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Abstract

We study the relation between ambiguity aversion and the Allais paradox. To this
end, we introduce a novel definition of hedging which applies to objective lotteries
as well as to uncertain acts, and we use it to define a novel axiom that captures a
preference for hedging which generalizes the one of Schmeidler (1989). We argue how
this generalized axiom captures both aversion to ambiguity, and attraction towards
certainty for objective lotteries. We show that this axiom, together with other stan-
dard ones, is equivalent to two representations both of which generalize the MaxMin
Expected Utility model of Gilboa and Schmeidler (1989). In both, the agent reacts to
ambiguity using multiple priors, but does not use expected utility to evaluate objective
lotteries. In our first representation, the agent treats objective lotteries as ‘ambiguous
objects,’ and use a set of priors to evaluate them. In the second, equivalent repre-
sentation, lotteries are evaluated by distorting probabilities as in the Rank Dependent
Utility model, but using the worst from a set of such distortions. Finally, we show how
a preference for hedging is not sufficient to guarantee an Ellsberg-like behavior if the
agent violates expected utility for objective lotteries. We then provide an axiom that
guarantees that this is the case, and find an associated representation in which the
agent first maps acts to an objective lottery using the worst of the priors in a set; then
evaluates this lottery using the worst distortion from a set of convex Rank Dependent
Utility functionals.
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1 Introduction

An very large amount of empirical and theoretical work has been devoted to the study of
two classes of paradox in individual decision making: 1) violations of von-Neumann and
Morgestern expected utility (EU) for objective risk – most notably the Allais paradox; 2)
violations of (Savage) expected utility for subjective uncertainty – usually called ‘ambiguity
aversion’ (as demonstrated by the Ellsberg paradox). Together, these behaviors constitute
two of the most widely studied and robust phenomena in experimental economics and psy-
chology of individual decision making. These empirical findings have led to the emergence of
two vast theoretical literatures, each aimed at generalizing standard models to account for
one of the two phenomena. At the same time, however, much less attention has been devoted
to the study of the relation between them, and even less to the development of models that
allow for a decision maker to exhibit both behaviors at the same time. One the one hand,
the vast majority of models designed to explain Allais-like behavior only look at objective
probabilities, thus have nothing to say about behavior under subjective uncertainty. On the
other, models that study ambiguity aversion either do not consider objective probabilities at
all (as in the setup of Savage (1954)) or, if they do, explicitly assume that the agent follows
expected utility to assess them (as usually done in the setup of Anscombe and Aumann
(1963)).1

Despite these largely separate analyses, the idea of a connection between the two classes
of behavior has been informally present for decades: loosely speaking, one might expect a
decision maker who is ‘pessimistic’ about the outcome of risky and uncertain events to dis-
play both the Allais paradox and ambiguity aversion. This conceptual connection is coupled
by a technical one: both phenomena can been seen as violations of some form of linear-
ity/independence of the preferences of the agent.2

In this paper, we develop a link between ambiguity aversion and Allais-type behavior
based on the concept of preference for hedging. Since Schmeidler (1989), preference for
hedging have been used as the principal way of capturing ambiguity aversion in situations
of subjective uncertainty. Our paper makes three contributions. First, we introduce a
generalized notion of preference for hedging, based on the concept of subjective (or outcome)
mixtures developed in Ghirardato et al. (2003), that can be applied not only to subjective
uncertainty, but also to objective risk. We argue that our generalized preference for hedging
captures the concept of pessimism in both the risky and in the ambiguous domains.

