in left  of any interval) vs. B 4  ($3,000 if  in left  of any i 

t t

t t nterval)  

The final problem, the Upper/Lower Tail Problem, involves two urns with 

identical ambiguity properties: each contains exactly one red ball, along with two 

other balls, each of which could be either black or white. Each urn’s bet involves 

the same prizes $0, $c and $100, where $c is your certainty equivalent of an 

objective 50:50 lottery of $0 versus $100. In each bet the outcome $c is 

ambiguous. The difference between the choices is that in Urn I this ambiguity is 

across the lower tail outcomes $0 and $c, whereas in Urn II it is across the upper 

tail outcomes $c and $100.  

UPPER/ LOWER TAIL PROBLEM 

URN I  URN II 

two balls one ball  one ball two balls 

     

  black   white  red vs. red   black   white 

$0 $c $100 $0 $c $100 

 

I. Introduction 

The concept of objective uncertainty dates back at least to 17th Century French 

gamblers such as Pascal and Fermat, and mathematicians have since developed 

the theory of probability far beyond what is needed (or could even be applied) by 

economists or other decision theorists. Although humans faced situations of 

subjective uncertainty (plagues, earthquakes…) long before the invention of dice 

or roulette wheels, the formal recognition and specification of subjective 
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uncertainty as a distinct concept is much more recent.
1
  More recent still is the 

formal development of subjective probability, in which the theory of probability 

can be applied to an individual’s beliefs – and hence their decisions – in 

subjective settings, and which has typically been posited jointly with expected 

utility risk preferences and termed subjective expected utility.
2
 

While the combination of subjective probability theory with classical expected 

utility theory would seem to constitute the ideal framework for the analysis of 

choice under uncertainty, a still more recent phenomenon has caused researchers 

to question the empirical validity of the subjective probability hypothesis. These 

are the well-known thought experiments proposed by Daniel Ellsberg (1961, 

1962,2001). So-called Ellsberg urns present situations of objective, subjective, 

and mixed objective/subjective uncertainty, and most individuals’ preferences for 

bets on such urns seem to systematically violate the existence of well-defined 

subjective probabilities. This feature of preferences has been termed ambiguity 

aversion. Economists and others have responded to this phenomenon by 

developing models – typically generalizations of subjective expected utility – 

designed to accommodate ambiguity aversion, and such models have been 

usefully applied to the analysis of economic behavior. 

While they successfully model behavior in the classic Ellsberg (1961) examples, 

one can argue that such models may be too influenced by the specific features of 

those particular examples, to the extent that they may fail to capture aspects of 

ambiguity aversion in even slightly more general settings. In particular, all of 

Ellsberg’s classic examples involve bets over a single pair of outcome values 

(Ellsberg used $0 and $100). Each of the major models is of course defined over 

multiple-outcome prospects. But if they are to have any use for economic 

 

1
 E.g., Keynes (1921), Knight (1921). 

2
 E.g., Savage (1954), Anscombe and Aumann (1963). 
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analysis, they must also be able to capture aspects of ambiguity aversion over 

such prospects. 

The purpose of this paper is to consider some decision problems involving three 

or more outcome values, and examine how the major models of ambiguity 

aversion perform in such cases. Are they capable of modeling Ellsberg-  

(or Allais-) type behavior in these more general settings?  For each decision 

problem, we examine the senses in which ambiguity averse (or ambiguity loving) 

preferences might depart from classical subjective expected utility preferences, 

and whether the models are capable of predicting – or even allowing for – such 

departures. Not all the examples involve the usual Ellsberg-type mix of objective 

and subjective uncertainty – some involve only purely subjective uncertainty. 

Thus, some of the difficulties with these models cannot be ascribed just to how 

they handle Ellsberg-type mixed uncertainty, but involve their deeper features.
3
 

The following section reviews the classic Ellsberg urn examples and some of 

the models which have developed in response to them. Sections III, IV and V 

present examples which reveal aspects of ambiguity and ambiguity aversion 

which can arise in a world with three or more outcomes, and examine how the 

models perform in such cases. Section VI concludes. 

 

3
 Although three-outcome examples have been discussed by Segal (1992), 

Diecidue and Wakker (2001), Nau (2001), Zhang (2002), Ergin and Gul (2009), 

Wakker (2010), even Ellsberg (1961,1962,2001), and experimentally examined 

by MacCrimmon and Larsson (1979,Sect.8), Tversky and Kahneman (1992), 

Fennema and Wakker (1996), Wu and Gonzalez (1999), Abdellaoui, Vossmann 

and Weber (2005), Diecidue, Wakker and Zeelenberg (2007), L’Haridon and 

Placido (2008,2010),  Hey, Lotito and Maffioletti (2010), Baillon, L’Haridon and 

Placido (2011) and others, to my knowledge none of the examples presented in 

this paper have appeared in the literature. 



 

6 

 

II. Classic Urns and Major Models 

A. Classic Ellsberg Urn Problems 

In his 1961 article and 1962 PhD thesis,
4
 Ellsberg presented a class of decisions 

problems involving both subjective and objective uncertainty, which seem to 

contradict the classic subjective expected utility hypothesis as axiomatized and 

formalized in Savage (1954). The example now known as the Three-Color 

Ellsberg Paradox involves an opaque urn containing 90 balls. Exactly 30 of these 

balls are known to be red, and each of the other 60 is either black or yellow, but 

the exact numbers are unknown, and could be anywhere from 0:60 to 60:0. A ball 

is to be drawn from the urn, and the decision maker is presented with two pairs of 

bets based on the color of the ball, as illustrated below:
5
  

     THREE-COLOR ELLSBERG PARADOX 

 30 balls 60 balls 

   

 red black yellow 

a1      $100     $0    $0 

a2         $0 $100      $0 

a3      $100     $0 $100  

a4         $0 $100  $100  
 

 

4
  Ellsberg’s thesis has since been published as Ellsberg (2001). 

5
 Ellsberg (1961,pp.653-656; 2001,pp.155-158). Ellsberg (2001,pp.137-142) 

discusses an essentially equivalent version with the payoffs $100:$0 replaced by  

$0:–$100. 
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Ellsberg conjectured, and subsequent experimenters have found,
6
 that most 

individuals would prefer bet a1 over bet a2, and bet a4 over bet a3, which we will 

refer to as Ellsberg preferences in this choice problem. The example is termed a 

“paradox” since such preferences directly contradict the subjective probability 

hypothesis – if the individual did assign subjective probabilities to the events 

{red,black,yellow}, then the strict preference ranking a1  a2 would reveal the 

strict subjective probability ranking prob(red) > prob(black), but the strict ranking 

a3  a4 would reveal the strict ranking prob(red) < prob(black).  

