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Theories of rational choice often make the structural consistency assumption that every decision maker’s

binary strict preference among choice alternatives forms a strict weak order. Likewise, the very concept

of a utility function over lotteries in normative, prescriptive, and descriptive theory is mathematically

equivalent to strict weak order preferences over those lotteries, while intransitive heuristic models violate

such weak orders. Using new quantitative interdisciplinary methodologies, we dissociate the variability

of choices from the structural inconsistency of preferences. We show that laboratory choice behavior

among stimuli of a classical “intransitivity” paradigm is, in fact, consistent with variable strict weak order

preferences. We find that decision makers act in accordance with a restrictive mathematical model that,

for the behavioral sciences, is extraordinarily parsimonious. Our findings suggest that the best place to

invest future behavioral decision research is not in the development of new intransitive decision models

but rather in the specification of parsimonious models consistent with strict weak order(s), as well as

heuristics and other process models that explain why preferences appear to be weakly ordered.
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Bob and Joe meet for three meals. Restaurants A, B, and C are

compatible with Joe’s diet. On Monday, C is closed, and Bob

prefers A to B. On Tuesday, A is closed, and Bob would rather eat

at B than eat at C. On Friday, Bob is indifferent between A and C,

but he asks not to go to B. Joe expected Bob to like A the best and

C the least. Is Bob inconsistent?

On Monday, Bob craves a sandwich, for which A outshines B.

On Tuesday, he wants a soup, with B being an easy choice. On

Friday, Bob craves a salad, which B does not offer, while A and C

have salad bars. Even though Bob first chooses A over B, then B

over C, then is indifferent between A and C, and prefers both to B,

this cannot be interpreted to mean that Bob makes incoherent

decisions. Rather, Bob compares the restaurants by quality of his

desired entree, and the resulting rankings (with possible ties) of the

restaurants vary as he seeks out different entrees. We need to

dissociate behavioral variability from structural inconsistency.

The literature on individual decision making is internally con-

flicted over whether preferences can be modeled with unidimen-

sional numerical utility representations and, in particular, whether

variable choice behavior can be reconciled with transitive prefer-

ences. Even a leading thinker in the field, Amos Tversky, was the

author of both the most influential intransitivity study (Tversky,

1969) and, later, the most influential (transitive) numerical repre-

sentation, (cumulative) prospect theory (Kahneman & Tversky,

1979; Tversky & Kahneman, 1992). Regenwetter, Dana, and

Davis-Stober (2011) questioned the literature on intransitivity of

preferences and reported that the variable binary choice data they

considered were generally consistent with variable (transitive)

linear order preferences. In this article, we develop a much more

direct, general, and yet also powerful test of unidimensional utility

representations and associated (transitive) “weak order” prefer-

ences. Even though our experimental stimuli have a historical track

record of allegedly revealing inconsistent preferences, our findings

support the highly restrictive class of numerical utility theories.

Consider the two data sets at the top of Figure 1. These show the

number of times, out of 45 repetitions, that decision makers chose

a row gamble over a column gamble. For instance, Participant 9

(Gamble Set III of our experiment) chose gamble a over gamble b

on 28 trials, chose b over a on eight trials, and expressed indif-

ference among a and b on nine trials. The primary goal in this
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article is to disentangle such variable overt choices from inconsis-

tent latent preferences. We show that a restrictive quantitative

model of variable, but structurally consistent, decision making

explains a large set of empirical data. According to this model,

individual preferences form strict weak orders, that is, asymmetric

and negatively transitive binary relations, as defined in Formulas 2

and 3 below. We consider the class of all possible decision theories

that share the structural property that decision makers, knowingly

or unknowingly, rank-order choice options, allowing the possibil-

ity that they are indifferent between some options. Should this

structural property be violated over those lotteries, then all theories

of (unidimensional) utility would be violated, including expected

utility theory and its many offspring, such as (cumulative) prospect

theory. Should preferences be strict weak orders, however, then an

even larger class of binary relations would be rejected, including

all theories with intransitive preferences, such as intransitive heu-

ristics and regret theory (Loomes & Sugden, 1982). Our approach

is unique in that we found a way to test the pivotal concept of weak

order preferences directly, hence to test the very notion of a utility

function directly without limiting ourselves to particular functional

forms (e.g., “expected utility” with “power” utility for money) or

even to cash stimuli. Returning to Figure 1, we later show that

Figure 1. Illustration with real and hypothetical ternary paired comparison data. The top gives two real ternary

paired comparison data sets. The model fits one set perfectly and is violated significantly by the other. We

