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Abstract

We offer a theory of polarization as an optimal response to ambi-

guity. Suppose individual A’s beliefs first-order stochastically dominate

individual B’s. They observe a common signal. They exhibit polar-

ization if A’s posterior dominates her prior and B’s prior dominates

her posterior. We show a sense in which polarization is impossible un-

der Bayesian updating or after observing extreme signals. However, we

also show that polarization after intermediate signals can arise from the

efforts of ambiguity averse individuals to implement their optimal pre-

diction strategies. We explore when polarization of this kind will occur

and the logic underlying it.
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1 Introduction

A number of voters are in a television studio before a U.S. Presidential debate.

They are asked the likelihood that the Democratic candidate will really cut the

budget deficit, as he claims. Some think it is likely and others unlikely. The

voters are asked the same question again after the debate. They become even

more convinced that their initial inclination is correct. A similar phenomenon

can arise in financial markets. “Bulls”and “bears”have different priors. On

seeing the same macroeconomic forecasts, they become more bullish and bear-

ish respectively. Individuals observe the same evidence, and yet their beliefs

move in opposite directions and end up further apart.

These examples are natural, and similar polarization of beliefs has been

documented in experiments. In a seminal contribution, Lord, Ross and Lep-

per [1979] show that attitudes toward capital punishment polarize: Initial

proponents of the death penalty support it even more strongly after observing

additional evidence for and against the deterrent effect of capital punishment.

But initial opponents of capital punishment support it even less after observing

exactly the same evidence. Batson [1975] finds polarization of religious beliefs

in believers and non-believers after subjects receive evidence purporting to

show that the New Testament is fraudulent.

In these studies, there is ex ante heterogeneity in the subject pool. Polar-

ization also occurs in an ex ante homogeneous subject pool where differences

in initial beliefs are generated by randomly assigning individuals into treat-

ment groups that are shown different preliminary evidence. When subjects are

later shown common additional evidence at a second stage, their beliefs polar-

ize. For example, Darley and Gross [1983] randomized subjects into different

groups to ensure ex ante homogeneity. One group was shown evidence sug-

gesting a child was from a high socioeconomic background; another that she

was from a low socioeconomic background. The former predicted the child’s

reading abilities to be higher than the latter. The groups were then shown

a film of the child taking an oral test on which she answers some questions

correctly and others incorrectly. Those who had received the preliminary infor-
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mation that the child came from a high socioeconomic background, rated her

abilities higher than before; those who had received the information indicating

she came from a low socioeconomic background rated her lower than before.

Thus, the common evidence in the form of the film led beliefs to polarize.

Polarization is incompatible with standard economic agents who under-

stand the signal structure they are facing and use Bayes’rule to update their

beliefs.1 We offer a theory of polarization as an optimal response to ambigu-

ity, i.e., subjective uncertainty about probabilities. An individual is exposed

to ambiguity when the expected payoff to his strategy varies with the prob-

abilities over which he is uncertain. An ambiguity averse individual dislikes

this variation. Ambiguity aversion is our only departure from the standard

modeling. In particular, agreement on the signal structure and the consistent

updating of beliefs are maintained.

Why focus on ambiguity and ambiguity aversion? It seems to us that

polarization is fundamentally related to uncertainty —if there is no uncertainty,

it is hard to imagine much disagreement, let alone polarization. A large and

growing branch of the modern literature on decisions under uncertainty has

focused on ambiguity and ambiguity attitude as some of the more interesting

aspects to model (both from descriptive and normative points of view).2 At a

very loose level, intuition suggests that situations where information is lacking

might be good candidates for both ambiguity and polarization to be relevant.

In fact, as we show in this paper, there is a formal connection and a sense in

which ambiguity and ambiguity aversion can lead to polarization. Moreover,

this theory leads to novel and appealing results, for example that polarization

can be triggered by common observation of intermediate signals, while never

being triggered by the most informative signals. This seems broadly consistent

with the polarization experiments mentioned earlier, in that the polarizing

observations there have elements favoring each direction.

How does ambiguity aversion affect behavior? Different strategies may

1As we discuss later in the introduction, one of our contributions is to prove this claim
(Theorem 2.1).

2For a survey including experimental/descriptive work see e.g., Camerer andWeber [1992]
and for a more normatively oriented survey see e.g., Gilboa and Marinacci [2011].
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involve different exposure to ambiguity. This exposure is taken into consider-

ation by an ambiguity averse individual in choosing an optimal strategy. For

example, suppose an individual is subjectively uncertain about the probability

that it will rain tomorrow. He thinks that with probability 1
2
there is a 40%

chance of rain, while with the remaining probability there is a 60% chance of

rain. He considers two possible strategies: carrying an umbrella to work or

leaving it at home. Utility payoffs are as follows:

Rain No rain

Umbrella -1 -1

No umbrella -2 0

The expected utility payoffs under a 40% and a 60% chance of rain are there-

fore:
40% 60%

Umbrella -1 -1

No umbrella -0.8 -1.2

Notice that taking the umbrella to work completely hedges against the am-

biguity —the expected utility is the same whether the chance of rain is 40%

or 60%. However, not taking the umbrella results in greater exposure to the

ambiguity —the payoff is better under a 40% chance than under a 60% chance

of rain. An ambiguity neutral individual (e.g., an expected utility maximizer)

assigning probability 1
2
to each scenario is indifferent between the two strate-

gies. However, any degree of ambiguity aversion leads the individual to strictly

prefer taking the umbrella. In general, ceteris paribus, ambiguity aversion dis-

advantages strategies that result in more exposure to ambiguity.

Polarization fundamentally concerns reaction to new information. When-

ever new information is anticipated, optimal strategies will condition on this

information. Continuing the above example, if the individual can look out

the window before leaving the house, contingent strategies such as “take the

umbrella if it looks cloudy and leave it at home otherwise”become possible.

We focus on individuals who form an ex-ante optimal contingent strategy (i.e.,

optimal assuming full commitment to that strategy once chosen) and who are
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indeed willing to carry it out after each possible contingency. Such an indi-

vidual is said to be dynamically consistent.3

Why do we focus on dynamic consistency? First, normatively there is a

strong case for dynamic consistency. Specifically, any theory of updating that

is not dynamically consistent will lead to worse outcomes as evaluated by ex-

ante welfare. Second, studying the dynamically consistent case identifies the

key effects leading to polarization that apply even when substantial dynamic

inconsistency may be present. For example, consider a multi-selves model,

where the later selves differ in updated beliefs from the earlier selves. Suppose,

however, as in the style of Gul and Pesendorfer [2001], the early self can

(possibly at some cost) exert self-control on the decisions faced by the later

selves. As long as the cost of self-control is not infinite, the effects we identify

in the dynamically consistent theory will survive and will continue to drive

polarization.

How does dynamic consistency relate to reaction to new information? When

an individual observes new information, he updates his subjective beliefs to

incorporate the information. Thus, the manner in which subjective beliefs

are updated is crucial in determining whether the individual is dynamically

consistent. For an ambiguity neutral individual, dynamic consistency requires

that the individual update subjective beliefs using Bayes’rule. In this sense,

dynamic consistency is the justification for Bayesian updating of subjective

beliefs under expected utility. For an ambiguity averse individual, dynamic

consistency also delivers a method of updating subjective beliefs, but this

generally differs from Bayes’ rule. In this sense, non-Bayesian updating is

optimal for an ambiguity averse individual.

Returning to our earlier example, suppose an individual concludes that

“take the umbrella if it looks cloudy and leave it at home otherwise” is his

optimal strategy. This strategy leaves him partially exposed to the ambiguity

about rain —his expected utility depends on the chance of rain, but not as

3See e.g., Hanany and Klibanoff [2009] for such an approach to modeling ambiguity averse
individuals. Modeling dynamic preferences under ambiguity is not straightforward, and the
literature has pursued several approaches. For an approach relaxing dynamic consistency
see e.g., Siniscalchi [2011].
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much as it would if he never carried an umbrella. Notice, however, that this

exposure is not the same across the different possible views he may see in the

morning. He is less exposed to the ambiguity about rain if it is cloudy in the

morning than if it is sunny: if he takes the umbrella his expected utility will

not be impacted by the probability of rain, whereas if he has no umbrella his

expected utility is much lower if the probability of rain is high than if it is low.

This variation in exposure is irrelevant if the individual is ambiguity neutral,

but not if he is ambiguity averse. Under ambiguity aversion, the greater ex-

posure to ambiguity after seeing it is sunny may lead to an increased desire

to hedge against this ambiguity, while the lack of exposure after seeing it is

cloudy may diminish the value of hedging. These changed hedging motives,

ceteris paribus, could lead the individual to want to depart from the ex-ante

optimal strategy. We call this the hedging effect. There is also a more standard

effect having nothing to do with ambiguity attitude. After a signal is realized,

the likelihoods of this signal are no longer relevant for optimality going for-

ward —only likelihoods of future signals matter at that point. Because of this

change in which likelihoods are relevant, ceteris paribus, after seeing the signal,

the individual might want to depart from what the ex-ante optimal strategy

prescribes after that signal. We call this the likelihood effect. Dynamically con-

sistent updating must neutralize both the hedging and the likelihood effects

of the signal on the incentives of an ambiguity averse individual. Bayesian up-

dating counterbalances only the likelihood effect. The presence of the hedging

effect leads dynamically consistent updating to necessarily depart from Bayes’

rule under ambiguity aversion. We study when the resulting updating leads

to polarization of beliefs.

We use a simple prediction model as a vehicle to study these issues: An indi-

vidual must predict a parameter that determines the distribution of a random

variable. The individual has a prior distribution over the possible parameters

and is ambiguity averse. He observes a number of conditionally independent

signals that can inform his predictions. The individual’s payoff is decreasing

in the quadratic difference between his prediction and the parameter. This is

a standard model apart from ambiguity aversion.
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We define polarization as follows: Suppose two individuals have different

priors and individual A’s belief first-order stochastically dominates individual

B’s. The individuals observe a common signal. Their beliefs exhibit polariza-

tion if individual A’s posterior dominates his prior and individual B’s prior

dominates his posterior.

Polarization is hard to reconcile with standard models of Bayesian updat-

ing. We establish that there is a sense in which reconciliation is impossible.

Consider two individuals who are Bayesian and agree on the probability of

each signal conditional on the parameter. We show polarization cannot oc-

cur. As individuals share the same theory connecting parameters to signals, if

one individual’s belief increases after seeing a given signal, so does the other’s

(Theorem 2.1).

This simple picture changes completely when we allow individuals to be

ambiguity averse. As dynamically consistent updating is not Bayesian in this

case, our benchmark result does not apply and there is room for polarization.

We study when polarization remains impossible and when it occurs.

Suppose there are just two possible parameters, 0 and 1. Signals can then

be ordered by the ratio of their likelihood under 1 to their likelihood under 0.