The widely accepted reason for these rankings is that while the bet a1 

guarantees a known probability 1/3 of winning the $100 prize, the probability of 

winning offered by a2 is unknown, and could be anywhere from 0 to 2/3. 

Although the range [0,2/3] has 1/3 as its midpoint, and there is no reason to 

expect any asymmetry, individuals seem to prefer the known to the unknown 

probability. Similarly, bet a4 offers a guaranteed 2/3 chance of winning, whereas 

the probability offered by a3 could be anywhere from 1/3 to 1. Again, individuals 

prefer the known-probability bet. Ellsberg referred to bets a2 and a3 as involving 

ambiguity, and a preference for known-probability over ambiguous bets has come 

to be known as ambiguity aversion. 

Ellsberg’s article contained two additional widely-cited examples. In the left-

hand example below, known as the Two-Urn Ellsberg Paradox,
7
 Urn I contains 

100 red and black balls in unknown proportions, and Urn II contains exactly 50 

red and 50 black balls. Again, typical preferences are for the known-probability 

bets b2 and b4 over their unknown-probability counterparts b1 and b3, again 

 

6
 See the surveys in MacCrimmon and Larsson (1979), Camerer and Weber 

(1992), Kelsey and Quiggin (1992), Siniscalchi (2008) and Hey, Lotito and 

Maffioletti (2010). 

7
  Ellsberg (1961, pp.650-651,653). 
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contradicting the subjective probability hypothesis
8
 and reflecting the same type 

of ambiguity aversion as in the Three-Color Paradox. In the right-hand example, 

known as the Four-Color Ellsberg Paradox,
9
 the typical rankings c1  c2 and c3 

 c4 imply prob(green) > prob(black) and prob(green) < prob(black) respectively, 

and reveal the same type of ambiguity aversion as in the previous examples. 

Ellsberg observed that such examples can be viewed as providing systematic 

violations of Savage’s Sure-Thing Principle.
10

  As mentioned, these and related 

examples have received a great deal of experimental confirmation (see Note 6). 

 TWO-URN ELLSBERG 

PARADOX 

 FOUR-COLOR ELLSBERG 

PARADOX 

  URN I  URN II  (single urn) 

 100 balls  50 balls  50 balls  100 balls 50 balls 50 balls 

            

    red green black yellow  red green black yellow 

b1   $100   $0      c1      $100    $100    $0    $0    

b2     $100    $0     c2      $100    $0    $100    $0    

b3   $0    $100      c3      $0    $100    $0    $100    

b4     $0    $100     c4      $0    $0    $100    $100    

 

8
  b1  b2 would reveal prob(red) < prob(black), but b3  b4 would reveal 

prob(green) < prob(yellow), violating the requirement that these probabilities 

satisfy prob(red) + prob (green) = prob(black) + prob (yellow) = 1. 

9
   Ellsberg (1961,p.651,note 1). 

10
 Savage (1954,p.23,Postulate P2). These three examples also violate Axiom 

P4* (Strong Comparative Probability) of Machina and Schmeidler (1992,p.761). 
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B. Major Models of Ambiguity Aversion  

Ellsberg’s examples have spurred the development of models which generalize 

and/or weaken the classic Subjective Expected Utility Model to allow for 

ambiguity aversion. In the finite-outcome setting, the objects of choice consist of 

purely objective lotteries P = (…; xj , pj ;…) yielding xj with probability pj for 

some (say, monetary) outcome set X = {x},  purely subjective acts ƒ() = [x1 on 

E1 ; … ; xn on En] yielding xi on event Ei for some partition {E1 , … , En} of a 

subjective state space S ={…,s,…} or S  RN, and mixed objective/subjective 

bets
11

 [P1 on E1;…;Pn on En], which are subjective bets whose “outcomes” 

consist of objective lotteries Pi = (…; xij , pij ;…). The family of mixed objective/ 

subjective bets is seen to include the family of purely objective lotteries and the 

family of purely subjective acts. 

Classical subjective expected utility preferences over such prospects can be 

represented by a preference function which takes the form 

(1) ; on ; ( ) ( )( )SEU i i i i

i

W x E U x E   

over purely subjective acts, and more generally, the form 

(2) ;( ; , ; ) on ; ( ) ( )( ) [ ]SEU ij ij i ij ij i
ji

W x p E U x p E     

over mixed objective/subjective bets, for some increasing cardinal utility function 

U() over outcomes and additive subjective probability measure () over events.  

 

11
 Such bets are also known as Anscombe-Aumann acts (Anscombe and 

Aumann (1963)). 
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One of the major models of ambiguity aversion over subjective or mixed 

objective/subjective bets is the Rank-Dependent (or Choquet) Model of 

Schmeidler (1989),
12

 which takes the form 

(3)   
1

1 1( ) ( )( ); on ;( ) ( )i i

k k k kiRD i i
i

C E C EU xW x E


    

over purely subjective acts, and more generally 

(4)  
1

1 1( ) ( )( );( ; , ; ) on ;( ) ( )[ ] i i

k k k kij ijRD ij ij i
i j

C E C EU x pW x p E


    

over mixed objective/subjective bets, for some nonadditive measure C() termed a 

capacity, and where in (3) the outcomes xi and their corresponding events Ei are 

labeled so that x1  …  xn, and in (4) the conditional lotteries (…; xij ,pij ;…) 

and their corresponding events Ei are labeled so that  jU(x1 j)p1 j  …  

 jU(xn j)pn j .
13  The intuition behind the use of a nonadditive measure is that the 

union of two ambiguous events (such as black and yellow in the Three-Color Urn) 

could well be purely objective, and it requires a nonadditive measure over events 

to capture this. The event 
i

k =1Ek on which a payoff of at least xi is received is 

sometimes referred to as the bet’s good-news event for the outcome level xi. 

A second model, formalized by Gilboa and Schmeidler (1989) and termed the 

Multiple Priors (or Maxmin Expected Utility) Model, captures ambiguity aversion 

by means of the form 

(5)   
0

min ( ); on ; ( )( ) iMP i i i

i

U xW x E E



 

 
( ) P

 

 

12
 See also Gilboa (1987), which derives from an earlier version of Schmeidler 

(1989). 