Our second contribution is to use this axiom, along with other standard ones, to charac-

1Exceptions are Wakker (2001, 2010), Klibanoff et al. (2005) and Drapeau and Kupper (2010). The
first two discuss extensively the link between Allais-type and Ellsberg-type behavior and convex capacities
in the Choquet Expected Utility Framework. In the second, a corollary of the main theorem generalizes
the representation to the case of non-EU preferences on objective lotteries; this representation, however,
is not fully axiomatized, and does not model jointly the attitude towards risk and uncertainty. Drapeau
and Kupper (2010) allows for non-expected utility behavior on both dimensions in the standard setup of
Anscombe and Aumann (1963). However, as we shall discuss, they model violation of expected utility which
need not conform to the Allais paradox, but rather could exhibit the opposite behavior. We refer to Section
4 for more discussion.

2There is indeed a literature that discusses connections between violations of objective and subjective
EU, most notably by noticing the formal link between the Choquet Expected Utility model for uncertainty
and Rank Dependent Utility model for risk. We refer to Section 4 for an analysis of the literature.

2



terize two equivalent models in the classic setup of Anscombe and Aumann (1963) that allow
for both Allais-type violations of objective EU and ambiguity aversion to be present at the
same time – to our knowledge the first axiomatized model to do so. Both models generalize
the MaxMin Expected Utility model of Gilboa and Schmeidler (1989) (MMEU): in both of
them, the decision maker reacts to subjective uncertainty by minimizing over multiple priors
over states, as in MMEU. In the first representation, the agent also treats objective lotteries
as ‘ambiguous objects,’ and evaluates any given lottery using the worst of a set of priors.
In the second, equivalent, representation, lotteries are evaluated by distorting probabilities
as in the Rank Dependent Utility mode of Quiggin (1982), but using the worst from a set
of possible convex (pessimistic) distortions. As this second representation makes clear, our
treatment of objective probability is strict generalization of Rank Dependent Utility with
convex probability weighting.

While in both representations above the decision maker always has a preference for hedg-
ing, and evaluates acts using the worst from a set of possible priors, this does not necessarily
imply that she complies with the Ellsberg paradox: she might display the opposite behavior
if she distorts objective probabilities more than subjective ones, or, equivalently, if her pref-
erence for hedging is stronger for the former than for the latter.3 In fact, the equivalence
between a preference for hedging and the Ellsberg paradox can disappear if the decision
maker violates expected utility on objective risk. The third contribution of this paper is
then to introduce a new axiom that, along with preference for hedging, guarantees that the
agent’s behavior is in line with the Ellsberg paradox. We use this axiom to characterize a
new representation in which an agent first establishes a probability distribution over states
of the world using the worst of a set of priors, then distorts this probability distribution
using the worst from a set of probability weighting functions – the same that she uses to
assess risky lotteries. This approach allows us to discern a new set of priors to represent the
agent’s approach to ambiguity net of any additional distortion of objective probabilities. We
argue how this set could be seen as the ‘real’ set of models of the world used by the agent.

The paper is organized as follows. The remainder of the introduction presents an overview
of our main results. Section 2 presents the formal setup, the axioms, and the first represen-
tation theorem. Section 3 discuss the special case of the model in which the agent always
distorts subjective probabilities more than objective ones, in line with the Ellsberg paradox,
and the second representation theorem. Section 4 discusses the relevant literature. Section
5 concludes. The proofs appear in the appendix.

1.1 Summary of Results

The first innovation of our paper is to provide a generalized notion of ‘preference for hedging’
that can be used to model both violations of EU as in the Allais paradox for objective
risk, as well as ambiguity aversion for (subjective) uncertainty. Schmeidler (1989) defined
a preference for hedging by positing that, for any two acts that are indifferent to each
other, the decision maker prefers to each the 1