As a preliminary result, we show (Proposition 3.1) that our definition of polar-

ization can also be thought of as comparing optimal actions (here, predictions)

with and without observing a common signal. Given that no polarization oc-

curs under Bayesian updating, there will continue to be no polarization if the

hedging effect (present because of ambiguity aversion) simply reinforces the

likelihood effect. We show that this is exactly what happens after observing

the highest or the lowest signals. We conclude that polarization cannot occur

at extreme signals even under ambiguity aversion (Theorem 3.1). Moreover,

the same result shows that, after extreme signals, dynamically consistent up-

dating overshoots the Bayesian update since the hedging effect reinforces the

likelihood effect.

Thus, polarization is a possibility only at signals with an intermediate

likelihood ratio. We can offer a particularly clean result if the intermediate

signal is neutral (i.e., has equal probability under both parameter values). For
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a neutral signal, the hedging effect is the only reason to update beliefs —there

is no likelihood effect. We show that individuals with suffi ciently extreme

and opposite beliefs display polarization after observing a common neutral

intermediate signal (Theorem 3.2).

To gain intuition, suppose the individual believes parameter 1 is highly

likely. Then, the optimal strategy will specify relatively high predictions. This

leads to small prediction errors and high expected payoffat parameter 1. Mar-

ginal changes in prediction errors do not add or subtract much to payoffs when

predictions are already very good. Thus the expected payoff given parameter

1 remains almost the same after observing the neutral signal as it was ex-ante.

In contrast, at parameter 0, since the strategy is specifying high predictions,

prediction errors are large and the marginal effect of changes in these predic-

tions is large as well. Expected payoffs at parameter 0 place more weight on

signals below the neutral signal, and hence on predictions closer to 0. This

implies that, at parameter 0, the ex-ante expected payoff is higher than the

payoff after observing the neutral signal. Thus there is a relative shifting of

expected utility away from parameter 0 and this, all else equal, increases the

hedging motive to push the prediction toward 0. However, all else is not equal.

Specifically, dynamically consistent updating will counterbalance this change

in the hedging effect by updating beliefs toward 1. A similar argument estab-

lishes that an individual who believes parameter 0 is highly likely will update

toward 0 after observing a neutral signal. Thus the observation of a neutral

signal results in polarization.

Theorem 3.2 is important mainly because it establishes that the hedging

effect can lead to polarization. In general (i.e., for non-neutral intermediate

signals and non-extreme beliefs), determining when the combination of the

likelihood and hedging effects will lead to polarization is complex. However,

we obtain a complete characterization of when polarization occurs under the

additional assumptions that individuals display constant relative ambiguity

aversion and that there are exactly three possible signals. In this case we

establish a threshold result: if belief before seeing a signal is above a thresh-

old, it is updated upwards after the intermediate signal and, if it is below a

8



threshold, it is updated downwards after the intermediate signal (Proposition

3.3). Theorem 3.3 uses this to provide necessary and suffi cient conditions for

polarization.

All of the above results apply whether or not the two individuals have the

same degree of ambiguity aversion. Finally, even if individuals are homoge-

neous (in all respects) ex ante, if they observe different private signals before

observing a common signal, they will generally have different beliefs by the

time they see the common signal and, at that point, our results concerning

polarization with different beliefs apply (Theorem 3.4).

Before presenting our analysis, we discuss related theory literature. There

are a number of approaches to modeling polarization-like phenomena.4 Ace-

moglu, Chernozhukov and Yildiz [2009] study asymptotic disagreement in a

model where individuals have different priors on parameters and also different

distributions on signals conditional on the parameter. They show that poste-

riors on parameters can diverge. Kondor [2009] shows that polarization can

be generated when individuals see different private signals that are correlated

with a common public signal. Andreoni and Mylovanov [2010] provide theory

along lines similar to Kondor and conduct a related experiment. Rabin and

Schrag [1999] study a model of confirmatory bias where agents ignore signals

that do not conform with their first impressions, and thus updating is simply

assumed to be biased in the direction of current beliefs, directly generating

polarization. Notice that their model, like those above, can be interpreted as

one where individuals sometimes disagree about the likelihood of the observed

signal conditional on the parameter. In contrast, in our model, conditional on

the parameter, all individuals agree on the distribution over signals and their

independence, and yet an interesting theory of polarization still emerges.

Dixit and Weibull [2007] propose the same definition of polarization that

4We should also mention that there is a literature on political polarization which is not
related to our work. For example, Esteban and Ray [2011] study whether conflict can be
connected to the level of polarization in society. There is also a literature examining the
polarizing or moderating effects of group versus individual decision making. See Adams
and Ferreira [2010] for a study of the moderating effects of group decision-making. Eliaz,
Ray and Razin [2006] build a theory of the polarizing effects of group decision-making with
regard to risky decisions based on individual Allais paradox behavior.
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we use. They show that polarization cannot occur under Bayesian updat-

ing in the standard linear-normal model where individuals’(different) priors

and (common) noise are normally distributed. Signals in this model satisfy

the monotone likelihood ratio property (MLRP). They also argue via example

that polarization can occur if signals do not satisfy MLRP. On closer inspec-

tion, however, their examples violating MLRP do not display polarization as

defined. In fact, our Theorem 2.1 shows that, quite generally, polarization

is impossible, irrespective of whether MLRP holds, under Bayesian updating.

Instead, in their examples, while the means or the medians of two individu-

als move in opposite directions after observing a common signal, their beliefs

cannot be ranked by stochastic dominance.

Zimper and Ludwig [2009] study particular forms of dynamically incon-

sistent updating in a model where agents are ambiguity sensitive and have

non-additive beliefs. They examine conditions under which “expected”poste-

rior signal probabilities may diverge in the limit as the number of observations

grows where the expectation is taken in the sense of Choquet (see Schmeidler

[1989]). In our model, updating is optimal in the sense of dynamic consistency,

beliefs have the standard additive form and polarization is defined after any

signal realization rather than as a limit phenomenon.

Wilson [2004] studies a model with bounded memory where an individual

chooses which signals to remember in order to economize on finite memory. If

two individuals begin with different beliefs, the memory constraint can lead

them to optimally allocate memory to different subsets of signals, and thereby

possibly polarize.

2 The Model and Benchmark Result

Consider an individual who is concerned with the value of a parameter θ ∈
Θ ⊂ R. His beliefs about θ are given by a full-support prior µ. To help inform
the individual about θ, conditionally independent observations from a random

variable X given θ may be available. This random variable has distribution πθ
and takes values in a finite set X such that each x ∈ X has πθ(x) > 0 for some
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θ ∈ Θ. For example, θ might indicate a child’s reading ability, while πθ might

be the distribution of scores on a reading test for a child with that ability.

We assume that Θ is finite and, without loss of generality, index Θ so that

θ1 < θ2 < . . . < θ|Θ|. A distribution η̂ (first-order) stochastically dominates η̌

if
k∑
i=1

η̌ (θi) ≥
k∑
i=1

η̂ (θi) for all k ∈ {1, 2, ..., |Θ|}.

The dominance is strict if at least one of these inequalities is strict. We define

polarization as follows:

Definition 2.1 Fix two individuals with beliefs η̌ and η̂ over Θ and with com-

mon support such that η̂ stochastically dominates η̌. After they both observe a

signal x ∈ X whose likelihood given θ ∈ Θ is πθ (x), we say that polarization

occurs if and only if the resulting posterior beliefs, ν̌ and ν̂ respectively, lie

further apart, i.e., η̌ stochastically dominates ν̌ and ν̂ stochastically dominates

η̂ with at least one dominance strict.

The following result shows that under Bayesian updating, irrespective of

any non-belief aspect of preference, polarization cannot occur after any signal

given positive probability. In fact, we show that if one posterior belief stochas-

tically dominates the prior, so must the other, without invoking any dominance

between the priors. The theorem and proof formalize the intuitive statement

that, as long as their priors share the same support, if two individuals who

use Bayes’rule see the same observation it is impossible for them to update

in opposite directions in the sense of first-order stochastic dominance.5

Theorem 2.1 Polarization cannot occur if the two individuals use Bayesian
updating.

Proof. Bayesian updating is only well-defined following positive probabil-
ity signals. Therefore, assume

∑
i η̌ (θi)πθi (x) > 0 and

∑
i η̂ (θi) πθi (x) > 0.

We use proof by contradiction. Suppose two individuals use Bayesian updat-

ing and that η̌ stochastically dominates ν̌ and ν̂ stochastically dominates η̂
5We thank Eran Shmaya for his help with the proof.
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with at least one dominance strict (i.e., that polarization occurs). Observe

that η̌ stochastically dominates ν̌ implies η̌ (θ1) ≤ ν̌ (θ1) =
η̌(θ1)πθ1 (x)∑
i η̌(θi)πθi (x)

and

η̌
(
θ|Θ|
)
≥ ν̌

(
θ|Θ|
)

=
η̌(θ|Θ|)πθ|Θ| (x)∑

i η̌(θi)πθi (x)
. Simplifying, this implies

πθ1 (x) ≥
∑
i

η̌ (θi) πθi (x) ≥ πθ|Θ| (x) . (2.1)

Similarly, observe that ν̂ stochastically dominates η̂ implies η̂ (θ1) ≥ ν̂ (θ1) =
η̂(θ1)πθ1 (x)∑
i η̂(θi)πθi (x)

and η̂
(
θ|Θ|
)
≤ ν̂

(
θ|Θ|
)

=
η̂(θ|Θ|)πθ|Θ| (x)∑

i η̂(θi)πθi (x)
. Simplifying, this implies

πθ1 (x) ≤
∑
i

η̂ (θi) πθi (x) ≤ πθ|Θ| (x) . (2.2)

The only way for (2.1) and (2.2) to be satisfied simultaneously is when

πθ1 (x) =
∑
i

η̌ (θi) πθi (x) =
∑
i

η̂ (θi)πθi (x) = πθ|Θ| (x) . (2.3)

Notice that under (2.3) η̂ (θ1) = ν̂ (θ1), η̂
(
θ|Θ|
)

= ν̂
(
θ|Θ|
)
, η̌ (θ1) = ν̌ (θ1)

and η̌
(
θ|Θ|
)

= ν̌
(
θ|Θ|
)
. Given

∑
i η̌ (θi) πθi (x) =

∑
i η̂ (θi) πθi (x), consider the

induction hypothesis that

η̂ (θi) = ν̂ (θi) and η̌ (θi) = ν̌ (θi) for i = 1, . . . , n.

Under this hypothesis, η̌ stochastically dominates ν̌ implies η̌ (θn+1) ≤ ν̌ (θn+1) =
η̌(θn+1)πθn+1

(x)∑
i η̌(θi)πθi (x)

and ν̂ stochastically dominates η̂ implies η̂ (θn+1) ≥ ν̂ (θn+1) =
η̂(θn+1)πθn+1

(x)∑
i η̂(θi)πθi (x)

=
η̂(θn+1)πθn+1

(x)∑
i η̌(θi)πθi (x)

. Therefore,

η̂ (θn+1) = ν̂ (θn+1) and η̌ (θn+1) = ν̌ (θn+1) .

Since we showed above that the induction hypothesis holds for n = 1, we

conclude that η̌ stochastically dominates ν̌ and ν̂ stochastically dominates η̂

implies η̌ = ν̌ and η̂ = ν̂. This contradicts our supposition of polarization.