13
 Schmeidler (1989,Theorem (pp.578-579)). 
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over purely subjective acts, and more generally 

(6)   
0

min ( );( ; , ; ) on ; ( )( ) [ ]ij ijMP ij ij i i
ji

U x pW x p E E



 

 
( ) P

 

for some increasing cardinal U() and some family P0 of subjective probability 

measures () over events. The intuition behind this form is that an ambiguity 

averter evaluates each subjective or mixed bet in the most pessimistic way, given 

the family of measures P0.
14

 

A more recently proposed model is the Smooth Ambiguity Model of Klibanoff, 

Marinacci and Mukerji (2005),
15

 developed in part to eliminate the “kinks at 

certainty” properties of the Rank-Dependent and Multiple Priors forms. This 

model takes the form 

(7) ( ); on ; ( ) ( )( ) ( )( )iSM i i i

i

U xW x E E d


  
 

    
( ) P

 

over purely subjective acts, and more generally 

(8) ( );( ; , ; ) on ; ( ) ( )( )( ) [ ]( )ij ijSM ij ij i i
ji

U x pW x p E E d



  


    
( ) P

 

for some increasing cardinal functions U() and (), the family P of all subjective 

probability measures () over events, and subjective probability measure () 

over P. For each (), the expected utility of the mixed objective/subjective 

prospect (…;(…;xi j ,pi j;…) on Ei ;…) would be i[ jU(xi j)p i j](Ei), and the 

individual is averse to the uncertainty in these expected utility levels which results 

 

14
 Schmeidler (1986,Prop.3;1989,pp.582-584) provides conditions under which 

the Multiple Priors Model contains the Rank-Dependent Model as a special case. 

15
 See also the earlier analysis of Segal (1987). 
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from their subjective uncertainty about () as represented by (). Risk aversion 

over objective uncertainty is captured by concavity of the utility function U(), 

and ambiguity aversion captured by concavity of ().  

The fourth major model of ambiguity aversion is the Variational Preferences 

Model of Maccheroni, Marinacci and Rustichini (2006), which takes the form  

(9)  min (; on ; ) ( ) ( )( ) ( )iVP i i i

i

U xW x E E c


 
 

   
( ) P

 

over purely subjective acts, and more generally 

(10)   min ( );( ; , ; ) on ; ( ) ( )( ) [ ]( )ij ijVP ij ij i i
ji

U x pW x p E E c


 
 

   
( ) P

 

for some increasing cardinal function U(), the family P of all subjective 

probability measures () over events, and convex function c() over P. For each 

(), the expected utility of the mixed objective/subjective bet 

(…;(…;xij ,pij ;…) on Ei ;…), namely i( jU(xij)pij)(Ei), is supplemented by a 

value c(()) representing the individual’s attitudes toward ambiguity, and the 

combined value then minimized over the family P. The above authors have 

shown how this model includes the Multiple Priors Model and the Multiplier 

Preferences Model of Hansen and Sargent (2001) as special cases. 

It is important to note how these models are applied to mixed 

objective/subjective prospects. In order to fully separate and represent their 

objective and subjective uncertainty, such prospects are expressed in the 

Anscombe-Aumann form [P1 on E1 ;…;Pn on En], and then evaluated as in 

equations (4), (6), (8) and (10). Thus, for the Three-Color Urn, the appropriate 

state space on which to apply the models is not the mixed space 

{red,black,yellow}, but rather the underlying purely subjective space {s0,…,s60} = 

{0 black balls,…,60 black balls}, whose uncertainty is, after all, the underlying 
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source of the urn’s ambiguity.
16

  Expressed in this manner, Ellsberg’s Three-

Color bets take the following form, where in each case i runs from 0 to 60: 

(11)

   

   

   

1 2

3 4

60 30 90
90 90 90 90

90 30 60
90 90 90 90

; $0, ;$100,  if ; ; $0, ;$100,  if ;

; $0, ;$100,  if ; ; $0, ;$100,  if ;

( ) ( )

( ) ( )

i i

i i

i i

i i

a s a s

a s a s





 

 

 

Each of these models has been shown to be consistent with standard Ellsberg-

type preferences in the above and similar examples, each has been formally 

axiomatized, and each has seen applications in economics.
17

 

III. Allais-Type Problems under Purely Subjective Uncertainty 

A. Purely Objective Allais-Type Problems 

Our first observation is straightforward, has been made before, and is included 

here only for completeness. It is that, since forms (4), (6), (8) and (10) of the 

above models imply expected utility preferences over purely objective lotteries, 

they are directly contradicted by purely objective phenomena such as the Allais 

Paradox, Common Consequence Effect and Common Ratio Effect.
18

     

 

16
  See the Appendix for a further discussion of this issue. 

17
 E.g. Chamberlain (2001), Epstein (2001), Hansen and Sargent (2001), 

Mukerji and Tallon (2004), Klibanoff, Marinacci and Mukerji (2005), Epstein and 

Schneider (2010), the papers in Gilboa (2004) and the 2011 Symposium Issue of 

Economic Theory in honor of the 50
th

 anniversary of the Ellsberg Paradox 

(Ellsberg, et al. (2011)). 

18
 See the MacCrimmon and Larsson (1979), Schoemaker (1982) or Machina 

(1987) for reviews of these effects. 
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Why did the developers of these models embed expected utility into their 

forms?   In the two-outcome world of the classic Ellsberg Paradoxes, the issue is 

of little consequence – all objective lotteries over a pair of monetary prizes 

{$100,$0} take the form ($100,p; $0,1–p), and given monotonicity with respect to 

p it is impossible to violate the expected utility hypothesis. It is only when three 

or more payoffs are allowed that objective expected utility is subject to Allais. 

Of course, one could argue that such models were not developed to address 

Allais-type phenomena under purely objective uncertainty, but rather Ellsberg-

type phenomena which inherently involve purely subjective and/or mixed 

objective/subjective uncertainty.
19

  However, it turns out that in a world of three 

outcomes, these models will be subject to Allais-type difficulties even under 

purely subjective uncertainty.  

B. Purely Subjective Allais-Type Problems 

The reason why Allais-type problems can extend to purely subjective 

uncertainty is that some purely subjective events can be said to be “more 

objective” than others. Take a continuum state space S = [0,1], partition it into  

m equal intervals {[0,1/m),…,[i/m ,(i+)/m),…,[(m–1)/m ,1)},
20

 and for each 

  [0,1] define [0,)×mS as the union of the left  portions of these intervals, so 

that [0,)×mS  = 
m

i =

–1

0[i/m ,(i+)/m). As shown by Poincaré (1912) and others,
21

 

 

19
 Even so, it would be nice to achieve a model:phenomenon ratio of less than 

unity. In any event, see Section V. 

20
 For simplicity, we ignore the rightmost state s = 1 in this and subsequent 

almost-objective partitions and bets. 

21
 See Machina (2004,p.9). 
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such events will satisfy m
l

im
 ( [0,)×mS ) =    for any measure () over [0,1] with 

a sufficiently regular density.  