2
-mixture between them, that is an act that

returns in every state a lottery that gives with probability 1
2

what each of the two original

3Similar observations appear in Epstein (1999), or in Wakker (2001, 2010) in the context of Choquet
expected utility. Indeed one might wonder whether such decision maker should be defined as ambiguity
averse or not: we refer to Section 3 and, in particular, to footnote 37 for more discussion.
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acts would give. While intuitive, however, this notion of mixture is based on the use of
objective lotteries, and implicitly assumes that the decision maker follows expected utility
when evaluating them. An alternative approach was proposed by Ghirardato et al. (2003),
and is based on the notion of ‘outcome mixtures’ of prizes instead of probability mixtures:
instead of ‘mixing’ two objects by creating a lottery that returns each of them as a prize, we
look for a third object, in our prize space, the utility of which is ‘in the middle’ of that of
the original two.4 One of the first steps of our paper is then to extend the idea of outcome
mixtures to cover both mixtures of lotteries and of acts. To illustrate our approach, consider
an agent who has linear utility for money, so the outcome mixture between $10 and $0 is
$5, and a lottery p which returns $10 and $0 with probability 1

2
. How could we define the

‘outcome mixture’ of p with itself, i.e. with an identical lottery? Notice that the idea here
is to mix the outcomes that this lottery returns. One way to do it is to mix $0 with $0 and
$10 with $10: we obtain exactly the lottery p. But we can also mix $0 with $10, and $10
with $0, and obtain a lottery that returns, with probability 1, the outcome mixture between
$10 and $0, i.e. $5. Both of these lotteries could be seen as mixtures between p and itself.
In fact, many others mixtures are possible: for example, we can see p as the lottery that
returns $0 with probability 1

4
, $0 with 1

4
, $10 with 1

4
, and $10 with 1

4
, and derive many other

combinations.5 Following this intuition, we define the set of all possible mixtures between
two lotteries p and q. Once these are defined, we then also define the mixture between two
acts point-wise: for any two acts f and g, the set of mixtures is the set of all acts that return
in each state a lottery which could be obtained as a mixture between the lotteries returned
by f and g in that state.

Endowed with the notion of outcome mixture of lotteries and acts, we introduce our
main axiom, a generalized notion of Hedging : for any three acts f, g, and h, if f and g are
indifferent to each other and if h could be derived as a mixture between f and g, then h
must be weakly preferred to both. We argue that this axiom captures ‘pessimism’ about both
subjective uncertainty and objective risk. To illustrate, let us go back to our lottery p which
returns $10 and $0 with probability 1

2
, and think about its mixtures with itself: we have

seen that the set of mixtures includes p itself, but also the degenerate lottery that returns,
with probability 1, the outcome mixture between $10 and $0, as well as many intermediate
mixtures. The key observation is that, loosely speaking, any lottery obtained as a mixture
of p with itself is more ‘concentrated towards the mean’ than p itself (in utility terms) – to
the point that one of them is a degenerate lottery. While an EU maximizing agent would be
indifferent between these lotteries, a ‘pessimistic’ agent should like this ‘pulling towards the
mean,’ as it reduces her exposure, and should therefore exhibit a preference for hedging, at
least with respect to objective lotteries. When we extend this idea to acts, hedging acquires
also the advantage of mixing the outcomes that acts return in each state, just like in the
Uncertainty Aversion axiom of Schmeidler (1989) – a reduction of subjective uncertainty
which should be valued by subjects who are pessimistic in the sense of ambiguity aversion.

Using this generalized notion of hedging, together with other standard axioms, we derive
two, equivalent representations in the standard setup of Anscombe and Aumann (1963).

4For example, to mix $0 and $10 we look for an object the utility of which is exactly in the middle. If
the utility was linear this would be $5, while it would be less in case of diminishing marginal utility.

5In this case, we could mix $0 with $0, $0 with $10, $10 with $0, and $10 with $10, and obtain 1
4 $0, 1