Remark 2.1 For convenience alone, we assume the set of observations is fi-

12



nite. Theorem 2.1 can easily be extended to the case where there is a continuum

of feasible observations. Also, we conjecture that a similar argument holds, un-

der appropriate regularity conditions, for an infinite set of possible parameters

Θ.

Remark 2.2 The common support condition cannot be relaxed to simply over-
lapping supports. When |Θ| ≥ 3, it is easy to construct examples where each

individual has non-degenerate support, the supports overlap and each strictly

moves in the opposite direction following some signal x. In particular, one

individual can think x has likelihood strictly increasing in θ for the θ’s in his

support while the other individual can think x has likelihood strictly decreasing

in θ for the θ’s in his support.

3 Polarization and Ambiguity

For the remainder of the paper, suppose the individual’s goal is to predict

the value of the parameter θ. For tractability, we assume Θ = {0, 1} so
there are just two possible parameter values. We make the standard assump-

tion that the payoff to a prediction α ∈ [0, 1] is given by quadratic loss (i.e.,

−(α − θ)2). To avoid tedious corner cases that do not change any of our

conclusions, we assume πθ has full support for each θ. A strategy for the pre-

diction problem when the individual is allowed to condition his prediction on

n ≥ 0 observations is a function α : X n → R. We assume the individual views
θ as ambiguous, is risk neutral and evaluates prediction strategies according

to ambiguity averse smooth ambiguity preferences (Klibanoff, Marinacci and

Mukerji [2005]). Specifically, any prediction strategy is evaluated according to

the concave objective function

Eµφ[Eπθ...πθ(−(α (X1, . . . , Xn)− θ)2)],

where φ is increasing, concave and continuously differentiable. Observe that

if φ is linear (i.e., ambiguity neutrality), the objective function reduces to ex-

pected quadratic loss. We will sometimes additionally assume constant relative
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ambiguity aversion γ ≥ 0, in which case φ(u) = − (−u)1+γ

1+γ
for u ≤ 0.

The optimal strategy α∗ (x1, . . . , xn) is therefore the unique solution to the

first-order conditions:

Eµ

[
φ′[Eπθ...πθ(−(α∗ (X1, . . . , Xn)− θ)2)](α∗ (x1, . . . , xn)− θ)

n∏
i=1

πθ(xi)

]
= 0

(3.1)

for each (x1, . . . , xn) ∈ X n. When no observations are available (n = 0), we

sometimes denote the optimal prediction strategy by α∗ (∅) to emphasize that
there are no observations and in this case (3.1) reduces to

Eµ
[
φ′[−(α∗ (∅)− θ)2](α∗ (∅)− θ)

]
= 0.

Abusing notation to let µ denote µ(θ = 1), the first-order conditions for

α∗ (x1, . . . , xn) and α∗ (∅) simplify to the following:

α∗ (x1, . . . , xn)

1− α∗ (x1, . . . , xn)

φ′[Eπ0...π0(−(α∗ (X1, . . . , Xn))2)]

φ′[Eπ1...π1(−(1− α∗ (X1, . . . , Xn))2)]

n∏
i=1

π0(xi)

π1(xi)
=

µ

1− µ
(3.2)

for each (x1, . . . , xn) ∈ X n, and

α∗ (∅)
1− α∗ (∅)

φ′[−(α∗ (∅))2]

φ′[−(1− α∗ (∅))2]
=

µ

1− µ . (3.3)

When no observations are available, the difference from the usual prediction

problem with ambiguity neutrality is the presence of the term φ′[−(α∗(∅))2]
φ′[−(1−α∗(∅))2]

on the left-hand side of (3.3). Under ambiguity aversion, φ is concave, and

this term reflects the desire to hedge or reduce the variation in payoffs as a

function of the ambiguous parameter θ. To see this, note that the argument

of φ′ in the numerator is the payoff when θ = 0 and the argument in the

denominator is the payoff when θ = 1. The φ′ ratio compares the marginal

value of an extra unit of expected utility when θ = 0 to the marginal value

when θ = 1. When these expected payoffs are equal (i.e., a perfect hedge)

the ratio equals 1. Increases above 1 reflect a stronger desire to shift expected

payoff from θ = 1 to θ = 0, i.e., to hedge by adjusting the prediction strategy

14



α∗ downward. Similarly, decreases below 1 reflect a weaker desire to hedge

by adjusting α∗ downward. In general, ambiguity aversion ensures that when

expected payoffs across the θ’s differ, the φ′ ratio pushes the optimal prediction

in the direction of equalizing them by moving the prediction toward the θ

with the lower expected payoff. This is the manifestation of the value that

ambiguity averse individuals place on hedging against ambiguity. For this

reason, we use the term hedging motive to describe the expression φ′[−(α∗(∅))2]
φ′[−(1−α∗(∅))2]

and its generalizations to cases when observations are available. The larger this

hedging motive, the more hedging concerns push in the direction of strategies

that perform well when θ = 0.

An additional consideration enters when at least one observation is avail-

able (n ≥ 1). From (3.2) it is clear that α∗ (x1, . . . , xn) depends on the optimal

prediction strategy for other possible realizations of the n observations. This

is a fundamental non-separability introduced by ambiguity aversion —when

the individual is ambiguity neutral (φ affi ne) this interdependence disappears.

Why does ambiguity aversion lead to such interdependence? The individual

cares about the ambiguity concerning θ only to the extent that the expected

payoff of the individual’s strategy varies with θ. An ambiguity averse individ-

ual, as explained above, dislikes this variation. In the prediction setting, the

mapping from θ to expected payoffs depends on the whole prediction strat-

egy α. Therefore, an ambiguity averse individual will take the whole strategy

into account when determining any part of that strategy. This is the non-

separability reflected in (3.2).

Despite this interdependence, we have the following useful implication of

(3.2) that is true independent of ambiguity attitude: for any (x1, . . . , xn) , (y1, . . . , yn) ∈
X n,

α∗ (x1, . . . , xn)

1− α∗ (x1, . . . , xn)

n∏
i=1

π0(xi)

π1(xi)
=

α∗ (y1, . . . , yn)

1− α∗ (y1, . . . , yn)

n∏
i=1

π0(yi)

π1(yi)
. (3.4)

The intuition for this equality is the standard one concerning equating mar-

ginal rates of substitution across signal realizations. An implication of (3.4)

is that all optimal contingent predictions move up or down together. Given
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this, the interpretation and implications of the φ′ ratio described above in the

context of (3.3) apply equally well to the more general case, given by (3.2),

where the optimal strategy is contingent on observations. This interpretation

proves very helpful when examining updating.

In a prediction problem, updating maps beliefs about θ and new observa-

tions to posterior beliefs about θ. Dynamically consistent updating is updating

that preserves the optimality of the contingent strategy α∗ (x1, . . . , xn) as ob-

servations are realized (i.e., ex-ante optimal updating).6 Let ν` denote the

posterior probability of θ = 1 after observing x1, . . . , x` in a prediction prob-

lem with n ≥ ` observations available. Dynamically consistent updating is

equivalent to these posteriors ν` satisfying

α∗ (x1, . . . , xn)

1− α∗ (x1, . . . , xn)

φ′[Eπ0...π0(−(α∗ (x1, . . . , x`, X`+1,...,Xn))2)]

φ′[Eπ1...π1(−(1− α∗ (x1, . . . , x`, X`+1,...,Xn))2)]

n∏
i=`+1

π0(xi)

π1(xi)
=

ν`
1− ν`

(3.5)

for all 0 ≤ ` ≤ n and all (x1, . . . , xn) ∈ X n. Note that (3.5) is simply

the first-order condition of the continuation prediction problem, evaluated at

the ex-ante optimal strategy α∗ (x1, . . . , xn), after x1, . . . , x` have been real-

ized and assuming beliefs at that point are ν`. It therefore guarantees that

α∗ (x1, . . . , xn) remains optimal as observations accumulate. After the next

result, we will expand on the difference, under ambiguity aversion, between

dynamically consistent updating and Bayesian updating and show how the

former allows polarization. We begin by showing that several natural prop-

erties that hold under ambiguity neutrality continue to hold under ambiguity

aversion.

Two such properties are identified in the next Proposition:

Proposition 3.1 (i) For all n ≥ 0, with n observations available, for each

possible realization (x1, . . . , xn) ∈ X n of these observations, the optimal pre-

diction α∗ (x1, . . . , xn) is an increasing function of µ (the prior probability of

θ = 1) and of the likelihood ratio
∏n

i=1
π1(xi)
π0(xi)

;

6For a thorough discussion and analysis of dynamically consistent updating under ambi-
guity aversion see Hanany and Klibanoff [2009].
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(ii) The posterior probability of θ = 1 after observing x1, . . . , xn in the pre-

diction problem with n ≥ 0 observations available is above/equal to/below the

posterior probability of θ = 1 after observing y1, . . . , ym in the prediction prob-

lem with m ≥ 0 observations available if and only if the optimal predictions

in the respective continuation prediction problems are similarly ordered. Un-

der dynamically consistent updating, the same is true of the ex-ante optimal

contingent predictions (i.e., α∗ (x1, . . . , xn) R α∗ (y1, . . . , ym)).

Proposition 3.1 implies that polarization as we have defined it in terms of

beliefs is equivalent to polarization in actions (here, predictions). A common

signal moves optimal actions further apart and in opposite directions exactly

when that signal moves beliefs further apart and in opposite directions. To see

this, observe from the first part of the proposition that prior beliefs have the

same order as the respective optimal predictions with no observations available.

From the second part of the proposition with m = 0, posterior beliefs after a

common signal compare to the prior beliefs in the same way as the optimal

predictions after a common signal compare to the optimal predictions with no

observations available. Combining these yields the equivalence.

Suppose signals x1, . . . , x` are observed. Dynamic consistency requires that

the optimal prediction strategy after these observations also be the optimal

prediction strategy ex ante contingent on observing x1, . . . , x`. As emphasized

above, under ambiguity aversion, the optimal prediction strategy is partly

driven by the desire to hedge (i.e., to reduce the sensitivity of expected payoff

to the ambiguous parameter θ). Ex ante, before signals are realized, this

hedging motive is captured by the ratio

φ′[Eπ0...π0(−(α∗ (X1, . . . , Xn))2)]

φ′[Eπ1...π1(−(1− α∗ (X1, . . . , Xn))2)]
. (3.6)

Recall that, the larger this term is, the more hedging pushes in the direction

of strategies that are expected to perform well when θ = 0. However, after

observing x1, . . . , x`, the expected payoffs that determine the hedging motive

involve only the uncertainty about the remaining observations. This interim
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hedging motive is captured by the ratio

φ′[Eπ0...π0(−(α∗ (x1, . . . , x`, X`+1,...,Xn))2)]

φ′[Eπ1...π1(−(1− α∗ (x1, . . . , x`, X`+1,...,Xn))2)]
. (3.7)

If the individual is ambiguity neutral, (3.6) and (3.7) are equal. In this case,

by comparing (3.5) and (3.2) we see that the posterior is proportional to the

prior times the likelihood,

ν`
1− ν`

=
µ

1− µ
∏̀
i=1

π1(xi)

π0(xi)
, (3.8)

and thus Bayesian updating guarantees dynamic consistency. However, if the

individual is ambiguity averse, (3.6) and (3.7) are typically not equal. The

individual’s hedging motive changes, as he no longer needs to account for

variation in his expected payoffs induced by the first ` realizations. This change

in the hedging motive is the hedging effect highlighted in the Introduction. To

carry out the optimal prediction strategy, dynamically consistent updating

departs from Bayesian updating in a way that exactly offsets this hedging

effect.