More generally, for any set  [0,1) consisting of a finite union of intervals, 

and any positive integer m, define the event ×mS  by  

(12)  1

0
( )

m

im
i m 




   S  

that is, as the union of the natural images of  into each of S’s equal-length 

intervals. Events with this type of periodic structure are termed almost-objective 

events, and satisfy  m
l

im
 (×mS) = () for uniform Lebesgue measure () over 

[0,1]. In the limit, agents with “event-smooth” preference functions will treat 

these events in much the same way as objective events. As m such agents 

will, in the limit, exhibit common outcome-invariant revealed likelihoods of 

almost-objective events, independence of almost-objective and fixed subjective 

events, probabilistically sophisticated preferences over almost-objective bets, and 

for subjective expected utility maximizers, linearity in almost-objective 

likelihoods and mixtures.
22

 

We accordingly posit that as m grows large individuals will converge to 

indifference between an almost-objective bet [x1 on 1×mS;…;xn on n×mS] and its 

corresponding purely objective lottery (x1,(1);…;xn ,(n)). Indeed, most so-

called “objective” randomizing devices actually generate almost-objective 

uncertainty:  the events {heads,tails} for a 50:50 coin are each periodic events in 

the (subjective) force of the flip, and each slot on a roulette wheel is periodic in 

 

22
 Machina (2004,Thms.1,2&5,3,6). The definition of “event-smooth” is that 

of Machina (2004,pp.34-36). 
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the subjective force of the spin, yet they are viewed by decision makers as purely 

objective. 

 Given an individual with the standard preference rankings P1  P2 and 

P3  P4 over the Common Ratio Effect lotteries
23

 

(13)    
1 2

3 4

($6,000,.45; $0,.55) ($3,000,.90 ; $0,.10)

($6,000,.001; $0,.999) ($3,000,.002 ; $0,.998)

 

 

P P

P P
 

pick   > 0 small enough so that both P1  P2


 = ($3,000– , .90;$0,.10) and 

P3


 = ($6,000– , .001; $0,.999)  P4. Thus, in the Thermometer Problem, they 

would presumably exhibit the rankings 

(14)      

1,

2,

3,

4,

ƒ ( ) $6K on [0,.45) ; $0 on [.45,1)

$3K on [0,.90) ; $0 on [.90,1) ƒ ( )

)ƒ ( ) $6K on [0,.001) ; $0 on [.001,1

) ( )$3K on [0,.002) ; $0 on [.002,1 ƒ

[ ]

[ ]

[ ]

[ ]

m m m

mm m

m m

mm m









  

   

   

  

S S

S S

S S

S S

 

for all m greater than some m0. Since all such m are finite, all such acts are purely 

subjective. 

To see that such preferences over these purely subjective acts are incompatible 

with the Multiple Priors form (5), consider a family P0 of priors () over a state 

space S = [0,1], with uniformly bounded and uniformly continuous densities. By 

Machina (2004,Thm.0), for each finite interval union  [0,1), the convergence 

of (×mS) to () will be uniform over P0. We thus have  

 

23
 Kahneman and Tversky (1979,p.267) reported that 86% of their experimental 

subjects preferred P2 over P1, and 73% preferred P3 over P4. 
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(15)  

 
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0 0

1 1 1

1 1 1
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m m
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 



  



  

 

    

 
       

       



  

( )

( ) ( )

P

P P

S S S

S
 

That is to say, as m  , Multiple Priors preferences over almost-objective bets 

converge to expected utility. Setting U($0) = 0, (14) and (15) then yield the 

incompatible inequalities  

(16)    

1, 2,

3,

4,

lim lim

lim

lim

.45 ($6K) (ƒ ( )) (ƒ ( ))

.90 ($3K ) .90 ($3K)

.001 ($6K) .001 ($6K ) (ƒ ( ))

(ƒ ( )) .002 ($3K)

MP m MP m

MP m

MP m
m

m m

m

U W W

U U

U U W

W U











 



    

    

     

   

 

To see that such preferences are also incompatible with the Smooth Ambiguity 

form (7), assume enough regularity so that the limit can be moved inside both the 

integral sign and (), so that 

(17) 

 

   

   

     

1 1

1( )

1( )

1 1( )

lim

lim

lim

on ; ; on

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
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





   

   

     

 

 

  





   

    

    

      





 







P

P

P

S S

S

S

 

 

That is to say, as m  , this model’s preferences over almost-objective bets 

also converge to expected utility.
24

  Defining ƒ1,m(), ƒ2


,m(), ƒ3


,m() and ƒ4,m() as 

in (14) and setting U($0) = 0 again yields incompatible inequalities:  

 

24
 This has also been observed by Klibanoff, Marinacci and Mukerji 

(2005,p.1855,n.3). 
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(18)     

 

   

   

 

1, 2,

3,

4,

lim lim

lim
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.45 ($6K) (ƒ ( )) (ƒ ( ))

.90 ($3K ) .90 ($3K)

.001 ($6K) .001 ($6K ) (ƒ ( ))
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

  

  









     

   

      

  

 

To see that such preferences are also incompatible with the Variational 

Preferences form (9), assume enough regularity so that the limit can be moved 

inside the minimum function, to get 

(19) 
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S
 

Since the “min” term in the final expression is a constant independent of both the 

xi’s andi’s of an almost-objective prospect, such preferences again converge to 

expected utility over such prospects, and are thus incompatible with the Common 

Ratio Effect preferences (14).  

IV. Attitudes Toward Different Sources (and Amounts) of Ambiguity 

Although a three-outcome world leaves the Multiple Priors, Smooth Ambiguity 

and Variational Preferences Models subject to purely subjective Allais-type 

effects, nonadditivity of the measure C() in equations (3) and (4) implies that 

Rank-Dependent preferences are not necessarily subject to such effects. However, 

allowing for three or more outcomes does present a different type of difficulty for 

this model. 
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In bets that involve only two outcomes, such as the classic Ellsberg examples, 

the outcome values are necessarily “adjacent” to each other. However, adding a 

third possible outcome to an Ellsberg-type bet allows for possible interactions 

between outcome values that are not adjacent, such as the outcomes +$8,000 and 

–$8,000 in the Slightly Bent Coin Problem.  

The Slightly Bent Coin Problem differs from a typical Allais- or Ellsberg-type 

problem (as well as from the examples in Machina (2009)) in that it involves two 

rather than four bets, neither of which is purely objective or even involves any 

purely objective events. In the author’s view, the ambiguity-averse choice would 

be for Bet I, which spreads the uncertainty of receiving +$8,000 versus –$8,000 

across the less ambiguous coin rather than the more ambiguous ball. Others have 

told me they view Bet II as less ambiguous. A strict preference in either direction 

would violate the Subjective Expected Utility Model: since informational 

symmetry would imply (BH)=(BT)=(WH)=(WT)=¼, both bets would have 

a common subjective expected utility of ¼U(+$8,000)+½U($0)+¼U(–$8,000). 