illustrate one facet-defining inequality (FDI) for Participant 9 (Set III). The center panel illustrates a hypothetical

random utility representation and the corresponding mixture. The joint distribution of the random utilities is on

the left, the weak order probabilities are on the right. Below are the implied binary choice probabilities and the

corresponding expected frequencies for ternary choice (45 repetitions).
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Participant 9 (Set III) is not just approximately, but perfectly,

consistent with variable weak order preferences, whereas Partici-

pant 22 (Set II), whose data look superficially similar, in fact,

violates the model. Throughout the article, we use the term pref-

erence to refer to a hypothetical construct that might not be

directly observable and the term choice to refer to the observed

behavior of participants when asked to select an option.

Motivation and Background

Why is the concept of rank ordering choice alternatives such a

central and pivotal construct in psychological and economic the-

ories of decision making? Many laboratory and real life decisions

share a common structure: They typically involve various out-

comes that are contingent on uncertain states of the world. Deci-

sion making is often complicated by intricate trade-offs among

different attributes, outcomes, and uncertainty or risk. Psycholog-

ical experiments in the laboratory often use cash lotteries as choice

alternatives. In addition to such cash lotteries, we offered our

participants noncash options similar to the following prospects A

and C.

Prospect A: HReceive 40 movie rentals with a probability of .26

Receive or lose nothing otherwise.

Prospect C: HReceive 7 books with a probability of .22

Receive or lose nothing otherwise.

A major class of decision theories hypothesizes a numerical

value U(i) associated with each prospect i. These numerical theo-

ries state that a decision maker prefers prospect i to prospect j if

she or he values i more highly than j, that is, if U(i) . U(j).

Writing s to denote strict pairwise preference, such theories

predict, for example,

A s CN U~A! . U~C!. (1)

There is a substantial literature in the decision sciences, primar-

ily for monetary gambles, that discusses the functional form of the

numerical function U~·!. Famous examples of such theories are

expected utility theory (Savage, 1954; von Neumann & Morgen-

stern, 1947) or (cumulative) prospect theory (Kahneman & Tver-

sky, 1979; Tversky & Kahneman, 1992). All of these theories

share one very restrictive property: They model decision behavior

through the hypothetical numerical construct of a utility value

associated with each uncertain prospect. These theories assume

that decision makers act in accordance with Formula 1. Even

though the utilities in Formula 1 are numerical, the prospects

themselves need not be. For example, Prospects A and C are

nonmonetary and, in our experiment, their probabilities are dis-

played geometrically using pie charts depicting wheels of chance.

Any theory in which pairwise preferences are derived from hypo-

thetical numerical values, as illustrated in Formula 1, implies that

binary preferences s form strict weak orders. It has been shown

that, likewise, strict weak order preferences can always be repre-

sented numerically, whether the decision makers mentally com-

pute numerical utilities or not (see, e.g., F. S. Roberts, 1979).

This answers our question: All theories that rely on the hypo-

thetical construct of a utility function as in Formula 1 imply that

preference is a strict weak order, and all theories that model

preference using a strict weak order can be recast mathematically

as Formula 1 via a function U~·!.

Hence, by considering the class of all theories in which prefer-

ences form strict weak orders, we study the pivotal property that

distinguishes preferences that are structurally consistent with util-

ity functions from those that are inconsistent with utility. To study

the structural property of strict weak orders, we must disentangle

varying choice (as in Figure 1) from structurally inconsistent

preference. We start by considering basic concepts.

We are interested in the structural constraint that binary strict

preference must form a strict weak order. This means that (a) strict

preference s is an asymmetric binary relation: If a person strictly

prefers i to j then she or he does not strictly prefer j to i:

For all i and j: @i s j#f @j ê i#, (2)

and that (b) strict preference s is negatively transitive: If a person

does not strictly prefer i to j and does not strictly prefer j to k then

she or he does not strictly prefer i to k:

For all i, j and k: @i ê j# ` @ j ê k#f @i ê k#. (3)

As a consequence of these two axioms, strict weak orders also

satisfy transitivity:1 If a participant strictly prefers i to j and strictly

prefers j to k then she or he strictly prefers i to k:

For all i, j, and k: [i s j] ` @ j s k#f @i s k#. (4)

Transitivity is often viewed as a rationality axiom. It is satisfied by

the vast majority of normative, prescriptive, and descriptive theo-

ries of decision making in the literature.