We can expand on this intuition to offer a characterization of the direction

of dynamically consistent updating:

Proposition 3.2 With n ≥ 1 observations and dynamically consistent updat-

ing, for 0 ≤ k < m ≤ n, the posterior probability of θ = 1 after observing

x1, . . . , xm is above/equal to/below the posterior probability of θ = 1 after ob-

serving x1, . . . , xk if and only if

φ′[Eπ0...π0(−(α∗ (x1, . . . , xm, Xm+1,...,Xn))2)]

φ′[Eπ1...π1(−(1− α∗ (x1, . . . , xm, Xm+1,...,Xn))2)]

m∏
i=k+1

π1(xi)

π0(xi)
(3.9)

R φ′[Eπ0...π0(−(α∗ (x1, . . . , xk, Xk+1,...,Xn))2)]

φ′[Eπ1...π1(−(1− α∗ (x1, . . . , xk, Xk+1,...,Xn))2)]
.

Under ambiguity neutrality, the hedging motive terms on each side cancel

and (3.9) reduces to the familiar statement that updating is up/flat/down as

the likelihood ratio of the newly observed signals is above/equal to/below 1.
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Under ambiguity aversion, as we described earlier, the two hedging motives are

typically not identical, and dynamic consistency requires updating to offset this

change by pushing in the opposite direction. This explains why, for example,

when the interim hedging term is larger than the ex-ante hedging term so that

hedging pushes towards valuing performance when θ = 0 more strongly at the

interim stage, Proposition 3.2 tells us that updating will be shaded upward

(thus pushing more toward valuing performance when θ = 1) compared to

Bayesian updating.

The condition in (3.9) is not always easy to apply, as it involves the en-

dogenously determined optimal strategy α∗. Nevertheless, we can prove some

general properties of updating directly from this inequality: Observing a signal

xH with the highest likelihood ratio (i.e., xH ∈ arg max
x∈X

π1(x)
π0(x)

≥ 1) always leads

to updating upwards and observing the signal with the lowest likelihood ratio

always leads to updating downwards. One implication is that polarization, if

it is to occur at all, can only occur after “intermediate”common signals.

Theorem 3.1 With n ≥ 1 observations, for 0 ≤ k < m ≤ n, after observing

x1, . . . , xk, x
H , . . . , xH︸ ︷︷ ︸
m−k times

(resp. x1, . . . , xk, x
L, . . . , xL︸ ︷︷ ︸
m−k times

) the posterior probability of

θ = 1 after the m observations is above (resp. below) the posterior probability

(denoted by νk) of θ = 1 after observing x1, . . . , xk . It is also above (resp.

below) the Bayesian update of νk given xH , . . . , xH︸ ︷︷ ︸
m−k times

(resp. xL, . . . , xL︸ ︷︷ ︸
m−k times

).

Remark 3.1 If signals are informative, so that π1(xH)
π0(xH)

> 1 > π1(xL)
π0(xL)

, then

above (resp. below) in the statement of the corollary may be replaced by strictly

above (resp. strictly below).

To understand this result, first note that if, for both values of θ, the ex-

pected optimal prediction after seeing the additional m− (k+ 1) observations

is above the same expectation taken before those observations then, since φ′ is

decreasing by ambiguity aversion, the φ′ ratio on the left-hand side of (3.9) is

greater than the φ′ ratio on the right-hand side. If, additionally,
∏m

i=k+1
π1(xi)
π0(xi)

is at least 1, it follows from (3.9) that updating must be upwards. When the
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additional observations are all xH , these properties are satisfied. To see this,

note that by Proposition 3.1, optimal predictions are higher after observing

xH than after any other observations, so the expected optimal prediction after

seeing a string of m− (k + 1) signals xH is greater than the same expectation

before those observations.

The above argument shows that after observing xH , both the hedging and

likelihood effects push beliefs upward. Since Bayesian updating offsets the like-

lihood effect only, it also follows that dynamically consistent updating over-

shoots the Bayesian update. All of the arguments just made for the case

of observing xH hold with the inequalities reversed when observing a lowest

likelihood ratio signal xL ∈ arg min
x∈X

π1(x)
π0(x)

≤ 1.

We turn to polarization and offer some intuition for our main positive

results.7 Suppose there are two individuals with beliefs η̂ and η̌ and assume

η̂(θ = 1) > η̌(θ = 1) so η̂ stochastically dominates η̌ (we also continue our

abuse of notation and denote η̂(θ = 1) and η̌(θ = 1) by η̂ and η̌ respectively).

These beliefs could be the individuals’ priors or posteriors after observing

some sequence of signals. (For simplicity, we suppress the notation for the

history of signals in the discussion below.) In all other respects, the individuals

are equivalent. If they are ambiguity neutral, we know that polarization is

impossible, from Theorem 2.1. If they both observe a sequence of extreme

signals, we know they will update in the same direction, from Theorem 3.1.

So to have any chance of polarization, assume the individuals are ambiguity

averse and there are at least three signals with distinct likelihood ratios. Thus,

there is at least one intermediate (i.e., non-extreme) signal and these are the

only signals after which individuals’beliefs can possibly exhibit polarization.

When and why can polarization occur?

Suppose an individual observes a signal, xM , with intermediate likelihood

ratio. Specializing to the case of one observation and substituting for predic-

7For the purposes of this section, it is suffi cient to consider only polarization that occurs
following the last observation before a prediction is to be made.
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tions α∗ (x) , x 6= xM using (3.4), inequality (3.9) becomes:

φ′[−(α∗
(
xM
)
)2]

φ′[−(1− α∗ (xM))2]

π1(xM)

π0(xM)
(3.10)

R
φ′[−(α∗

(
xM
)
)2
∑

y∈X π0(y)(
π1(y)
π0(y)

α∗(xM )
π1(y)
π0(y)

+(1−α∗(xM ))
π1(xM )

π0(xM )

)2]

φ′[−(1− α∗ (xM))2
∑

y∈X π1(y)(
π1(xM )

π0(xM )

α∗(xM )
π1(y)
π0(y)

+(1−α∗(xM ))
π1(xM )

π0(xM )

)2]

The direction of this inequality determines the direction of updating. The

connection between α∗
(
xM
)
(and thus µ, since α∗

(
xM
)
is increasing in µ by

Proposition 3.1) and the direction of this inequality may be quite complex. It

is simpler in the case where the signal is not only intermediate but also neutral

(i.e., π0(x) = π1(x)). In the theorem below, we show that when α∗
(
xM
)
(and

thus µ) for one individual is close to 0 and for another is close to 1, polarization

occurs after they commonly observe a neutral signal.

Theorem 3.2 Polarization and Ambiguity: Assume there is a neutral signal
xN , at least one informative signal and twice continuously differentiable φ with

φ′′ < 0 < φ′. Polarization occurs after commonly observing xN if belief η̂ is

suffi ciently close to 1 and belief η̌ is suffi ciently close to 0.

Sketch of proof (for the full proof see the Appendix): If α∗
(
xM
)

= 0 or

α∗
(
xM
)

= 1, the hedging motive expressions are the same on both sides of

(3.10). When α∗
(
xM
)
is close to 0, if θ = 0 then predictions will be close to

perfect, both interim and ex-ante. Since payoffs are relatively insensitive to

small changes in predictions in the neighborhood of perfection, any differences

in the interim and ex-ante expected payoffs when θ = 0 (i.e., any differences in

the arguments of φ′ in the numerators on each side of (3.10)) will be very small

and will have minimal influence on updating (since −φ′′

φ′ is finite).
8 In contrast,

if θ = 1, predictions close to 0 will be very costly and small improvements in

8The role of assuming φ′′ < 0 < φ′ is to ensure that both the hedging motive, φ′[−α2]
φ′[−(1−α)2] ,

and ambiguity aversion (as measured by−φ
′′

φ′ , the coeffi cient of (absolute) ambiguity aversion
(see Klibanoff, Marinacci and Mukerji [2005])), are bounded away from zero and infinity.
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those predictions would be valuable. Therefore, (since−φ′′

φ′ is non-zero) it is the

differences in interim and ex-ante expected payoffs when θ = 1 that drive the

comparison of hedging motives when predictions are close to 0. Differentiating

the arguments of the φ′ terms in the denominators with respect to α∗
(
xM
)

and evaluating at α∗
(
xM
)

= 0, yields that the ex-ante expected payoff when

θ = 1 is higher than the interim payoff when θ = 1 if and only if the expected

likelihood,
∑

y∈X π1(y)π1(y)
π0(y)

, is higher than the realized likelihood, π1(xM )
π0(xM )

. This

comparison reflects the fact that the predictions α∗(y) optimally move toward

1 by an amount proportional to the likelihood π1(y)
π0(y)

so the expected or realized

likelihoods reflect the expected or realized improvements in the prediction

when θ = 1. Notice that this expected likelihood is always larger than 1

because of the complementarity between the π1 terms, so that if xM is a

neutral signal this condition will be satisfied.

Similar reasoning applies when α∗
(
xM
)
is close to 1. In this case, it is when

θ = 0 that predictions will be far from perfect and differences in interim and ex-

ante expected payoffs will be valuable and thus drive the hedging comparison.

Differentiating using the numerators and evaluating at α∗
(
xM
)

= 1 yields that

the ex-ante expected payoffwhen θ = 0 is higher than the interim payoffwhen

θ = 1 if and only if the expected inverse likelihood,
∑

y∈X π0(y)π0(y)
π1(y)

, is higher

than the realized inverse likelihood, π0(xM )
π1(xM )

. Again a neutral realized signal

will satisfy this condition. The inverse likelihood appears in this case because

as the signal y varies, a higher inverse likelihood, π0(y)
π1(y)

, moves the prediction

α∗ (y) closer to 0, leading to more payoff when θ = 0.

As a result, when the signal likelihood π1(xM )
π0(xM )

is below
∑

y∈X π1(y)π1(y)
π0(y)

,

for all suffi ciently low beliefs η (so that α∗
(
xM
)
is suffi ciently close to 0), the

hedging motive is bigger ex-ante than after seeing the signal and so updat-

ing will be shaded downward compared to Bayesian updating. Similarly, when
π1(xM )
π0(xM )

lies above 1∑
y∈X π0(y)

π0(y)
π1(y)

, for suffi ciently high η, updating will be shaded

upward compared to Bayesian updating. When the signal is neutral, so that

Bayesian updating is flat, these imply updating will be downward when be-

lief is suffi ciently low and upward when belief is suffi ciently high, generating

polarization.