Although the ambiguity averse ranking Bet I  Bet II is consistent with the 

Multiple Priors, Smooth Ambiguity and Variational Preferences Models,
25

 neither 

it nor the reversed ranking Bet I  Bet II is consistent with the Rank-Dependent 

 

25
 For the Multiple Priors Model, letting each prior () in P0 exhibit 

independence of the coin and urn, with {((black),(heads))} = [ ,1–]× 

[½–,½+] for sufficiently small , and letting U() be sufficiently concave 

would yield WMP(Bet I) > WMP(Bet II). For the Smooth Ambiguity Model, adding 

the assumption that () is the uniform measure over the set [,1–]× 

[½–,½+] would also yield WSM(Bet I) > WSM(Bet II). For the Variational 

Preferences Model, use the special case when it reduces to Multiple Priors with 

the above properties. 
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Model, which implies that the two bets must be indifferent to each other. 

Although their good news events BH and WT for the payoff +$8,000 are not the 

same, they are informationally symmetric, which would presumably imply C(BH) 

= C(WT). The two bets do have the same good news event for the payoff $0, 

namely BHWHWT. Together, this implies that the values    

(20)   

ET

ET

B ( 8 ) ( ) + (0) [ ( ) ( )]

+ ( 8 ) [1 ( )]

B ( 8 ) ( ) + (0) [ ( ) ( )]

+ ( 8 ) [1 ( )]

(  1)

(  2)

RD

RD

W U K C BH U C BH WH WT C BH

U K C BH WH WT

W U K C WT U C BH WH WT C WT

U K C BH WH WT

    

  

    

  

 

must be equal, so that the Rank-Dependent Model implies indifference between 

the bets. In other words, the Rank-Dependent Model cannot represent a 

preference (in either direction) for one of these sources of ambiguity over the 

other. This is presumably relevant if real-world decisions involve different 

sources, with different amounts, of ambiguity.
26

 

To see that this difficulty arises from the triple of outcome values 

{+$8,000,$0,–$8,000}, replace the $0’s by +$8,000 and –$8,000 to obtain the 

adjacent-outcome bets Bet I* and Bet II* below. An ambiguity averter would 

 

26
 Why a bent coin?  Why not use an objective 50:50 coin to make the same 

point?  As noted by Lo (2008), such a version appears in a manuscript version of 

Machina (2009). (Lo applies this version to the model of Klibanoff (2001); 

Baillon, L’Haridon and Placido (2011) and Blavatskyy (2012) apply it to other 

models.) We use a bent (and therefore purely subjective) coin here in order to 

show that the difficulties with the Rank-Dependent Model appear even in a setting 

of purely subjective uncertainty – that is, directly from equation (3), and not 

solely in the mixed uncertainty domain of equation (4). 
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presumably still prefer to stake the $8,000 uncertainty on the less ambiguous 

coin (Bet I*) than on the more ambiguous ball color (Bet II*), and the Rank-

Dependent Model can represent this preference by simply positing C(BHWH) > 

C(WHWT). The model captures ambiguity aversion in Ellsberg’s examples by 

inequalities such as C(AB) > C(A) + C(B) whenever the union of two ambiguous 

events A and B is an objective event, such as black and yellow in the Three-Color 

Ellsberg urn. But these examples only involve unions of events with adjacent 

outcome values ($0 and $100 for Ellsberg, and $8,000 for Bets I* and II*).  

The Slightly Bent Coin Problem illustrates that the Rank-Dependent Model may 

not be able to capture attitudes toward different sources or amounts of ambiguity 

when it is across nonadjacent outcome values. 

 BET I*   BET II* 

 black white   black white 

heads +$8,000 +$8,000 
vs. 

heads  –$8,000 +$8,000 

tails –$8,000 –$8,000 tails –$8,000 +$8,000 

In fact, the difficulties raised by the two-source Slightly Bent Coin Problem 

extend to the case of just a single source of subjective uncertainty. Say you’ve 

learned that a meteor of unknown size or speed has been spotted, is predicted to 

strike the earth sometime the day after tomorrow, and you are betting on a single 

subjective variable, namely the longitude ℓ of its strike. Since you know nothing 

more, from your point of view the circular state space S = [0
o
,360

o
) is 

informationally symmetric. The following bets are based on whether ℓ lands in the 

interval [0
o
,180

o
) or [180

o
,360

o
), and whether its seventh decimal is even or odd. 

This is seen to be a single-source analog of the Slightly Bent Coin Problem, 

where its highly subjective ball is replaced by the highly subjective partition 

{[0
o
,180

o
),[180

o
,360

o
)}, and its slightly bent coin is replaced by the almost-
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objective partition {7
th

 decimal even, 7
th

 decimal odd}.
27

  Presumably, an 

ambiguity averse decision maker would prefer to spread the $8,000 uncertainty 

across the almost-objective 7
th

 decimal than across the much more subjective 

hemispheres, and prefer Bet I over Bet II. However, the good news events for the 

payoff $8,000 are informationally symmetric for the two bets, and their good 

news events for $0 are again identical, so the Rank-Dependent Model cannot 

reveal a preference for one of these forms of ambiguity over the other.  

 

METEORITE PROBLEM  (ℓ  = LONGTITUDE OF FIRST STRIKE) 

BET I BET II 

              ℓ[0
o
,180

o
)   ℓ[180

o
,360

o
)             ℓ[0

o
,180

o
)  ℓ[180

o
,360

o
)  

7
th
 decimal  

 even 
 +$8,000    $0 

  vs.    

7
th
 decimal   

 even 
$0 $0 

7
th
 decimal  

 odd 
 –$8,000    $0 7

th
 decimal   

 odd 
–$8,000  +$8,000  

 

V. Attitudes Toward Ambiguity at Different Outcome Levels 

A third aspect of ambiguity aversion which can arise in a world of three or more 

outcomes is that, just as with risk and risk aversion, ambiguity can occur at 

different final wealth levels or different gain/loss levels in a prospect, and 

individuals may exhibit different amounts of ambiguity aversion at these different 

outcome levels. This is not so apparent in the three-outcome bets of the Slightly-

Bent Coin Problem, where in each bet its upper and lower outcomes +$8,000 and 

 

27
 Since it is based on only a single source of subjective uncertainty, this 

example also differs from the examples in Machina (2009), which are based on 

one objective and two separate sources of subjective uncertainty. 
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–$8,000 enter with equal ambiguity. But in general, a prospect with three or more 

outcomes can exhibit more ambiguity at or about some outcome levels than 

others, and this leads to another source of difficulties for the four models we’re 

considering. This can occur whether or not the functions U() and () in these 

form exhibit the standard Arrow-Pratt conditions.
28

  As in Section IV, each 

example in this section only involves a single pair of bets. 