Asymmetry strikes us as a property that we may safely assume

to hold inherently for strict preference. Hence, we do not test it

empirically. We consider stimulus sets of five choice alternatives

in our experiment. For five alternatives, there are 3S
5
2D 5 59,049

different, possible asymmetric binary relations. Of these, only 541,

that is fewer than 1%, are strict weak orders (Fiorini, 2001).

Hence, fewer than 1% of all conceivable strict preference relations

on five choice options can be represented with a numerical func-

tion U(·). The remaining 99% feature violations of negative tran-

sitivity and/or violations of transitivity.

It is already clear, even from a purely algebraic point of view,

that strict weak orders form quite a restrictive class of preference

relations. We later show, once we move to our probabilistic

specification of strict weak orders, that our quantitative model is

characterized by more than 75,000 nonredundant simultaneous

mathematical constraints on choice probabilities. Our model also

allows us to separate the wheat from the chaff by distinguishing

variability in observable choices from inconsistency of underlying

preferences.

The Mixture Model of Strict Weak Order Preferences

We propose a strict weak order model for ternary paired compar-

isons. A key distinguishing feature of our empirical paradigm is that

decision makers compare pairs of objects (e.g., gambles) and either

1 Note, however, that the converse does not hold. For example, for five

choice alternatives, there are 541 strict weak orders (Fiorini, 2001),

whereas there are 154,303 different transitive relations (Pfeiffer, 2004).
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choose one of the objects as their “preferred” option or indicate that

they are “indifferent” among the offered pair of objects. Each decision

maker repeats each such ternary paired comparison multiple times

over the course of an experiment. All repetitions are carefully sepa-

rated by decoys in order to avoid memory effects and to reduce

statistical interdependencies among repeated observations for each

binary choice. For five choice alternatives, this paradigm generates 20

degrees of freedom in the data: each pair i, j [ yields some number

of i choices, some number of j choices, and some number of

indifference statements, hence yielding 2 degrees of freedom for

each of the 10 gamble pairs. In comparison, a two-alternative

forced choice paradigm for the same stimuli has only10 degrees of

freedom in the data because it does not permit indifference re-

sponses; hence, each of the 10 gamble pairs only has 1 degree of

freedom associated with it. In other words, even though we only

marginally increase the amount of information required from the

respondent on each trial (Miller, 1956), we double the degrees of

freedom and thereby dramatically increase the total amount of

information extracted from the respondent over the entire experi-

ment as we combine multiple stimuli.2

We are interested in the structural property of strict weak order

preference. We also need to separate variable overt choice behav-

ior from structurally inconsistent latent preferences. We achieve

these goals by evaluating the goodness-of-fit of a probabilistic

model. According to our model, whenever facing a pair of choice

alternatives, a decision maker evaluates these choice alternatives in

a fashion that induces a strict weak order on the set of choice

alternatives. Over repeated ternary paired comparisons, the deci-

sion maker may fluctuate in the strict weak order that he or she

uses in the various decisions. This is either because he or she varies

in his or her preferences over time or because he or she experi-

ences uncertainty about his or her own preferences and, when

asked to decide, ends up fluctuating in those forced choices. We

introduce a probability space where every sample point must be a

strict weak order. We deliberately avoid peripheral mathematical

assumptions because all we do is take the concept of weak order

preferences and place it into a probability space that has no

additional structure except for requiring every sample point to be

a strict weak order.

Equivalently, we are interested in the structural property of

preferences that are consistent with numerical utilities. In the face

of variable choice behavior, we need to distinguish whether vari-

able choices are consistent with variable numerical utilities, or not.

According to our model, when considering a pair of choice alter-

natives, a decision maker chooses in accordance with a numerical

function U~·! as specified in Formula 1. Over repeated ternary

paired comparisons, the value of U(c) of a choice option c may

vary. Accordingly, we replace the function U~·! with a family of

random variables, ~Uc!c[ , whose joint distribution is not re-

stricted in any way. We allow decision makers to waver in the

numerical utility values that they associate with the choice options.

Again, we deliberately avoid peripheral mathematical assumptions

because all we do is take the concept of a numerical function U~·!

and turn the numerical value U(c) of each prospect c into a random

variable that has no additional constraints because we allow the

random variables to have any distribution whatsoever.

At first blush, our weak order model appears extremely flexible:

For five choice options, it permits 541 different preference states,

that is, it has 540 free parameters. Its formulation in terms of

arbitrary random variables, ~Uc!c[ , has no limit on free parame-

ters since we explicitly forego constraints on the joint distribution.