22



Remark 3.2 As the sketch of the proof suggests, we show something more:
Under the assumptions of the theorem, dynamically consistent updating is

shaded downward compared to Bayesian updating for all beliefs suffi ciently

close to 0 if and only if the likelihood ratio π1(xn)
π0(xn)

of the observed signal lies

below
∑

y∈X π1(y)π1(y)
π0(y)

. This bound is above 1 and is the average signal likeli-

hood ratio given θ = 1. Similarly, dynamically consistent updating is shaded

upward compared to Bayesian updating for all beliefs suffi ciently close to 1 if

and only if π1(xn)
π0(xn)

lies above 1∑
y∈X π0(y)

π0(y)
π1(y)

. This bound is below 1 and is the

inverse of the average signal likelihood ratio given θ = 0.

Remark 3.3 The same strategy used to prove Theorem 3.2 also may be used
to show that quadratic loss payoffs are not crucial. Specifically, any payoff

function of the form ψ(|α− θ|) where ψ : [0, 1] → R is a twice continuously

differentiable function satisfying ψ′(0) = 0 and ψ′′ < 0 will yield a similar

result. Thus, the important aspect of quadratic loss (ψ(d) = −d2) is that the

marginal payoff to improving a prediction is diminishing in the quality (i.e.,

closeness to the truth) of the prediction and vanishes at perfection.

Remark 3.4 The theorem remains true if φ′(0) = 0 and the requirements of

the theorem are otherwise satisfied. This case requires an argument based on

second-order comparisons. Intuitively, second-order differences that were pre-

viously masked may now become important in the limit because the zero cre-

ates unboundedly large ambiguity aversion (as measured by −φ′′

φ′ ) near perfect

predictions. Specifically, one can show that, for beliefs close to θ, a second-

order comparison yields that the payoff following a neutral signal is larger than

the expected payoff before seeing the signal. This drives the comparison of ex-

ante versus interim hedging effects and generates the polarization. Moreover,

in this case, the polarization result may be extended beyond neutral signals

to all signals having a likelihood ratio lying in an interval containing 1.

To further investigate when polarization occurs, we turn to a particularly

clean structure for determining the direction of updating. Say that updating

follows a threshold rule if there is a threshold τ ∈ [0, 1] such that all beliefs
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above the threshold are updated upward and those below the threshold are

updated downward. Under ambiguity neutrality, the threshold is always de-

generate —a given observation x either leads all priors to be updated upward or

all priors to be updated downward depending on how the likelihood ratio π1(x)
π0(x)

compares to 1. In contrast, under ambiguity aversion, updating may follow a

non-trivial threshold rule (i.e., τ ∈ (0, 1)). In the Appendix, we provide a gen-

eral characterization of when updating follows a threshold rule (Proposition

A.2). To provide an explicit description of the threshold rule in circumstances

where it is guaranteed to exist, for the remainder of this section, we specialize

by assuming constant relative ambiguity aversion and that there are exactly

three distinct likelihood ratios associated with signals. Note that constant

relative ambiguity aversion simplifies the determination of the direction of up-

dating, as it makes the right-hand side of (3.10) multiplicatively separable.

Under these conditions, we show that updating always follows a threshold rule

and explicitly derive the threshold.

Polarization is obviously impossible if two individuals have the same be-

liefs and have the same degree of ambiguity aversion. If, however, there is

heterogeneity on either dimension, individuals may exhibit polarization when

they observe a common signal. Theorem 3.3 and Proposition 3.3 characterize

the conditions for a signal to lead to polarization when there is heterogeneity

across individuals in beliefs and/or ambiguity aversion.

Theorem 3.3 Assume constant relative ambiguity aversion and exactly three
distinct likelihood ratios. There exist τ̂ , τ̌ ∈ [0, 1] such that polarization occurs

after commonly observing the signal with the non-extreme likelihood ratio if

and only if belief η̂ ≥ τ̂ and belief η̌ ≤ τ̌ with at least one inequality strict.

Notice that whenever the thresholds satisfy τ̂ < 1 or τ̌ > 0, there exist

beliefs that generate polarization. The theorem relies on the following propo-

sition establishing that updating follows a threshold rule. The proposition is

proved by explicitly constructing the threshold.

Proposition 3.3 Assume constant relative ambiguity aversion γ > 0 and ex-

actly three distinct likelihood ratios. With n ≥ 1 observations, the posterior
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probability of θ = 1 after x1, . . . , xn−1, x
M is above/equal to/below the prob-

ability of θ = 1 after x1, . . . , xn−1 when the latter is above/equal to/below a

threshold τ(γ, π0, π1) that is independent of n and x1, . . . , xn−1 and beliefs.

Theorem 3.3 and Proposition 3.3 specialize immediately for the cases where

heterogeneity is either only in beliefs or only in ambiguity aversion.

Corollary 3.1 Assume exactly three distinct likelihood ratios. Then,
(a) Polarization with Homogeneous Beliefs: Two individuals with beliefs η

and constant relative ambiguity aversions γ̂ and γ̌ exhibit polarization after

observing the intermediate signal if and only if

τ(γ̂, π0, π1) ≤ η ≤ τ(γ̌, π0, π1) (3.11)

with at least one inequality strict; and

(b) Polarization with Heterogeneous Beliefs: Two individuals with constant

relative ambiguity aversion γ and beliefs η̂ and η̌ exhibit polarization after

observing the intermediate signal if and only if

η̂ ≥ τ(γ, π0, π1) ≥ η̌ (3.12)

with at least one inequality strict.

When the intermediate signal is a neutral signal, thresholds always lie

strictly between 0 and 1, and take a particularly simple form:

Corollary 3.2 Assume constant relative ambiguity aversion γ > 0 and ex-

actly three distinct likelihood ratios. If xM is a neutral signal, the threshold

τ(γ, π0, π1) ∈ (0, 1) and equals

1

1 + C2γ+1

where

C ≡
π1

(
xL
)√

π1 (xH)π0 (xH)− π1

(
xH
)√

π1 (xL) π0 (xL)

π0 (xH)
√
π1 (xL)π0 (xL)− π0 (xL)

√
π1 (xH) π0 (xH)

.
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Ambiguity neutral individuals with different levels of risk aversion or dif-

ferent beliefs cannot exhibit polarization if they use Bayesian updating. But

dynamically consistent ambiguity averse individuals with heterogeneous am-

biguity aversion or beliefs can exhibit polarization. This theory offers one

plausible interpretation of polarization. Bulls and bears have different be-

liefs and are ambiguity averse. Polarization is a manifestation of their effort

to implement their optimal plans. Death penalty opponents and proponents

have different preferences and respond to intermediate signals by updating in

opposite directions.

Heterogeneous tastes or beliefs are the source of polarization under ambi-

guity in Theorem 3.3. But this cannot explain the polarization observed by

Darley and Gross [1983], where the groups exhibiting polarization were ho-

mogeneous. In their study, heterogeneity was induced across groups at the

interim stage by showing them different initial evidence. We next show that

our previous results imply that exactly this device can generate polarization

in an ex ante homogeneous prediction problem. For example, suppose there

are two individuals with a common coeffi cient of relative ambiguity aversion

γ > 0, a common prior µ = 1
2
and signals with three distinct likelihood ratios

and symmetric likelihoods (i.e., π0

(
xL
)

= π1

(
xH
)
, π0

(
xM
)

= π1

(
xM
)
and

π0

(
xH
)

= π1

(
xL
)
). The individuals are allowed to condition their prediction

on two observations. Suppose one individual observes the sequence {xL, xM},
while the other observes the sequence {xH , xM}. Applying Theorem 3.1, after
one observation the first individual will have updated beliefs η̌ < 1

2
and the

second individual will have updated beliefs η̂ > 1
2
. From Corollary 3.2 and

symmetry of the likelihoods, the threshold for updating upon observing xM

is τ(γ, π0, π1) = 1
2
. Since the beliefs η̌ and η̂ are on opposite sides of this

threshold, Theorem 3.3 implies that polarization will occur after the second

observation, xM .

More generally, as long as the threshold is interior and enough observations

are available, polarization is possible after an intermediate signal. This follows

since if one individual observes a long sequence of high signals and another

observes a long sequence of low signals, their posteriors will end up on different
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sides of this threshold. If they then observe a common intermediate signal,

they will update in opposite directions and polarize:

Theorem 3.4 Polarization in a Homogeneous Environment: Assume com-
mon constant relative ambiguity aversion γ > 0, common prior µ ∈ (0, 1) and

exactly three distinct likelihood ratios. If τ(γ, π0, π1) ∈ (0, 1) and the number

of observations n is suffi ciently large, polarization occurs after observing the

intermediate signal xM if up to that point one individual observes xH , . . . , xH︸ ︷︷ ︸
n−1 times

while the other observes xL, . . . , xL︸ ︷︷ ︸
n−1 times

.

4 Concluding Remarks

The arrival of information changes the hedging motive of ambiguity averse

individuals. Optimal (i.e., dynamically consistent) updating must counteract

this hedging effect in addition to the more familiar likelihood effect. We show

that this delivers a theory of polarization —describing when it can occur and

when it cannot.

The model and theory can be extended in several ways. First, we have

assumed the individual has perfect foresight of the number of observations that

will be available before he needs to take an action and that there is only one

action required in the problem. Suppose instead that foresight is limited and

the individual believes that they must take an action after fewer observations

than will, in reality, be available. This is a natural description of the approach

plausibly taken by subjects in the experiments we use to motivate our study

(e.g., Darley and Gross [1983]). Suppose (1) the individual uses dynamically

consistent updating in the part of the problem he foresees; and (2) when faced

with the unforeseen continuation problem, he applies dynamically consistent

updating to the continuation starting from the posterior beliefs inherited from

the foreseen problem. Then, the possibility of polarization and the logic behind

it described in our analysis continue to hold.

Second, we have assumed fully dynamically consistent updating. As was

mentioned in the introduction, the effects we identify will survive and will
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continue to generate polarization even under substantially weaker assumptions.

This could be studied through a multi-selves model with temptation and costly

self-control in the style of Gul and Pesendorfer [2001] where the temptation

is to use Bayesian updating. In such a setting, as long as self-control is not

infinitely costly, an ambiguity averse individual will end up acting as if he uses

an update rule in between Bayesian and dynamically consistent updating. This

preserves a role for the hedging effect which was key to our results.

A Appendix (For Online Publication)

This Appendix contains all proofs not included in the main text and some

further results on the direction of updating.

A.1 Proofs not in the Main Text

Proof of Proposition 3.1. It is immediate from (3.2) and (3.3) that

α∗ (x1, . . . , xn) ∈ (0, 1) since µ ∈ (0, 1) and φ′ > 0. To prove (i), fix any n ≥ 0

and (x1, . . . , xn) ∈ X n and, from (3.4), observe that for any (y1, . . . , yn) ∈ X n,

α∗ (y1, . . . , yn) is a strictly increasing function of α∗ (x1, . . . , xn) in any so-

lution of the system of first-order conditions. This and the fact that φ is

concave implies that the left-hand side of the corresponding first-order condi-

tion is strictly increasing in α∗ (x1, . . . , xn) and decreasing in
∏n

i=1
π1(xi)
π0(xi)

. The

right-hand side of (3.2) (or, when n = 0, (3.3)) is strictly increasing in µ

and constant in α∗ (x1, . . . , xn). Therefore, α∗ (x1, . . . , xn) is well-defined and

strictly increasing in µ and
∏n

i=1
π1(xi)
π0(xi)

.