4
$10, and with probability 1

2 the outcome mixture of $0 and $10.
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Both representations generalize the MMEU model of Gilboa and Schmeidler (1989),6 and
in both the decision maker evaluates acts in a similar way: she has a set of priors Π over
the states of the world, and she evaluates each act by taking the expectation using the
worst of the priors in Π. Where both representations differ from MMEU is that the utility
of objective lotteries needs not follow expected utility. In our first representation, for any
lottery p in ∆(X) our agent acts as follows. First, she maps each lottery into an act defined
on a hypothetical urn which contains a measure 1 of ‘balls,’ with the the fraction of balls
giving a particular prize equal to the probability of that prize under p.7 An expected utility
agent would use the uniform prior on [0, 1] to evaluate such acts – the Lebesgue measure `.
By contrast, our agent has a set of priors on [0, 1], which contains `, and evaluates lotteries
using the worst one of them. This leads her to distort the probabilities of objective lotteries
in a ‘pessimistic’ fashion, while leaving the ranking of degenerate lotteries unchanged, thus
exhibiting Allais-style violations of EU.

While in the representation above the decision maker distorts objective probabilities when
she evaluates lotteries, the procedure she uses is rather different from others forms of distor-
tion suggested in the literature. Our second representation, which we show is equivalent to
the first, will instead distort probabilities using a procedure in line with the Rank Dependent
Utility Model (henceforth RDU) of Quiggin (1982).8 In particular, the agent considers a set
of convex (pessimistic) probability weightings, the worst of which will be used to evaluate
any given lottery following RDU. It is easy to see how this is a strict generalization of RDU
with convex distortion (as the set of distortions can be a made of only one element); in
Section 4 we argue how this generalization allows our model to capture some features of
pessimism which the RDU model cannot capture for lotteries with more than two elements
in their support.

In both representations there is a sense in which the decision maker could be thought of
as ambiguity averse, as she evaluates acts by using the most pessimistic of a set of priors.
However, this does not necessarily mean that the decision maker will exhibit Ellsberg para-
dox. In fact, if the distortions of objective lotteries are ‘stronger’ than those of the subjective
ones, then the opposite of Ellsberg behavior may occur – a possibility which has been noted
by Epstein (1999) and Wakker (2001).9 We next introduce a novel additional axiom that
rules out this possibility, and show how its addition to our framework allows us to char-
acterize a third representation. In this representation, the agent again evaluates objective
lotteries using the worst RDU distortion from a set. What now differs is how she evaluates
acts. Again, she has a set of priors over the states of the world, Π̂, but she evaluates each act
in two steps: first, she transforms each act into a lottery using the worst prior in Π̂; second,

6More precisely, they generalize the special case of MMEU in which the utility function over consequences
is continuous.

7For example, when she faces the lottery p = 1
2x + 1

2y, the agent could think that at some point this
lottery will be executed by taking some urn with many balls and saying, for example, that the outcome is x
if one the first half of the balls is extracted, and it is y if one of the second half is extracted.

8According to this model, the agent uses a rule similar to expected utility, but applies a weighting
function to the cumulative probability distribution of each lottery. Depending on the shape of this function,
the behavior of the agent can be either exhibit Allais-type violations of EU (convex weighting), or the
opposite (concave weighting).

9Tversky and Fox (1995) provide empirical evidence of this behavior – subjects who would rather bet on
subjective rather than objective events.
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she evaluate this lottery as she does with other lotteries, using the worst distortion in a set
of convex RDU distortions. We argue that this set of priors Π̂ is the one that should be
looked at if we are interested in the set of ‘models of the world’ used by the decision maker to
reduce subjective uncertainty to an objective one – which could be important to understand
how the agent approaches uncertainty, for example if we wish to study how she reacts to new
information.10 However, this set can only be identified by observing the preferences of the
agent over objective lotteries alongside those for subjective (Savage) acts. We believe this
emphasizes the importance of studying the preferences of the agent for objective lotteries as
well, even if we are only interested in how she ranks purely subjective acts. In particular,
objective lotteries are no longer used just for mathematical convenience, as was the case
when the setup of Anscombe and Aumann (1963) was introduced, but are now important
to discern the set of models used by the agent to evaluate purely subjective acts.