The empirical data only have 20 degrees of freedom. Do we

engage in overfitting? Appearances are misleading. First, we have

already seen that strict weak orders are rather restrictive compared

with asymmetric relations. Even more important is the statistical

perspective. Using Monte Carlo methods, we have computed the

approximate relative volume of the parameter space within the

outcome space (both are of the same dimension). It turns out that

the model is, in fact, highly restrictive: For five choice alternatives,

the permissible ternary paired comparison probabilities of the strict

weak order model occupy only one two-thousandth of the empir-

ical outcome space. It is crucial to distinguish statistical identifi-

ability from statistical testability. While the 540 free parameters

are not uniquely identifiable when there are only 20 degrees of

freedom in the data, the model is testable because it makes ex-

traordinarily restrictive predictions. The strict weak order model,

stated formally in Equation 5, can test the structural property of

strict weak order preferences in the presence of variable choice

behavior.

Denote by the collection of all strict weak orders on a

given finite set of choice alternatives. A collection ~Pij!
iÞj
i,j[ is

called a system of ternary paired comparison probabilities; if

; i, j [ , with i Þ j, we have 0 # Pij # 1 and Pij 1 Pji # 1.

This system satisfies the strict weak order model if there exists a

probability distribution on ,

P: 3 @0, 1#

s Ps,

that assigns probability P
s

to any strict weak order s, such that

;i, j [ , i Þ j,

Pij 5 O
s[

isj

Ps. (5)

In words, this is as follows: The probability that the respondent

chooses i, when offered i versus j in a ternary paired comparison

trial, is the (marginal) total probability of all those strict weak

orders s in which i is strictly preferred to j.

In the terminology of Loomes and Sugden (1995), Equation 5 is

a random preference model whose core theory is the strict weak

order. It can be rewritten as a “distribution-free random utility

model” in which each sample point is a strict weak order (Heyer &

Niederée, 1992; Niederée & Heyer, 1997; Regenwetter, 1996;

Regenwetter & Marley, 2001).

A system of ternary paired comparison probabilities satisfies a

distribution-free random utility model if there exists a probability

measure P and there exist real-valued jointly distributed random

variables ~Uc!c[ such that ;i, j [ , i Þ j,

Pij 5 P ~Ui . Uj!. (6)

In words, this is as follows: The probability that the respondent

chooses i, when offered i versus j in a ternary paired comparison

2 Similar ideas have been used in signal detection theory with multiple

response categories (Macmillan & Creelman, 2005).
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trial, is the (marginal) total probability that the random utility of i

exceeds the random utility of j.3

To see of how all of these ideas come together and how the

model generates predicted ternary paired comparison data, con-

sider Figure 1. The box titled Random Utility shows the values of

five hypothetical utility functions as well as the probability of each

function. For example, the utility function in the first row has a

probability of .15 and assigns utilities 100, 50, . . . 0 to a, b, . . . e.

Each utility function induces a strict weak ordering of the alter-

natives. For example, the first two functions induce the weak order

a s b s c s d s e; hence, that strict weak order has a probability

of .15 1 .25 5 .40. Let i ; j denote that both i ê j and j ê i. To

illustrate the mixture model in Equation 5 consider the weak orders

in which a s b, namely, a s b s c s d s e and

a s d s c s b , e, whose probabilities sum to .5, hence, the

entry Pab 5 0.5 in the bottom left matrix. Notice that Pab 1 Pba 5

.5 1 .3 5 .8 Þ 1 because the weak order a , b s c s d s e has

a positive probability of .2.

To illustrate the random utility model in Equation 6, notice that

Pab is also given by summing the probabilities .15 1 .25 1 .1 of

the utility functions with U(a) . U(b). We can now establish that

the models in Equations 5 and 6 are mathematically equivalent;

hence, we can later focus on the formulation in Equation 5. The

following theorem (proven in the online supplement) follows

directly from related prior work (Heyer & Niederée, 1992; Nie-

derée & Heyer, 1997; Regenwetter, 1996; Regenwetter & Marley,

2001). This theorem is extremely important: It shows that any

algebraic theory that uses a numerical function U~·!, say cumula-

tive prospect theory, can be extended quite naturally into a prob-

abilistic model that induces a probability distribution over strict

weak orders.

Theorem: A system of ternary paired comparison probabilities Pij

satisfies the weak order model in Equation 5 if and only if it satisfies

the distribution-free random utility model in Equation 6.

Characterizing models like Equation 5 or Equation 6 is a non-

trivial task that has received much attention, for example, in

mathematics, operations research and mathematical psychology.