To prove (ii), let νn (resp. νm) denote the the posterior probability of

θ = 1 after observing x1, . . . , xn (resp. y1, . . . , ym) in the prediction problem

with n ≥ 0 (resp. m ≥ 0) observations available. Let β∗ (x1, . . . , xn) (resp.

β∗ (y1, . . . , ym)) denote the optimal prediction in the continuation problem

given that posterior.

By the first-order conditions for optimality, these predictions and posteriors
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must satisfy

β∗ (x1, . . . , xn)

1− β∗ (x1, . . . , xn)

φ′[−(β∗ (x1, . . . , xn))2]

φ′[−(1− β∗ (x1, . . . , xn))2]
=

νn
1− νn

and
β∗ (y1, . . . , ym)

1− β∗ (y1, . . . , ym)

φ′[−(β∗ (y1, . . . , ym))2]

φ′[−(1− β∗ (y1, . . . , ym))2]
=

νm
1− νm

.

Therefore,

νn R νm

if and only if

β∗ (x1, . . . , xn)

1− β∗ (x1, . . . , xn)

φ′[−(β∗ (x1, . . . , xn))2]

φ′[−(1− β∗ (x1, . . . , xn))2]
R β∗ (y1, . . . , ym)

1− β∗ (y1, . . . , ym)

φ′[−(β∗ (y1, . . . , ym))2]

φ′[−(1− β∗ (y1, . . . , ym))2]
.

Since z
1−z

φ′[−(z)2]
φ′[−(1−z)2]

is strictly increasing in z on (0, 1), this is equivalent to

β∗ (x1, . . . , xn) R β∗ (y1, . . . , ym) .

Finally, under dynamically consistent updating, from (3.5), the posteriors

must satisfy

α∗ (x1, . . . , xn)

1− α∗ (x1, . . . , xn)

φ′[−(α∗ (x1, . . . , xn))2]

φ′[−(1− α∗ (x1, . . . , xn))2]
=

νn
1− νn

and
α∗ (y1, . . . , ym)

1− α∗ (y1, . . . , ym)

φ′[−(α∗ (y1, . . . , ym))2]

φ′[−(1− α∗ (y1, . . . , ym))2]
=

νm
1− νm

.

Therefore, α∗ (x1, . . . , xn) = β∗ (x1, . . . , xn) and α∗ (y1, . . . , ym) = β∗ (y1, . . . , ym),

so that the above argument yields

νn R νm

if and only if

α∗ (x1, . . . , xn) R α∗ (y1, . . . , ym) .
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Proof of Proposition 3.2. Let νm (resp. νk) denote the the poste-

rior probability of θ = 1 after observing x1, . . . , xm (resp. x1, . . . , xk) in the

prediction problem with n ≥ 1 observations available. Dynamically consistent

updating implies that (3.5) is satisfied for ` = m and ` = k. Therefore,

α∗ (x1, . . . , xn)

1− α∗ (x1, . . . , xn)

φ′[Eπ0...π0(−(α∗ (x1, . . . , xm, Xm+1,...,Xn))2)]

φ′[Eπ1...π1(−(1− α∗ (x1, . . . , xm, Xm+1,...,Xn))2)]

n∏
i=m+1

π0(xi)

π1(xi)
=

νm
1− νm

and

α∗ (x1, . . . , xn)

1− α∗ (x1, . . . , xn)

φ′[Eπ0...π0(−(α∗ (x1, . . . , xk, Xk+1,...,Xn))2)]

φ′[Eπ1...π1(−(1− α∗ (x1, . . . , xk, Xk+1,...,Xn))2)]

n∏
i=k+1

π0(xi)

π1(xi)
=

νk
1− νk

.

Combining the above,

νm R νk

if and only if

φ′[Eπ0...π0(−(α∗ (x1, . . . , xm, Xm+1,...,Xn))2)]

φ′[Eπ1...π1(−(1− α∗ (x1, . . . , xm, Xm+1,...,Xn))2)]

R φ′[Eπ0...π0(−(α∗ (x1, . . . , xk, Xk+1,...,Xn))2)]

φ′[Eπ1...π1(−(1− α∗ (x1, . . . , xk, Xk+1,...,Xn))2)]

m∏
i=k+1

π0(xi)

π1(xi)
.

Proof of Theorem 3.1. Let νHm (resp. ν
L
m) denote the the posterior prob-

ability of θ = 1 after observing x1, . . . , xk, x
H , . . . , xH︸ ︷︷ ︸
m−k times

(resp. x1, . . . , xk, x
L, . . . , xL︸ ︷︷ ︸
m−k times

)

in the prediction problem with n ≥ 1 observations available. By Proposition

3.2,

νHm ≥ νk
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if and only if

φ′[Eπ0...π0(−(α∗
(
x1, . . . , xk, x

H , . . . , xH , Xm+1,...,Xn

)
)2)]

φ′[Eπ1...π1(−(1− α∗ (x1, . . . , xk, xH , . . . , xH , Xm+1,...,Xn))2)]
(A.1)

≥ φ′[Eπ0...π0(−(α∗ (x1, . . . , xk, Xk+1,...,Xn))2)]

φ′[Eπ1...π1(−(1− α∗ (x1, . . . , xk, Xk+1,...,Xn))2)]

m∏
i=k+1

π0(xH)

π1(xH)
.

For all (yk+1, . . . , yn), since
∏m

i=k+1
π1(xH)
π0(xH)

≥
∏m

i=k+1
π1(yi)
π0(yi)

, it follows from (3.4)

that

α∗
(
x1, . . . , xk, x

H , . . . , xH , ym+1, . . . , yn
)
≥ α∗ (x1, . . . , xk, yk+1, . . . , yn) .

ThereforeEπ0...π0(α∗
(
x1, . . . , xk, x

H , . . . , xH , Xm+1,...,Xn

)
)2 ≥ Eπ0...π0(α∗(x1, . . . , xk, Xk+1,...,Xn))2

andEπ1...π1(1−α∗
(
x1, . . . , xk, x

H , . . . , xH , Xm+1,...,Xn

)
)2 ≤ Eπ1...π1(1−α∗ (x1, . . . , xk, Xk+1,...,Xn))2.

As φ is concave, this implies

φ′[Eπ0...π0(−(α∗
(
x1, . . . , xk, x

H , . . . , xH , Xm+1,...,Xn

)
)2)]

φ′[Eπ1...π1(−(1− α∗ (x1, . . . , xk, xH , . . . , xH , Xm+1,...,Xn))2)]
(A.2)

≥ φ′[Eπ0...π0(−(α∗ (x1, . . . , xk, Xk+1,...,Xn))2)]

φ′[Eπ1...π1(−(1− α∗ (x1, . . . , xk, Xk+1,...,Xn))2)]
.

Since π1(xH)
π0(xH)

≥ 1, (A.1) follows. Furthermore, (3.5) for ` = m and ` = k and

31



(A.2) imply

νHm
1− νHm

=
α∗
(
x1, . . . , xk, x

H , . . . , xH , xm+1, . . . , xn
)

1− α∗ (x1, . . . , xk, xH , . . . , xH , xm+1, . . . , xn)
×

φ′[Eπ0...π0(−(α∗
(
x1, . . . , xk, x

H , . . . , xH , Xm+1,...,Xn

)
)2)]

φ′[Eπ1...π1(−(1− α∗ (x1, . . . , xk, xH , . . . , xH , Xm+1,...,Xn))2)]

n∏
i=m+1

π0(xi)

π1(xi)

≥
α∗
(
x1, . . . , xk, x

H , . . . , xH , xm+1, . . . , xn
)

1− α∗ (x1, . . . , xk, xH , . . . , xH , xm+1, . . . , xn)
×

φ′[Eπ0...π0(−(α∗ (x1, . . . , xk, Xk+1,...,Xn))2)]

φ′[Eπ1...π1(−(1− α∗ (x1, . . . , xk, Xk+1,...,Xn))2)]

n∏
i=m+1

π0(xi)

π1(xi)

=
νk

1− νk

(
π1(xH)

π0(xH)

)m−(k+1)

.

Thus,
νHm

1− νHm
≥ νk

1− νk

(
π1(xH)

π0(xH)

)m−(k+1)

where the right-hand side is the posterior ratio generated by Bayesian updating

of νk after observing xH , . . . , xH︸ ︷︷ ︸
m−k times

.

An analogous argument shows νk ≥ νLm and

νLm
1− νLm

≤ νk
1− νk

(
π1(xL)

π0(xL)

)m−(k+1)

.

Proof of Theorem 3.2. Recall that the optimal prediction α∗(x1, . . . , xn−1, xn)

is continuous and increasing in the posterior probability of θ = 1 after ob-

serving x1, . . . , xn−1. Denote this posterior probability by η. As the optimal

prediction is 0 if η = 0 and 1 if η = 1, considering η close enough to 0 or η

close enough to 1 is equivalent to considering α∗(x1, . . . , xn−1, xn) close enough

to 0 or 1 respectively. The proof strategy for determining updating for suf-

ficiently extreme beliefs will be to consider updating for suffi ciently extreme

predictions.
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Observe, by applying (3.5), that updating η after seeing xn will be shaded

upward/equal to/shaded downward compared to Bayesian updating if and only

if

φ′[−(α∗ (x1, . . . , xn−1, xn))2]φ′[−
∑
y∈X

π1(y)(1− α∗ (x1, . . . , xn−1, y))2](A.3)

R φ′[−(1− α∗ (x1, . . . , xn−1, xn))2]φ′[−
∑
y∈X

π0(y)(α∗ (x1, . . . , xn−1, y))2].

From (3.4), α∗ (x1, . . . , xn−1, y) = βπ1,π0
(α∗ (x1, . . . , xn−1, xn) ; y) where βπ1,π0

:

[0, 1]×X → [0, 1] is defined by βπ1,π0
(z; y) =

z
π1(y)
π0(y)

z
π1(y)
π0(y)

+(1−z)π1(xn)
π0(xn)

for all z ∈ [0, 1]

and y ∈ X . Define the function f : [0, 1]→ R such that

f(z) =
φ′[−

∑
y∈X π1(y)(1− βπ1,π0

(z; y))2]

φ′[−(1− z)2]
−
φ′[−

∑
y∈X π0(y)(βπ1,π0

(z; y))2]

φ′(−z2)
.