This can be seen from the Upper/Lower Tail Problem. Each urn’s bet involves 

the same triple of outcomes $0, $c and $100, where $c is the decision maker’s 

certainty equivalent of the objective lottery ($0,½;$100,½).
29

  But as noted above, 

the ambiguity in Urn I is across the lower outcomes $0 and $c, whereas in Urn II 

it is across the upper outcomes $c and $100. If ambiguity aversion somehow 

involves “pessimism,” mightn’t an ambiguity averter have a strict preference for 

Urn II over Urn I?   

 Maybe yes, maybe no. But whether or not an ambiguity averter should prefer 

one bet over the other, none of the models we are considering allow this to happen 

in either direction. To see this, express these mixed bets in a manner which 

separates their objective from their subjective uncertainty – that is, as Anscombe-

Aumann acts – so they can be evaluated by the models’ formulas (4), (6), (8) and 

(10). The following table presents these mappings from states to objective 

lotteries, where the underlying subjective uncertainty of each urn is given by its 

 

28
 That is to say, whether or not the expressions –U(x)/U(x) or –(x)/(x) 

are constant, increasing or decreasing in x. 

29
 Lest the value $c in this example be interpreted as coming from backwards 

induction of some two-stage prospects, we assume that this monetary amount has 

been independently and previously obtained from preferences over single-stage, 

purely objective lotteries. 
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state space {BB,BW,WB,WW}, namely the Cartesian product of the 

informationally symmetric spaces {ball #1 black, ball #1 white} and {ball #2 

black, ball #2 white}. For example, when both the unknown-color balls in Urn I 

are black, it yields a 2/3 chance of paying $0 and a 1/3 chance of paying $100; if 

both are white, it yields a 2/3 chance of $c and a 1/3 chance of $100, etc.  

 BB BW WB WW 

  URN I ($0,⅔ ;$100,⅓) ($0,⅓ ;$c,⅓ ;$100,⅓) ($0,⅓ ;$c,⅓ ;$100,⅓) ($c,⅔ ;$100,⅓) 

  URN II ($0,⅓;$c,⅔) ($0,⅓ ;$c,⅓ ;$100,⅓) ($0,⅓ ;$c,⅓ ;$100,⅓) ($0,⅓;$100,⅔) 

expected utility ⅓ ½ ½ ⅔  

If we normalize so that U($0) = 0 and U($100) = 1, $c will have a von 

Neumann-Morgenstern utility value of ½, and equations (4), (6), (8) and (10) 

imply 

Rank-Dependent Model (equation (4)): 

(21)    

2 1
3 2

1
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Multiple Priors Model (equation (6)): 

(22)   

 
0

1 1 1 2
3 2 2 3

( , , , )
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(U  I) min

(U  II)
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W


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
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Smooth Ambiguity Model (equation (8)): 

(23)  1 1 1 2
3 2 2 3

RN

RN

(U  I)

( , , , )

(U  II)

SM

BB BW WB WW BB BW WB WW

SM

W

p p p p d p p p p

W

 



       



  
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Variational Preferences Model (equation (10)): 

(24) 
 

,

1 1 1 2
3 2 2 3

, , )(
min

RN

RN

(U  I)

( , , , )

(U  II)

BB BW WB WW

VP
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p p p
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W

p p p p c p p p p
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



       
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In other words, none of the four models allow the decision maker to exhibit an 

aversion to ambiguity in the lower tail relative to ambiguity in the upper tail, or 

vice versa, in the Upper/Lower Tail Problem. 

What is it in the structure of these bets that necessitates this indifference?  As 

seen from the first two rows of the above table, the two bets have different 

mappings from states to objective lotteries, which is the source of their different 

ambiguity structures. But as seen in the third row, they have the same statewise 

distribution of expected utility values. Any decision model which evaluates a bet 

solely on its mapping from states to these values – as do the Rank-Dependent, 

Multiple Priors, Smooth Ambiguity and Variational Preferences Models
30

 – must 

necessarily be indifferent between the two bets, in spite of the fact that their 

ambiguity occurs at different outcome levels. 

Besides attitudes toward ambiguity in the lower versus upper outcomes of a 

prospect, there are other aspects of ambiguity aversion which can arise in a world 

of three or more outcomes but which cannot be fully captured by the four models. 

A relative preference for (or aversion to)  ambiguity in central outcomes versus 

ambiguity in tail outcomes could be exhibited by an individual’s ranking of the 

prospects 

 

30
 This follows since, for each event Ei, its conditional objective lottery 

(…;xij,pij;…) only enters via the bracket term [ jU(xi j)pi j] in each of equations 

(4), (6), (8) and (10).  
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SPREADS IN THE AMBIGUITY OVER A FIXED SET OF OUTCOMES 

 URN I    URN II  

one ball two balls two balls one ball  two balls one ball one ball two balls 

         

purple black white red green yellow 
vs. 

black white purple yellow red green 

1 2 3 4 5 6 

 

1 2 3 4 5 6 

where in this and the following examples, outcomes are expressed in utils rather 

than dollars.
31

 Again, the two urns’ bets involve the same set of outcome values, 

but Urn I’s ambiguity is in its central outcome values (2 vs. 3 and 4 vs. 5), 

whereas Urn II’s ambiguity is in its tails (1 vs. 2 and 5 vs. 6). It is straightforward 

to show that the two bets again exhibit the same mapping from states to expected 

utility, so none of the four models can exhibit a strict preference one way or the 

other. 

Instead of spreads in the ambiguity over a fixed set of outcomes, we can 

consider spreads in the outcomes for a fixed ambiguity structure. This can be 

exhibited by the prospects: 

SPREADS IN THE OUTCOMES FOR A FIXED AMBIGUITY STRUCTURE 

BET I         BET II         

one ball one ball 
 

one ball one ball 

  
 
  

black white red green vs. black white red green 

5 6 7 8 
 

1 2 11 12 

These two prospects possess the same ambiguity structure, and each involves 

ambiguity in both its upper and lower tail. However Bet I has a smaller outcome 

 

31
 As with the value $c in Note 29, we assume that these utility values have 

been previously obtained from single-stage objective lotteries. 
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spread than Bet II. Since the outcomes are in utils, any subjective expected utility 

maximizer whose prior reflects the informational symmetry of the urns would be 

indifferent. However, if it is the distribution and not just the mean of utility that 

matters, an ambiguity averter may well express a preference for low-spread versus 

high-spread prospects. But as before, the two bets imply the same mapping from 

states to expected utility, so none of the four models can allow for a strict 

preference. 