The most promising approach tackles the problem by characteriz-

ing the weak order model stated in Equation 5 with tools from

convex geometry. In that terminology, the collection of all ternary

paired comparison probabilities Pij consistent with the model in

Equation 5 forms a geometric object called a “convex polytope” in

a vector space whose coordinates are the probabilities Pij. A

convex polytope is a high-dimensional generalization of (two-

dimensional) polygons and of (three- dimensional) polyhedra.4 We

can test the weak order model if we understand its polytope.

A triangular area in two-dimensional space (in a plane) can be

described fully by the area between the three points that form its

corners (so-called vertices) or it can be described equivalently as

the area between its three sides (so-called facets). This logic

extends to high dimensional spaces. A convex polytope can like-

wise be described in two equivalent ways: One can describe it as

either the “convex hull of a set of vertices” or as the solution to a

system of “affine inequalities” (Ziegler, 1995) that define its facets

(for examples, see WO1 2 WO3, below). The model formulation

in Equation 5 directly yields the vertex representation as the

convex hull of a collection of vertices: For each strict weak

order s in , create a vertex with the following 0/1-

coordinates:

Pij 5 H1 if i s j,

0 if i ê j. (7)

Each vertex of the polytope represents one strict weak order.

Intuitively, if a person has deterministic preferences in the form of

one single weak order, then this person’s choice probabilities are

given by the vertex coordinates of that weak order: If the person

always prefers i over j then, according to the model in Equation 5,

she chooses i over j with probability 1. If a person never prefers i

to j, then, according to the model in Equation 5, she chooses i over

j with a probability of 0. While each vertex can be thought of as a

degenerate distribution that places all probability mass on a single

strict weak order, the entire polytope forms a geometric represen-

tation of all possible probability distributions over strict weak

orders. That is precisely the model stated in Equation 5. The online

supplement illustrates these geometric concepts with a simple

two-dimensional example and three illustrative figures.

To test the model, we wish to determine whether a set of data

was generated by a vector of ternary paired comparison probabil-

ities that belongs to the polytope. To achieve this goal, it is useful

to find the alternative representation of the polytope, that is, to find

a system of inequalities whose solution set is the polytope. We can

then test whether the ternary paired comparison probabilities sat-

isfy or violate those “facet-defining inequalities” (FDIs).

When u u 5 3, say, 5 {a, b, c}, the polytope is known to have

13 vertices, representing the 13 different strict weak orders over

three objects. These vertices “live” in a six-dimensional vector

space spanned by the probabilities Pab, Pac, Pba, Pbc, Pca, and Pcb.

The following three families of inequalities completely character-

ize the strict weak order polytope when u u 5 3:

3 Notice that we do not require noncoincidence, that is, we do not require

P(Ui 5 Uj) 5 0 for (i Þ j). Random utility models in econometrics often

satisfy noncoincidence because they rely on, say, multivariate normal or

extreme value distributions. Such distributional assumptions are known

idealizations that serve the purpose of making modeling and statistical

estimation tractable. One can show that noncoincidence effectively forces

“completeness” of binary preferences because indifference statements have

probability zero, according to noncoincidence; hence, incomplete rela-

tions s have zero probability in Equation 5. This is precisely the assump-

tion that we do not want to make when testing weak order preferences

and/or testing numerical utility. The most interesting applications of these

models are when P(Ui 5 Uj) . 0; thus, Pij 1Pji , 1.

We also do not assume that the random variables U are mutually

independent, as do some Thurstonian models in psychology. Because we

strive to avoid technical convenience assumptions, especially distributional

assumptions that would imply noncoincidence or independence assump-

tions in Equation 6, our approach differs from standard off-the-shelf

measurement models as well as signal-detection models that relate subjec-

tive percepts to an objective ground truth (Macmillan & Creelman, 2005).

In our data analysis, we do require that the data result from an independent

and identically distributed (iid) random sample, due to a lack of statistical

tools for non-iid samples at this time. However, the iid sampling assump-

tion neither assumes nor implies independence among the random vari-

ables ~Uc!c[ in the model for Equation 6.
4 Triangles, parallelograms, and so on are examples of convex polygons

in two space; cubes, pyramids, and so on are examples of convex polyhedra

in three space.
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WO1: Pij $ 0, for all distinct i, j in ;

WO2: Pij 1 Pji # 1, for all distinct i, j in ;

WO3: Pij 1 Pjk 2 Pjk # 1 for all distinct i, j, k in .