Under our assumptions, f is continuous and differentiable. By comparing f

with (A.3), observe that when z = α∗ (x1, . . . , xn−1, xn) ∈ (0, 1), the direction

in which updating is shaded relative to Bayesian updating is determined by

the sign of f . Therefore we want to determine the sign of f(z) when z is close 0

and when it is close to 1. By the assumptions in the statement of the theorem,

0 < φ′(0) < φ′(−1) <∞ where the last inequality comes from the fact that φ′

is continuous on [−1, 0] and thus bounded. Then f(0) = f(1) = 0. Therefore,

the sign of f(z) when z is close 0 and when it is close to 1 is determined by

the sign of f ′(z) at 0 and 1 respectively. Differentiating f (and denoting the
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derivative of βπ1,π0
with respect to z evaluated at (z; y) by β′π1,π0

(z; y)) yields,

f ′(z) =
2φ′′[−

∑
y∈X π1(y)(1− βπ1,π0

(z; y))2]
∑

y∈X π1(y)(1− βπ1,π0
(z; y))β′π1,π0

(z; y)

φ′[−(1− z)2]

−
2φ′[−

∑
y∈X π1(y)(1− βπ1,π0

(z; y))2]φ′′[−(1− z)2](1− z)

(φ′[−(1− z)2])
2

+
2φ′′[−

∑
y∈X π0(y)(βπ1,π0

(z; y))2]
∑

y∈X π0(y)(βπ1,π0
(z; y))β′π1,π0

(z; y)

φ′(−z2)

−
2φ′′(−z2)(z)φ′[−

∑
y∈X π0(y)(βπ1,π0

(z; y))2]

(φ′(−z2))
2 .

Thus,

f ′(0) = 2

(
−φ

′′(−1)

φ′(−1)

)[
1−

∑
y∈X

π1(y)β′π1,π0
(0; y)

]
+(0)

(
−φ

′′(0)

φ′(0)

)[
1−

∑
y∈X

π0(y)β′π1,π0
(0; y)

]

and

f ′(1) = (0)

(
−φ

′′(0)

φ′(0)

)[
1−

∑
y∈X

π1(y)β′π1,π0
(1; y)

]
+2

(
−φ

′′(−1)

φ′(−1)

)[
1−

∑
y∈X

π0(y)β′π1,π0
(1; y)

]
.

Since φ′′ is negative and finite (since φ′′ is continuous on a bounded inter-

val), the coeffi cient of ambiguity aversion, −φ′′

φ′ , is everywhere positive and

finite. This allows us to conclude that the sign of f ′(0) is the same as

the sign of 1 −
∑

y∈X π1(y)β′π1,π0
(0; y), while the sign of f ′(1) is the sign of

1−
∑

y∈X π0(y)β′π1,π0
(1; y). Differentiating βπ1,π0

(z; y) shows that β′π1,π0
(0; y) =

π1(y)
π0(y)

/π1(xn)
π0(xn)

and β′π1,π0
(1; y) = π1(xn)

π0(xn)
/π1(y)
π0(y)

. Thus f ′(0) < 0 and f ′(1) < 0 if

and only if
1∑

y∈X π0(y)π0(y)
π1(y)

<
π1(xn)

π0(xn)
<
∑
y∈X

π1(y)
π1(y)

π0(y)
. (A.4)

Summarizing, we have shown that f is negative for values suffi ciently close

to 0 and positive for values suffi ciently close to 1 if and only if (A.4) is satisfied.

Therefore, it is exactly under these conditions that updating will be shaded

downward compared to Bayesian updating for beliefs suffi ciently close to 0 and
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shaded upward compared to Bayesian updating for beliefs suffi ciently close to

1.

We now show that a neutral signal necessarily satisfies (A.4). Note that∑
y∈X π1(y)π1(y)

π0(y)
≥ 1 and

∑
y∈X π0(y)π0(y)

π1(y)
≥ 1 because the strictly convex

constrained minimization problem minw1,...,w|X|

∑|X |
i=1

w2
i

vi
subject to

∑|X |
i=1 wi =

1, assuming
∑|X |

i=1 vi = 1 and vi > 0 for i = 1, ..., |X |, has first order conditions
equivalent to wi

vi
constant in i, thus the minimum is achieved at 1∑|X|

i=1 vi
= 1

with wi = vi∑|X|
i=1 vi

= vi. Moreover, since there exists at least one informative

signal, i.e., y ∈ X such that π1(y)
π0(y)

6= 1, the unique minimum is not attained

and so
∑

y∈X π1(y)π1(y)
π0(y)

> 1 and
∑

y∈X π0(y)π0(y)
π1(y)

> 1. Thus, (A.4) is always

satisfied if π1(xn)
π0(xn)

= 1 (i.e., if xn is a neutral signal).

Finally, observe that if xn is a neutral signal, then, since Bayesian updating

would be flat, updating shaded downward implies updating is downward and

updating shaded upward implies updating is upward, generating polarization.

Proof of Proposition 3.3. From Lemma A.1, νn R νn−1 after observing

xM if and only if

∑
y∈X

π1 (y)

(
π1(xM )
π0(xM )

) 1
γ

+2

− π1(y)
π0(y)

[α∗(x1, . . . , xn−1, xM)π1(y)
π0(y)

+ (1− α∗(x1, . . . , xn−1, xM))π1(xM )
π0(xM )

]2
R 0.

(A.5)

We consider the following exhaustive list of possibilities:

(i)
(
π1(xM )
π0(xM )

) 1
γ

+2

≥ π1(xH)
π0(xH)

. In this case, using π1(xL)
π0(xL)

< π1(xM )
π0(xM )

< π1(xH)
π0(xH)

, the

left-hand side of (A.5) is strictly positive, and therefore updating is always

upward, so set τ(γ, π0, π1) = 0. Note that a necessary condition for this case

is that π1(xM )
π0(xM )

> 1.

(ii)
(
π1(xM )
π0(xM )

) 1
γ

+2

≤ π1(xL)
π0(xL)

. In this case, using π1(xL)
π0(xL)

< π1(xM )
π0(xM )

< π1(xH)
π0(xH)

, the

left-hand side of (A.5) is strictly negative, and therefore updating is always

downward, so set τ(γ, π0, π1) = 1. Note that a necessary condition for this

case is that π1(xM )
π0(xM )

< 1.
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(iii) π1(xH)
π0(xH)

>
(
π1(xM )
π0(xM )

) 1
γ

+2

> π1(xL)
π0(xL)

. In this case, using π1(xL)
π0(xL)

< π1(xM )
π0(xM )

<

π1(xH)
π0(xH)

, in the left-hand side of (A.5), the term for y = xL is positive and has a

denominator strictly decreasing in α∗(x1, . . . , xn−1, x
M), the term for y = xM

is constant in α∗(x1, . . . , xn−1, x
M), and the term for y = xH is negative and

has a denominator strictly increasing in α∗(x1, . . . , xn−1, x
M). Therefore the

whole sum is strictly increasing in α∗(x1, . . . , xn−1, x
M) and thus can change

signs at most once. Three sub-cases are relevant:

(iii)(a) the left-hand side of (A.5) is non-negative when 0 is plugged in for

α∗(x1, . . . , xn−1, x
M). In this case, updating is always upward, so set τ(γ, π0, π1) =

0.

(iii)(b) the left-hand side of (A.5) is non-positive when 1 is plugged in for

α∗(x1, . . . , xn−1, x
M). In this case, updating is always downward, so set τ(γ, π0, π1) =

1.

(iii)(c) otherwise. In this case, continuity and strict increasingness of the

left-hand side of (A.5) in α∗(x1, . . . , xn−1, x
M) implies there exists a unique

solution for a in (0, 1) to

∑
y∈X

π1 (y)

(
π1(xM )
π0(xM )

) 1
γ

+2

− π1(y)
π0(y)

(aπ1(y)
π0(y)

+ (1− a)π1(xM )
π0(xM )

)2
= 0. (A.6)

Since (A.7) holds with equality when z = a, using constant relative ambiguity

aversion (φ′(z) = (−z)γ) and given the monotonicity of α∗(x1, . . . , xn−1, x
M)

in νn−1, the associated threshold for νn−1 may be found by substituting z = a

into (A.7) with equality and solving for νn−1 = τ(γ, π0, π1). Doing this yields

τ(γ, π0, π1)

1− τ(γ, π0, π1)
=

(
a

1− a

)2γ+1

.

Therefore

τ(γ, π0, π1) =
a2γ+1

a2γ+1 + (1− a)2γ+1 .
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Collecting these results into an overall expression, the threshold is defined by:

τ(γ, π0, π1) =
b2γ+1

b2γ+1 + (1− b)2γ+1 ,

where

b ≡


0 if S(0) ≥ 0

a if S(a) = 0 and a ∈ (0, 1)

1 if S(1) ≤ 0

and

S(λ) ≡
∑

y∈{xL,xM ,xH}

π1 (y)

(
π1(xM )
π0(xM )

) 1
γ

+2

− π1(y)
π0(y)

(λπ1(y)
π0(y)

+ (1− λ)π1(xM )
π0(xM )

)2
.

Proof of Theorem 3.3 . Polarization is equivalent to ν̂ ≥ η̂ and

ν̌ ≤ η̌ with at least one inequality strict. If γ = 0, updating is Bayesian

and polarization is impossible by Theorem 2.1, so set τ̂ = 1 and τ̌ = 0. By

Proposition 3.3, if γ > 0 then polarization occurs if and only if η̂ ≥ τ(γ̂, π0, π1)

and η̌ ≤ τ(γ̌, π0, π1) with at least one inequality strict, where the τ function

is the one defined in that result.

Proof of Corollary 3.1. From Proposition 3.3, τ̂ = τ(γ̂, π0, π1) and

τ̌ = τ(γ̌, π0, π1). The rest is immediate from Theorem 3.3.

Proof of Corollary 3.2. From Proposition 3.3, such a threshold exists.

Since π0(xM) = π1(xM) implies π0(xL) − π1(xL) = π1(xH) − π0(xH) > 0,

calculation shows that the relevant case in the proof of Proposition 3.3 is case

(iii)(c). Thus τ(γ, π0, π1) = a2γ+1

a2γ+1+(1−a)2γ+1 = 1

1+( 1−a
a )

2γ+1 where a ∈ (0, 1) is

the unique solution of S(a) = 0. This simplifies to

1− a
a

=
π1

(
xL
)√

π1 (xH) π0 (xH)− π1

(
xH
)√

π1 (xL)π0 (xL)

π0 (xH)
√
π1 (xL) π0 (xL)− π0 (xL)

√
π1 (xH) π0 (xH)

.

Proof of Theorem 3.4. Under dynamically consistent updating starting

from any prior µ ∈ (0, 1), observing a suffi ciently long string of xL’s (resp.
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xH’s) results in a posterior close enough to 0 (resp. 1) so as to be on opposite

sides of the threshold τ(γ, π0, π1). Bayesian updating displays this property.

By Theorem 3.1, dynamically consistent updating is above (resp. below) the

Bayesian update given n−1 observations of xH (resp. xL) and must also display

this property. By Theorem 3.3, after such strings of extreme observations,

a common observation of xn = xM will result in polarization — the smaller

posterior will become even smaller, while the larger posterior will increase.

Key to this is that τ(γ, π0, π1) was shown to be independent of n and the

history x1, . . . , xn−1 (Proposition 3.3).

A.2 Further Results on the Direction of Updating

The next result combines Proposition 3.2 and equations (3.4) and (3.5) to

show a general form relating fundamentals to the direction of updating.