2 The Model

2.1 Formal Setup

We consider a standard Anscombe-Aumann setup with the additional restrictions that the
set of consequences is both connected and compact. More precisely, consider a finite (non-
empty) set Ω of states of the world, an algebra Σ of subsets of Ω called events, and a (non-
empty) set X of consequences, which we assume to be a connected and compact subset of a
metric space.11 As usual, by ∆(X) we define the set of simple probability measures over X,
while by F we denote the set of simple Anscombe-Aumann acts: finite-valued, Σ-measurable
functions f : Ω → ∆(X). We metrize ∆(X) in such a way that metric convergence on it
coincides with weak convergence of Borel probability measures. Correspondingly, we metrize
F using point-wise convergence.

We use some additional standard notation. For every consequence x ∈ X we denote by
δx the degenerate lottery in ∆(X) which returns x with probability 1. For any x, y ∈ X and
α ∈ (0, 1), we denote by αx+ (1− α)y the lottery that returns x with probability α, and y
with probability (1− α). For any p ∈ ∆(X), we denote by cp, certainty equivalent of p, the
elements of X such that p ∼ δcp . For any p ∈ ∆(X), with the usual slight abuse of notation
we denote the constant act in F such that p(ω) = p for all ω ∈ Ω. Finally, given some
p, q ∈ ∆(X) and some E ∈ Σ, pEq denotes the acts that yields lottery p if E is realized, and
q otherwise.

Our primitive is a complete, non degenerate preference relation � on F , whose symmetric
and asymmetric components are denoted ∼ and �.

When |Ω| = 1, this setup coincides with a standard preference over vNM lotteries. This
is a special case of particular interest for us, and one which we will discuss at length, because

10In fact, it is reasonable to expect that the arrival of new information about the state of the world affects
the models used by the agent, but not how she reacts to objective lotteries. We should therefore expect her
to update her set of models Π̂, but nothing else.

11It is standard practice to generalize our analysis to the case in which X is a connected and compact
topological space. Similarly, our analysis could also be easily generalized to the case in which the state space
is infinite, although in this case the Continuity axiom would have to be adapted: see Section 2.2.1, and
specifically the discussion after Axiom 3.
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our analysis will introduce a new representations for this special case as well, in which the
agent is pessimistic in her evaluation of objective lotteries.

We use the setup of Anscombe and Aumann (1963) for convenience, since it allows for the
contemporaneous presence of both objective lotteries and of uncertain acts, and because of
its widespread use in the literature on ambiguity aversion, thus simplifying the comparison
with other models. However, this setup has two features that go beyond simply allowing for
both risk and uncertainty: first, it allows them to appear in one object at the same time;
second, it entails a specific order in which the two are resolved. It is important to emphasize
that our analysis does not depend on either of these features. In particular, as we believe
it will be easy to see from our analysis, it is straightforward to translate our results into an
alternative setup in which preferences are defined over the union of simple vNM lotteries on
X, and Savage acts with consequences X, i.e. preferences over ∆(X) ∪XΩ.

2.2 Axioms and Subjective and Objective Mixtures

2.2.1 Basic Axioms

We start by imposing some basic axioms on our preference relation. To this end, we use the
following standard definition of First Order Stochastic Dominance (FOSD).12

Definition 1. For any p, q ∈ ∆(X), we say that p First Order Stochastically Dominates q,
denoted pDFOSD q, if p({x : δx � δz}) ≥ q({x : δx � δz}) for all z ∈ X. We say pBFOSD q,
if pDFOSD q and p({x : δx � δz}) > q({x : δx � δz}) for some z ∈ X.

We are now ready to posit some basic standard postulates.

A.1 (FOSD). For any p, q ∈ ∆(X), if pDFOSD q then p � q, and if pBFOSD q then p � q.

A.2 (Monotonicity). For any f, g ∈ F if f(ω) � g(ω) for all ω ∈ Ω, then f � g.

A.3 (Continuity). � is continuous: the sets {g ∈ F : g � f} and {g ∈ F : g � f} are
closed for all f ∈ F .