WO1 states that probabilities cannot be negative. WO2 reflects

the empirical paradigm: The probabilities of choosing either i or j

may possibly sum to less than one because the decision maker may

use the indifference option with positive probability. Constraints

WO1 and WO2 automatically hold in a ternary paired comparison

paradigm and are thus not subject to testing, whereas WO3 is

testable. Convex geometry allows one to prove that WO1 through

WO3 are nonredundant and that they fully characterize the family of

all conceivable ternary paired comparison probabilities for u u 5 3 that

can be represented using Equation 5. This means that the con-

straints WO1 through WO3 form a minimal description, that is, the

shortest possible list of nonredundant constraints that fully de-

scribe the strict weak order model for u u 5 3 (Fiorini & Fishburn,

2004). Such constraints are called facet-defining inequalities. Each

of these inequalities defines a facet of the polytope, that is, a face

of maximal dimension.5

Obtaining a minimal description of convex polytopes can be com-

putationally prohibitive. Our experiment used three stimulus sets of

five alternatives each. The minimal description of the polytope in

terms of facet-defining inequalities for the case of interest to us, where

u u 5 5, was previously unknown. We determined this description

using public domain software, PORTA, the POlyhedron Representa-

tion Transformation Algorithm, by Christof and Löbel (1997).6 That

strict weak order polytope has 541 vertices in a vector space of

dimension 20. This polytope occupies one two-thousandth of the

space of trinomial probabilities. It is characterized by 75,834 facet-

defining inequalities (see the online supplement).7 The following is

one of these 75,834 constraints. It interrelates all 20 choice probabil-

ities for 5 {a, b, c, d, e}.

3~Pab 2 Pba 1 Pdb 2 Pbd 1 Pce 1 Pec! 1 Pac 1 Pca 1 Pbc 2 Pcb

2 Pde 1 Ped 1 3Pbe 2 Peb 2 3Pae 1 Pea 2 3Pda 2 Pad 2 3Pdc

2 Pcd # 4. (8)

How can one test thousands of joint constraints like Inequality 8?

First, it is possible that the data fall inside the tiny polytope,

namely, if the observed choice proportions themselves satisfy all

75,0001 constraints (see Figure 1). When they do, the observed

choice frequencies are precisely within the range of predicted

values, and we do not need to compute statistical goodness-of-fit.8

When the observed choice proportions fall outside the polytope,

then writing Nij for the observed frequency with which a person

chose object i when offered the ternary paired comparison among

i and j altogether K many times, and assuming independent and

identically distributed (iid) sampling, the likelihood function is

given by

P
i, j[

iÞj

K!

Nij! Nji!~K 2 Nij 2 Nji!!
Pij

NijPji
Nji~1 2 Pij 2 Pji!

K2Nij2Nji.

It can be shown that the log-likelihood ratio test statistic, G2,

need not have an asymptotic chi-square distribution because the

model in Equation 5 imposes inequality constraints on the proba-

bilities Pij and Pji. The asymptotic distribution of G2 is a mixture

of chi-square distributions, with the mixture weights depending on

the structure of the polytope in the neighborhood around the

maximum likelihood point estimate (Davis-Stober, 2009; Myung,

Karabatsos, & Iverson, 2005; Silvapulle & Sen, 2005). Depending

on the location of the point estimate on the weak order polytope,

we need to employ some of the 75,0001 facet-defining inequali-

ties to derive a suitable mixture of chi-square distributions. Next,

we use Davis-Stober’s (2009) methods, implemented in a Matlab

(Version 7.0) program, to test the model on new data.

Experiment and Data Analysis

Our experimental study built on Tversky (1969) and used stim-

uli similar to Regenwetter et al. (2011). The main change was that

decisions were ternary paired comparisons. We investigated the

behavior of 30 participants, and we secured high statistical power

by collecting 45 trials per gamble pair and per respondent. The

gambles were organized into four sets: Gamble Set I, Gamble Set

II, Gamble Set III, and Distractors. We provide details of the

experiment, including recruitment, stimuli, and our data, in the

online supplement.

Table 1 provides our results for all 30 participants and the three

gamble sets. When the ternary paired-comparison proportions are

in the interior of the weak order polytope, we indicate this with a

checkmark (√). Data outside the polytope have positive G2 values,

with large p values indicating statistically nonsignificant viola-

tions. Each G2 needs to be evaluated against a specific “Chi-bar-

squared” distribution, thus individual G2 values cannot be com-

pared across results. Significant violations are marked in boldfaced

font.

In Gamble Set I, 22 respondents generated choice proportions

that satisfied all 75,0001 (nonredundant) inequality constraints

that the model in Equation 5 imposes on the choice probabilities.

In other words, 22 of 30 respondents generated a “perfect fit.”