One might argue that a preference for Bet I over Bet II in this example would 

not be a feature of ambiguity preferences at all, but rather, implied by an 

individual’s risk aversion over monetary outcomes. But since the outcomes are 

expressed in utils, any subjective expected utility maximizer would be indifferent 

between them, regardless of the concavity/convexity of their utility of money 

function, and hence regardless of their attitudes toward risk. Any departure from 

indifference must be due to attitudes toward the differing ambiguity (in this case, 

its differing location) in the prospects – attitudes which cannot be captured by 

either subjective expected utility or the major models. 

Perhaps the most important feature of ambiguity preferences that can arise in a 

world of three or more outcomes is that attitudes toward ambiguity at high versus 

low final wealth levels, or in gains versus losses, may differ. Although this is to 

some extent displayed by the Upper/Lower Tail Problem, it is worth more explicit 

treatment. Consider Bets I and II in the following table. Bet I differs from a 50:50 

objective bet with payoffs {4,8} by introducing ambiguity about its low outcome 

4, whereas Bet II differs by introducing ambiguity about its high outcome 8.  
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AMBIGUITY AT HIGH VERSUS LOW OUTCOME LEVELS 

BET I  BET II 

one ball one ball 
 

one ball one ball 
  

 
  

black white red green vs. black white red green 

3 5 8 8 
 

7 9 4 4 

Again, informational symmetry implies that a subjective expected utility 

maximizer would have equal subjective probabilities over the states 

{BR,BG,WR,WG}, and accordingly be indifferent. Properly reordered,
32

 their 

outcome sets {3,5,8,8} and {7,9,4,4} are reflections about the values {6,6,6,6}, so 

neither prospect can be said to have a greater outcome spread than the other. But 

if ambiguity about a final wealth level of 4 matters differently than ambiguity 

about a final wealth level of 8, an ambiguity averter may have a strict preference 

for one bet over the other. But again, the two urns have identical mappings from 

states to expected utility levels, so the four models must again rank them as 

indifferent – none of them can allow for phenomena such as “decreasing absolute 

ambiguity aversion.”   

Starting from a purely objective 50:50 bet over the payoffs {–2,+2} yields an 

equivalent version of the example, this time involving attitudes toward ambiguity 

in losses versus gains.  

AMBIGUITY IN LOSSES VERSUS GAINS 

BET I  BET II 

one ball one ball 
 

one ball one ball 

  
 

  

black white red green vs. black white red green 

–3 –1 +2 +2 
 

+1 +3 –2 –2 

 

32
 Choose the informationally symmetric reordering {9,7,4,4}. 



 

29 

 

In Section III we noted that the conditional expected utility terms  jU(xij)pij in 

forms (4), (6), (8) and (10) left these models susceptible to Allais-type problems 

under purely objective uncertainty, and we have just seen how prospects with 

identical mappings from states to expected utility levels can nevertheless have 

very different ambiguity properties. It might seem that both problems could be 

averted by replacing the conditional expected utility terms in these forms by a 

Quiggin (1982) type anticipated utility term  jU(xij)(C(k

j

=1 pik)– C(k

j

=

–

1

1
pik)) 

with appropriate choice of capacity C().
33

  Although doing so may or may not 

avert objective Allais-type difficulties,
34

 it cannot avert the types of difficulties 

presented in this section. 

To see this, define p̂ so that C(p̂) = ½. Expressing outcomes in utils, the 

objective bet (–2,1– p̂;+2,  p̂) plays the same role for anticipated utility preferences 

as does the objective bet (–2,½;+2,½) for expected utility preferences: it is a two-

outcome bet with symmetric and equally weighted gains and losses, which is 

indifferent to a sure payoff of 0. Consider the following modification of the above 

Loss versus Gains example, with its ½:½ objective probabilities of drawing a 

black/white versus red/green ball replaced by an objective (1– p̂): p̂  coin flip to 

determine from which of two urns a ball is to be drawn. Bet I differs from the 

objective bet (–2,1– p̂;+2,  p̂) by introducing ambiguity about its low outcome 

level –2, whereas Bet II differs by introducing ambiguity about its high outcome 

 

33
 See, for example, Klibanoff, Marinacci and Mukerji (2005,p.1859).  Along 

the lines of equations (3) and (4), the variables are labeled such that the terms 

 jU(xij)(C(k

j

=1 pik)– C(k

j

=

–

1

1
pik)) are decreasing in i, and for each i, the values 

xij are decreasing in j. 

34
 E.g., Wu (1994), Birnbaum (2006,2008). 
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level +2. Below are the bets’ statewise conditional objective lotteries and their 

corresponding anticipated utility values. 

AMBIGUITY IN LOSSES VERSUS GAINS  (MODIFIED VERSION) 

BET I  BET II 

prob (1– p̂) prob p̂   prob p̂  prob (1– p̂) 

URN I (1 ball) URN II (1 ball) 
 

URN I (1 ball) URN II (1 ball) 

  
 
  

black white red green vs. black white red green 

–3 –1 +2 +2 
 

+1 +3 –2 –2 

 
black:red black:green white:red white:green 

 
black:red black:green white:red white:green 

(2, p̂;–3,1–p̂) (2, p̂;–3,1–p̂) (2, p̂;–1,1–p̂) (2, p̂;–1,1–p̂)  (1, p̂;–2,1–p̂) (1, p̂;–2,1–p̂) (3, p̂;–2,1–p̂) (3, p̂;–2,1–p̂) 

–½ –½ ½ ½  –½ –½ ½ ½ 

In this case, the bets have the same mappings from states to conditional 

anticipated utility levels, so forms which evaluate prospects solely on the basis of 

these mappings must again rank the bets as indifferent, and cannot admit 

phenomena such as decreasing/increasing absolute ambiguity aversion. 

VI. Conclusion 

The examples of this paper show that allowing three or more outcome values 

raises aspects of ambiguity and ambiguity aversion which do not appear in the 

classic two-outcome Ellsberg examples, and are not always captured by models 

developed in response to these original examples. Although these newer examples 

take a few different forms, they all arise from separability properties of the classic 

Subjective Expected Model which are retained by these models. 

Oddly enough, the Allais-type difficulties posed by Section III’s Thermometer 

Problem do not arise from the manner in which the Multiple Priors, Smooth 

Preferences or Variational Preferences Models treat purely objective or mixed 
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objective:subjective uncertainty. Rather, these difficulties were seen to follow 

directly from the models’ purely subjective forms (5), (7) and (9), and in 

particular, how they evaluate the purely subjective family of almost-objective 

acts. In the limit, a value (×mS) will converge to () regardless of the 

particular measure (), and when (Ei) is replaced by (Ei) in any of the forms 

(5), (7) or (9), it reverts to the additively separable expected utility form.  

In other words, models which retain too much separability over purely subjective 

uncertainty are subject to analogues of purely objective Allais-type problems. 