Axiom 1 imposes that our preference relation respects FOSD when applied to objective
lotteries. Axiom 2 is the standard monotonicity postulate for acts: if an act f returns a
consequence which is better than what another act g returns in every state of the world,
then f must be preferred to g. Axiom 3 is a standard continuity assumption.13 14

12Since our set of consequences X is a generic (compact and connected) set, then the usual definition of
FOSD designed for R would not apply. The definition that follows is a standard generalization which uses, as
a ranking for X, the ranking derived from the preferences on degenerate lotteries. It is easy to see that this
definition coincides with the standard definition of FOSD in the special case in which X ⊆ R and δx � δy iff
x ≥ y for all x, y ∈ X.

13We should emphasize that, although Axiom 3 is entirely standard, it is stronger than Archimedean
Continuity, often assumed in this literature, which only posits that the sets {α ∈ [0, 1] : αf + (1− α)g � h}
and {α ∈ [0, 1] : h � αf + (1−α)g} are closed. The main difference is that our axiom above guarantees that
the utility function in the representation is also continuous.

14Although we assume that the state space Ω is finite, as we mentioned before our analysis could easily
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In the standard development of subjective expected utility theory, to the axioms above
one would add the Independence axiom of Anscombe and Aumann (1963).15 This axiom,
together with Axiom 1-3, would have two implications: 1) that the decision maker is a
expected utility maximizer with respect to objective lotteries; 2) that the decision maker is
a Subjective Expected Utility Maximizer with respect to acts. (See Anscombe and Aumann
(1963).) As we are interested in violations of both subjective and objective expected utility
maximization, this would then be too strong for our analysis. To accommodate for ambiguity
aversion, in the literature it is then standard practice to posit a much weaker axiom: Risk
Independence, which postulates independence only for constant acts (objective lotteries).16

This axiom is imposed by virtually all the models defined in the setup of Anscombe and
Aumann (1963). However, since we are explicitly aiming to model Allais-style violations of
objective expected utility, also this weaker axiom is too strong for our analysis. We will
therefore have to depart radically from this approach.

2.2.2 Outcomes-Mixtures of Consequences: the approach of Ghirardato et al.
(2003)

One of the goals of this paper is to capture behaviorally the agent’s aversion to ‘exposure
to risk’ by extending the notion of a preference for hedging to objective lotteries. Loosely
speaking, a preference for hedging means that, if an agent is indifferent between two lotteries,
she weakly prefers to both a ‘mixture’ between them that reduces the overall exposure to
risk. To define this, however, we need to define what we mean by a ‘mixture’ between two
lotteries that reduces the exposure to risk – what is usually understood with the idea of
‘hedging.’ The traditional approach is to define this mixture by creating a more complicated
lottery that returns each prize x ∈ X with a probability which is a convex combination of
the probabilities assigned to x by the original lotteries. (We shall refer to these mixtures as
probability-mixtures.) This approach, however, will not work for our analysis, as the process
of probability mixing changes the probabilities of various prizes in a way that might increase
exposure to risk – thus not providing the ‘hedging’ that we are looking for. For example, any
mixture of this kind between two degenerate lotteries δx and δy becomes a non-degenerate
lottery, introducing some exposure to risk which wasn’t there before. And since our agents
need not follow expected utility and are potentially averse to exposure to risk, then this kind
of mixture won’t be appropriate for us.

In this paper we will instead introduce the alternative notion of outcome mixtures of
lotteries that, we will argue, provides the form of ‘hedging’ that we are looking for. We

be extended to the general case of an infinite state space. To do this, however, we would have to adapt
the Continuity axiom by requiring Archimedean continuity on acts, and full continuity on lotteries. That
is, we would require: 1) {α ∈ [0, 1] : αf + (1 − α)g � h} and {α ∈ [0, 1] : h � αf + (1 − α)g} are
closed; and 2) {q ∈ ∆(X) : q � p} and {q ∈ ∆(X) : q � p} are closed for all p ∈ ∆(X). We would then
obtain representations identical to ours, but in which the measures over Ω are just finitely additive and not
necessarily countably additive. If, in addition, we wanted also to obtain countable additivity, we would have
to further assume Arrow’s Monotone Continuity Axiom (see Chateauneuf et al. (2005)).