Given that the parameter space of the model occupies only a tiny

fraction of the outcome space, this is a remarkable discovery. One

out of 30 participants violated the model at a significance level of

5%. This is well within Type-I error range. In Gamble Set II,

which created more difficult trade-offs between probabilities of

winning and outcome, 20 of 30 respondents yielded a perfect fit.

This is, again, an extraordinary finding. Among the remaining 10

respondents, two significantly violated the constraints of the model

5 For example, a three-dimensional cube has eight square-shaped facets,

and a tetrahedron has four triangular facets. The edges of these polyhedra

are one-dimensional faces and, hence, not facets.
6 Available at http://www.iwr.uni-heidelberg.de/groups/comopt/

software/PORTA/. Translating the vertex representation into a minimal

description took three weeks of continuous computation on a powerful PC.
7 In particular, it can be shown that Equation 5 again implies the family

of so-called “triangle inequalities,” labeled WO3 above. WO3 has previ-

ously surfaced for two-alternative forced choice because it is directly

related to transitivity (Block & Marschak, 1960). Here, WO3 is only one of

thousands of testable constraints that characterize the model. Unlike

WO1 2 WO3, these constraints are not so straightforward to interpret.
8 Here, we take a frequentist view. We comment on Bayesian ap-

proaches in the Discussion and Conclusion section.
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in Equation 5 at a significance level of 5%. Again, two significant

violations is within a reasonable Type-I error range. For Gamble

Set III, 18 of 30 participants generated choice proportions that

satisfied all 75,0001 inequalities. The remaining 12 participants

included one significant violation at the 5% level. This is yet again

within Type-I error range.

Discussion and Conclusions

A number of descriptive, prescriptive, and normative theories of

decision making share the structural assumption that individual

preferences are strict weak orders. These include the high-profile

class of theories of decision making that rely on numerical repre-

sentations of preferences, such as (subjective) expected utility and

(cumulative) prospect theory, among many others. Noncompensa-

tory models, such as lexicographic semiorders (Tversky, 1969) or

the priority heuristic (Brandstätter, Gigerenzer, & Hertwig, 2006)

violate such structural properties.

To consider the future direction of decision research, we pro-

pose to carry out a thorough “triage” at a general level. If prefer-

ences are consistent with strict weak orders, then this has impli-

cations for the type of process models that can work, and it

eliminates the large class of existing or potential theories that

violate weak orders, for example, because they predict intransitive

preferences. On the other hand, if preferences are not consistent

with strict weak orders, then we may have to give up modeling

choice through numerical representations. This would have far-

reaching consequences, for example, in modeling economic be-

havior.

We believe that much confusion can be eliminated if we find

successful means to distinguish variability of overt choice from

structural inconsistency of hypothetical, latent preference. We

have shown how to formulate a probabilistic model of weak order

preference and, equivalently, a probabilistic model of numerical

utility. While the basic concepts underlying these mathematical

models, by themselves, are not new, the models have never been

fully characterized nor have they ever been tested empirically in

their full generality using quantitative methods. We leverage new

mathematical and statistical results to offer the first direct, parsi-

monious and quantitative test of weak order preferences and nu-

merical utility representations to date.

Our approach is furthermore guided by three key criteria for the

rigorous development and testing of psychological theories (S.

Roberts & Pashler, 2000; Rodgers & Rowe, 2002). (a) Researchers

should understand the full scope of a theory’s predictions and

focus on models that make highly restrictive predictions. (b) Re-

searchers should understand and control or limit the sampling

variability in their data. (c) Researchers should more often ask

themselves: “what would disprove my theory?” (S. Roberts &

Pashler, 2000, p. 366). The a priori expectation should be that the

theory will be rejected; hence, a good fit should be a surprise.

Scope and Parsimony

The weak order model makes predictions on stimuli like our

noncash prospects A and C, for which other theories, such as the

priority heuristic and parametric versions of cumulative prospect

theory are mute. We have fully characterized the model for five

stimuli. It forms a convex polytope in a 20 dimensional space,

characterized by precisely 75,834 nonredundant mathematical con-

straints that define a volume of just one two-thousandth of the

space of all possible ternary paired comparison probabilities. We

derive these restrictive predictions using a minimum of mathemat-

ical assumptions, that is, we expressly avoid common auxiliary

assumptions that are, at best, idealizations of a more complex

reality.

Data Variability

The choice frequencies differ dramatically between respondents.