This is why the Rank-Dependent form (3), which does not share this feature, is 

not subject to such difficulties. 

The Meteorite Problem of Section IV arises from the fact that with three or 

more outcomes, there exist subjective partitions and purely subjective prospects 

over a state space which differ in their ambiguity structure, but not in their 

assignment of (ranked) outcomes to subjective events – or rather, in their 

assignment of ranked outcomes to informationally equivalent subjective events. 

Since the Subjective Expected Utility Model depends solely and separably upon 

this assignment, it cannot capture attitudes toward these different ambiguity 

structures. The Meteorite Problem shows that even though the Rank-Dependent 

Model only retains separability across similarly ranked prospects, that is enough 

to leave it subject to the same problems. 

The Upper/Lower Tail Problem and other examples of Section V arise from the 

fact that all four models evaluate the conditional objective lotteries of a mixed 

objective/subjective prospect via their expected utilities, in a manner which is 

conditionally separable
35

 across states – this, after all, is what allows us to 

 

35
 By “conditionally separable” I mean independently of the conditional 

objective lotteries of other states. 
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represent the prospects of Section V as mappings from states to expected utility 

values. The examples of this section show that in a world of three or more 

outcomes, conditional objective lotteries can differ from each other yet still have 

the same expected utility, so that one can construct mixed objective/subjective 

lotteries which differ (sometimes widely) in their ambiguity structure, but whose 

statewise conditional lotteries have the same expected utilities. In such cases the 

models are again incapable of capturing attitudes toward these different ambiguity 

structures. 

Separability is practically inherent in any well-specified functional form, or in 

axioms structures which generate such forms, and the examples of this paper 

show how the separability properties of the major models of ambiguity aversion 

can render them subject to the same types of difficulties faced by classic objective 

expected utility in Allais-type problems, or by classic subjective expected utility 

in Ellsberg-type problems. This suggests that researchers step back a bit and try to 

model attitudes toward ambiguity via curvature conditions on general preference 

functionals of the form V(…;xi  on Ei ;…) or V(…;(…;xi j ,pi j;…) on Ei ;…),
36

 

rather than the kinds of separability conditions inherent in forms (3) through (10). 

 

36
  By “curvature conditions” I mean the direction(s) in which ambiguity averse 

preferences “bend away” from classical Subjective Expected Utility preferences, 

much like risk aversion over objective lotteries has been modeled by von 

Neumann-Morgenstern utility functions which bend away from linearity in the 

direction of concavity. After all, some of the most fundamental results in 

economics – the Slutsky equation, existence and efficiency of competitive 

equilibrium, factor price equalization – are not based on specific functional forms, 

merely curvature conditions such as quasiconcavity or convexity. 
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Appendix:  What’s the Proper State Space for an Ellsberg Urn? 

As noted above, there is more than one way to specify the underlying state 

space of an Ellsberg urn.
37

  In our discussion of the classic Three-Color Paradox 

with its 60 balls of unknown color, we specified a 61-element space, with each 

state corresponding to the number of black balls. In our discussion of the 

Upper/Lower Tail Problem, with its two balls of unknown color, we specified a  

4-element space of the form {BB,BW,WB,WW}. Had we instead defined states by 

the number of black balls, we would have had a 3-element state space {0 black 

balls, 1 black ball, 2 black balls}. The relationship between the two specifications 

is that the latter space is slightly coarser that the former, with its state “1 black 

ball” being the union of the states BW and WB. 

Does the choice of approach matter?  Not always – given informational 

symmetry, the bets in the Two-Urn and Four-Color Ellsberg Paradoxes are such 

that the lessons of these examples would be the same under either specification.  

However, the two approaches can yield different predictions over other types of 

bets, even under informational symmetry. Consider, as does Epstein 

(2010, p.2088), bets on the actual composition of an Ellsberg urn – say Urn I in 

the Upper/Lower Tail Problem. Informational symmetry of the state space 

{BB,BW,WB,WW} would lead to indifference between staking a prize on the two 

balls being the same color versus the two balls being of different colors. On the 

other hand, informational symmetry of the space {0 black balls, 1 black ball, 2 

black balls} would lead to a strict preference for the first bet. This distinction is 

magnified when applied to the 90-ball Three-Color Urn. 

 

37
 See also the discussions in Wakker (2010, Sects. 4.9 and 10.7) and Machina 

(2011). 
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Whether individuals treat the states {BB,BW,WB,WW} or the states {0 black 

balls, 1 black ball, 2 black balls} as informationally symmetric is ultimately an 

empirical question. It turns out that the distinction does not matter for our analysis 

of the Upper/Lower Tail Problem or any of our other examples. As mentioned, we 

explicitly adopted the state space {BB,BW,WB,WW} in our analysis of this 

example. However, if we instead adopt the space {0 black balls,  

1 black ball, 2 black balls}, the table preceding equations (21) through (24) would 

take the form 

 0 black balls 1 black ball 2 black balls 

     URN I ($c,⅔;$100,⅓)  ($0,⅓;$c,⅓;$100,⅓) ($0,⅔;$100,⅓) 

    URN II ($0,⅓;$100,⅔)  ($0,⅓;$c,⅓;$100,⅓) ($0,⅓;$c,⅔) 

expected utility    ⅔  ½ ⅓ 

and the equations themselves would take the forms  

 

Rank-Dependent Model: 

(21)*   

2 1
3 2

1
3

RN

RN

(U  I) (0 black) [ (0 black 1 black) (0 black)]

[1 (0 black 1 black)] (U  II)

RD

RD

W C C C

C W

     

    
 

Multiple Priors Model: 

(22)*    00 black 1 black 2 black

2 1 1
3 2 30 black 1 black 2 black

( , , )
RN

RN

(U  I) min

(U  II)

MP

MP

p p p
W p p p

W


       



P
 

Smooth Ambiguity Model: 

(23)*

 2 1 1
3 2 30 black 1 black 2 black 0 black 1 black 2 black

RN

RN

(U  I) ( , , )

(U  II)

SM

M

W dp p p p p p

W

       




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Variational Preferences Model: 

(24)* 
  

0 black 1 black 2 black

2 1 1
3 2 30 black 1 black 2 black 0 black 1 black 2 black

( , , )

RN

RN

(U  I)

min ( , , )

(U  II)

VP

VP

p p p

W

cp p p p p p

W





       



P
 

In other words, the two urns will continue to have the same mapping from states 

to expected utility levels, and the four models will continue to imply indifference. 

A similar argument applies to the “Spreads in the Ambiguity over a Fixed Set of 

Outcomes” example of Section V, which is the only other example in Sections III, 

IV or V which allows for the two alternative specifications of its state space.  
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