Proposition A.1 In the prediction problem with n ≥ 1 observations and dy-

namically consistent updating, for 0 ≤ m < n, the posterior probability of π1

after x1, . . . , xn (denoted by νn) is above/equal to/below the posterior proba-

bility of π1 after x1, . . . , xm (denoted by νm) if and only if the fundamentals

(νm, φ, π1, π0) are such that

z

1− z
φ′[−z2]

φ′[−(1− z)2]
R νm

1− νm
, (A.7)

for the unique z ∈ (0, 1) solving

z

1− z

φ′

[
−z2

∑
(ym+1,...,yn)∈Xn−m

∏n

i=m+1
π0(yi)

(
π1(yi)

π0(yi)

)2

(
z
∏n

i=m+1

π1(yi)

π0(yi)
+(1−z)

∏n

i=m+1

π1(xi)

π0(xi)

)2

]

φ′

[
−(1− z)2

∑
(ym+1,...,yn)∈Xn−m

∏n

i=m+1
π1(yi)

(
π1(xi)

π0(xi)

)2

(
z
∏n

i=m+1

π1(yi)

π0(yi)
+(1−z)

∏n

i=m+1

π1(xi)

π0(xi)

)2

](A.8)

=
νm

1− νm

n∏
i=m+1

π1(xi)

π0(xi)
.
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Proof. Substituting (3.5) into (3.9) and rearranging yields

α∗(x1, . . . , xn)

1− α∗(x1, . . . , xn)

φ′[−α∗(x1, . . . , xn)2]

φ′[−(1− α∗(x1, . . . , xn))2]
R νm

1− νm
.

From (3.4), we obtain for all (ym+1, . . . , yn) ∈ X n−m,

α∗(x1, . . . , xm, ym+1, . . . , yn)

=
α∗(x1, . . . , xn)

∏n
i=m+1

π1(yi)
π0(yi)

α∗(x1, . . . , xn)
∏n

i=m+1
π1(yi)
π0(yi)

+ (1− α∗(x1, . . . , xn))
∏n

i=m+1
π1(xi)
π0(xi)

.

Using this together with (3.5), α∗ (x1, . . . , xn) is the unique solution to

α∗ (x1, . . . , xn)

1− α∗ (x1, . . . , xn)
×

φ′

[
−
∑

(ym+1,...,yn)∈Xn−m
α∗(x1,...,xn)2

∏n

i=m+1
π0(yi)

(
π1(yi)

π0(yi)

)2

(
α∗(x1,...,xn)

∏n

i=m+1

π1(yi)

π0(yi)
+(1−α∗(x1,...,xn))

∏n

i=m+1

π1(xi)

π0(xi)

)2

]

φ′

[
−
∑

(ym+1,...,yn)∈Xn−m
(1−α∗(x1,...,xn))2

∏n

i=m+1
π1(yi)

(
π1(xi)

π0(xi)

)2

(
α∗(x1,...,xn)

∏n

i=m+1

π1(yi)

π0(yi)
+(1−α∗(x1,...,xn))

∏n

i=m+1

π1(xi)

π0(xi)

)2

]

=
νm

1− νm

n∏
i=m+1

π1(xi)

π0(xi)
.

In interpreting inequality (A.7), it is important to realize that z is an

increasing function of beliefs νm (as follows from the argument used in proving

part (i) of Proposition 3.1 with z playing the role of α∗ (x1, . . . , xn) and νm
playing the role of µ). In fact, (A.8) combines the first-order conditions (3.4)

and (3.5). This implies that z = α∗(x1, . . . , xn), the optimal prediction given

the observations. From (A.8), in the case of ambiguity neutrality (φ affi ne)
z

1−z is simply a multiple of
νm

1−νm so that updating is either always upward (if∏n
i=m+1

π1(xi)
π0(xi)

≥ 1) or always downward (if
∏n

i=m+1
π1(xi)
π0(xi)

≤ 1). Similarly, we

see that under ambiguity aversion, z
1−z is generally a non-linear function of

νm
1−νm (reflecting the balancing of the desire to hedge with the likelihood based

motivation from the ambiguity neutral case) which creates the possibility that

39



inequality (A.7) may change direction as beliefs νm change. In general, the

regions where it goes one way and where it goes the other may be very complex.

We now offer a characterization of when updating follows a threshold rule so

that A.7 changes direction at most once.

Proposition A.2 There is a threshold rule for updating νm after observing

xm+1, . . . , xn if and only if

φ′[−z2]

φ′[−(1− z)2]

n∏
i=m+1

π1(xi)

π0(xi)
(A.9)

−
φ′

[
−z2

∑
(ym+1,...,yn)∈Xn−m

∏n

i=m+1
π0(yi)

(
π1(yi)

π0(yi)

)2

(
z
∏n

i=m+1

π1(yi)

π0(yi)
+(1−z)

∏n

i=m+1

π1(xi)

π0(xi)

)2

]

φ′

[
−(1− z)2

∑
(ym+1,...,yn)∈Xn−m

∏n

i=m+1
π1(yi)

(
π1(xi)

π0(xi)

)2

(
z
∏n

i=m+1

π1(yi)

π0(yi)
+(1−z)

∏n

i=m+1

π1(xi)

π0(xi)

)2

]

as a function of z has at most one zero in (0, 1) and, if a zero exists, (A.9) is

increasing at that zero.

Proof. The result follows by combining the definition of a threshold up-
dating rule with the characterization of the direction of updating given by

Proposition A.1.

Finally, we present a lemma showing how inequality (3.9) which identifies

the direction of updating after observing a signal simplifies under the assump-

tion of constant relative ambiguity aversion. In proving Theorem 3.3, we use

this inequality to help establish and calculate the threshold rule.

Lemma A.1 In the prediction problem with n ≥ 1 observations, dynamically

consistent updating and constant relative ambiguity aversion γ > 0, the pos-

terior probability of π1 after x1, . . . , xn is above/equal to/below the posterior

probability of π1 after x1, . . . , xn−1 if and only if

∑
y∈X

π1 (y)

(
π1(xn)
π0(xn)

) 1
γ

+2

− π1(y)
π0(y)(

α∗(x1, . . . , xn)π1(y)
π0(y)

+ (1− α∗(x1, . . . , xn))π1(xn)
π0(xn)

)2 R 0. (A.10)
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Proof. Let νn (resp. νn−1) denote the posterior probability of π1 after

observing x1, . . . , xn (resp. x1, . . . , xn−1) in the prediction problem with n ≥ 1

observations available. From inequality (A.7) and equation (A.8), νn R νn−1

if and only if

φ′[−(α∗ (x1, . . . , xn))2]

φ′[−(1− α∗ (x1, . . . , xn))2]

π1(xn)

π0(xn)
(A.11)

R
φ′

[
−α∗(x1, . . . , xn)2

∑
y∈X

π0(y)
(
π1(y)
π0(y)

)2

(
α∗(x1,...,xn)

π1(y)
π0(y)

+(1−α∗(x1,...,xn))
π0(y)
π0(y)

π1(xn)
π0(xn)

)2

]

φ′

[
−(1− α∗(x1, . . . , xn))2

∑
y∈X

π1(y)
(
π1(xn)
π0(xn)

)2

(
α∗(x1,...,xn)

π1(y)
π0(y)

+(1−α∗(x1,...,xn))
π1(xn)
π0(xn)

)2

] .

Under constant relative ambiguity aversion, φ′(z) = (−z)γ and therefore

(A.11) is equivalent to

(
π1(xn)

π0(xn)

) 1
γ

R

∑
y∈X

π0(y)
(
π1(y)
π0(y)

)2

(
α∗(x1,...,xn)

π1(y)
π0(y)

+(1−α∗(x1,...,xn))
π1(xn)
π0(xn)

)2

∑
y∈X

π1(y)
(
π1(xn)
π0(xn)

)2

(
α∗(x1,...,xn)

π1(y)
π0(y)

+(1−α∗(x1,...,xn))
π1(xn)
π0(xn)

)2

.

Simplifying yields inequality (A.10).

References

D. Acemoglu, V. Chernozhukov andM. Yildiz (2009): “Fragility of Asymptotic

Agreement under Bayesian Learning,”mimeo., M.I.T.

R. Adams and D. Ferreira (2010): “Moderation in Groups: Evidence from

Betting on Ice Break-ups in Alaska,”Review of Economic Studies, 77, 882—

913.

J. Andreoni and T. Mylovanov (2010): “Diverging Opinions,”mimeo., Uni-

versity of Pennsylvania.

41



C. D. Batson (1975): “Rational Processing or Rationalization? The Effect of

Disconfirming Evidence on a Stated Religious Belief,”Journal of Personality

and Social Psychology, 32, 176-184.

C. Camerer and M. Weber (1992): “Recent Developments in Modeling Pref-

erences: Uncertainty and Ambiguity,” Journal of Risk and Uncertainty, 5,

325—370.

J. Darley and P. Gross (1983): “A Hypothesis-Confirming Bias in Labeling

Effects,”Journal of Personality and Social Psychology, 44(1), 20—33.

A. K. Dixit and J. W. Weibull (2007): “Political Polarization,”Proceedings of

the National Academy of Sciences, 104(18), 7351—7356.

K. Eliaz, D. Ray and R. Razin (2006): “Choice Shifts in Groups: A Decision-

Theoretic Basis,”American Economic Review, 96(4), 1321—1332.

J. Esteban and D. Ray (2011): “Linking Conflict to Inequality and Polariza-

tion,”American Economic Review, 101(4), 1345—1374.

I. Gilboa and M. Marinacci (2011): “Ambiguity and the Bayesian Paradigm”

in Advances in Economics and Econometrics: Theory and Applications, Tenth

World Congress of the Econometric Society, forthcoming.

F. Gul and W. Pesendorfer (2001): “Temptation and Self Control,”Econo-

metrica, 69, 1403—1435.

E. Hanany and P. Klibanoff (2009): “Updating Ambiguity Averse Prefer-

ences,”B.E. Journal of Theoretical Economics, 9 (Advances), Article 37.

P. Kondor (2009): “The More We Know, The Less We Agree: Higher-Order

Expectations, Public Announcement and Rational Inattention,”mimeo., Cen-

tral European University.

P. Klibanoff, M. Marinacci, S. Mukerji (2005): “A Smooth Model of Decision

Making under Ambiguity,”Econometrica, 73, 1849—1892.

42



C. G. Lord, L. Ross, and M. R. Lepper (1979): “Biased Assimilation and Atti-

tude Polarization: The Effects of Prior Theories on Subsequently Considered

Evidence,”Journal of Personality and Social Psychology, 37, 2098—2109.

M. Rabin and J. L. Schrag (1999): “First Impressions Matter: A Model of

Confirmatory Bias,”The Quarterly Journal of Economics, 114(1), 37—82.

D. Schmeidler (1989): “Subjective Probability and Expected Utility without

Additivity,”Econometrica, 57(3), 571—587.

M. Siniscalchi (2011): “Dynamic Choice under Ambiguity,”Theoretical Eco-

nomics, 6(3), 379—421.

A. Wilson (2004): “Bounded Memory and Biases in Information Processing,”

mimeo., University of Chicago.

A. Zimper and A. Ludwig (2009): “On attitude polarization under Bayesian

learning with non-additive beliefs,”Journal of Risk and Uncertainty, 39, 181—

212.

43