We did not aggregate across participants because such aggregated

data need not be representative of even a single person. Even

within person, we went beyond the standard approach that often

merely considers modal choices. We provided and tested highly

specific quantitative predictions about the predicted choice pro-

portions for each individual. By analyzing individual participants

Table 1

Goodness-of-Fit for 30 Individual (ID) Respondents (1–30) and Three Gamble Sets (Set I, Set II, and Set III)

ID Set I: G2 (p) Set II: G2 (p) Set III: G2 (p) ID Set I: G2 (p) Set II: G2 (p) Set III: G2 (p)

1 √ √ 0.23 (.91) 16 √ √ √
2 √ √ 2.23 (.55) 17 √ √ √
3 √ 1.11 (.77) 2.82 (.32) 18 √ √ 4.77 (.27)
4 √ √ 10.78 (.01) 19 √ √ √
5 √ 0.17 (.89) √ 20 √ √ √
6 √ √ √ 21 √ √ 1.87 (.46)
7 √ √ √ 22 5.01 (.10) 14.90 (,.01) 3.63 (.42)
8 √ √ √ 23 0.16 (.95) 0.04 (.89) 0.54 (.62)
9 0.52 (.82) 5.95 (.18) √ 24 √ √ √

10 2.82 (.47) √ √ 25 √ √ 6.42 (.08)
11 √ √ √ 26 1.93 (.48) 1.30 (.75) 0.06 (.92)
12 √ √ √ 27 √ √ √
13 √ √ √ 28 √ √ √
14 8.01 (.02) 1.22 (.38) 12.09 (.05) 29 6.04 (.26) 14.81 (.01) √
15 √ 0.80 (.40) 0.40 (.84) 30 1.03 (.54) 0.04 (.88) √

Note. A checkmark (√) indicates a perfect fit. Positive G2 values are accompanied with ps in parentheses. Significant ps (, .05), that is, significant
violations of the weak order model, are marked in bold.
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separately, we controlled for interindividual differences. By col-

lecting 45 observations per trinomial for each person, we reduced

sampling variability substantially, especially compared with stud-

ies with one observation per person per gamble pair.

How Surprising Is the Model Fit?

By including stimuli with a historic reputation for allegedly

yielding intransitive preferences, we biased the experimental par-

adigm against the weak order model. Even disregarding the nature

of the stimuli themselves, for five choice alternatives, 99% of

asymmetric binary preference relations violate weak orders, and

only one two-thousandth of all conceivable ternary paired com-

parison probabilities satisfy the polytope. Using simulation meth-

ods, we estimated the average power of our test to be about .96.

Yet, our data analysis revealed a remarkable picture: Over all

three experimental conditions combined, 60 out of 90 data sets

generated choice proportions that lie inside of the tiny space

allowed by the model. Hence, two thirds of our data sets yielded a

perfect fit. A perfect fit means that the model generated predictions

that are so accurate that no matter how small the significance level

a, we cannot reject the model. Combining all three conditions,

only five out of 90 data sets violated the strict weak order model

at a 5% significance level. This is just about at the usual Type-I

error level. We also cross-replicated the excellent model perfor-

mance within individuals across three stimulus sets, including

noncash gambles: Of 30 individuals, 13 consistently fit perfectly

across all three gamble sets, and none generated a significant

violation for more than a single gamble set.

We plan to complement this work with a Bayesian analysis

along the lines sketched by Myung et al. (2005). By the likelihood

principle and thanks to our large sample size, we expect the

Bayesian viewpoint to reinforce our substantive conclusions, un-

less one employs prior distributional assumptions that give little

weight to the empirical data. Since a Bayesian approach does not

allow for a perfect fit, we predict that our perfect fit results will

translate into very high Bayes’ factors in favor of the weak order

model over an unconstrained model (that permits all ternary choice

probabilities).

Variable choice behavior is often cited as a reason to reject

structural properties of algebraic theories, such as, here, weak

orders and numerical utility representations. We show that vari-

ability of preference (or uncertainty about preference) can be

separated from violations of structural properties, even without

requiring an error theory. In our model, all strict weak orders are

allowable preference states, that is, we allow for maximal vari-

ability in latent preference and overt choice. But we also require

perfect adherence to the structural properties of strict weak orders

in latent preference. Adding a random error component to the

model would relax our constraints by inflating the weak order

polytope and would automatically further improve the already

excellent fit.

Common sense tells us that the variability of, say, restaurant

choice, should not be mistaken for incoherence in, say, food

preference. Probabilistic models like the weak order model allow

us to tease apart variability of choice from inconsistency of pref-

erence. Future work should replicate our findings in other labs and

expand the analysis to other stimulus sets.
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