15The Independence axioms posits that for every f, g, h ∈ F , and for every α ∈ [0, 1] we have f � g if and
only αf + (1− α)h � αg + (1− α)h.

16The Risk Independence Axiom posits that for every p, q, r ∈ ∆(X), and for every α ∈ [0, 1] we have
p � q if and only if αp+ (1− α)r � αq + (1− α)r.

8



begin, in this section, by defining the notion of outcome mixture for the consequences in X,
following the approach of Ghirardato et al. (2003).17 In the next section we will extend this
idea to outcome mixture of lotteries and of acts.

Consider two consequences x, y ∈ X and suppose that, in the context of some model, the
agent assigns utilities to all elements of X, and that we wish to identify the element with a
utility precisely in between that of x and y – i.e. the consequence z in X that has has a utility
which is exactly in the middle between that of x and y. For example, if we knew that the
utility function of the agent were linear on X ⊆ R, we could simply take the element 1

2
x+ 1

2
y.

Of course in general we do not want to restrict ourselves to linear utility. However, if the set
of consequences X is connected, and if preferences are well-behaved enough (in a sense that
we shall discuss below), then Ghirardato et al. (2003) introduce a technique which allows us
to elicit this element for any (continuous) utility function. In what follows we adapt their
technique, originally developed for Savage acts, to the case of objective lotteries with weight
1
2
.

Definition 2. For any x, y ∈ X, if δx � δy we say that z ∈ X is a 1
2
-mixture of x and y, if

δx � δz � δy and
1

2
x+

1

2
y ∼ 1

2
c 1

2
x+ 1

2
z + 1

2
c 1

2
z+ 1

2
y. (1)

We denote z by 1
2
x⊕� 1

2
y.

The rationale of the definition above is the following. Consider some x, y, z ∈ X such
that δx � δz � δy. Suppose now also that (1) holds. Then, we know that the agent is
indifferent between either receiving the probability mixture between x and y, or first taking
the probability mixture between x and z, and then the probability mixture between z and
y – which would hold if z had a utility exactly half-way between that of x and y. This is
trivially true under expected utility. Ghirardato et al. (2003) show that it is also true for
all preferences in the much broader class of ‘locally bi-separable’ preferences – essentially,
those for which a cardinally unique utility function can be identified. (See below for a formal
definition.) Thanks to our structural assumption, this notion is well-defined: since X is a
connected set and preferences are continuous, for any x, y ∈ X there must exist some z ∈ X
such that z = 1

2
x ⊕� 1

2
y. We refer to Ghirardato et al. (2001, 2003) for further discussion.

We denote ⊕� using the preferences as a subscript to emphasize how such outcome-mixture
depends on the original preference relation. However, in most of the following discussion
we drop the subscript for simplicity of notation. Once preferences averages between two
elements are defined as above, we can then define any other mixture λx⊕ (1− λ)y for any
dyadic rational λ ∈ (0, 1) simply by applying the definition above iteratively.18

17Similar approaches to define mixtures of consequences were used in Wakker (1994), Kobberling and
Wakker (2003), and in the many references therein.

18Any λ ∈ [0, 1] is dyadic rational if for some finite N , we have λ =
∑N
i=1 ai/2

i, where ai ∈ (0, 1)
for every i and aN = 1. Then, we use λx ⊕ (1 − λ)y as a short-hand for the iterated preference average
1
2z1⊕ 1

2 (. . . ( 1
2zN−1⊕ 1

2 ( 1
2zN⊕

1
2y)) . . . ), where for every i, zi = x if ai = 1 and zi = y otherwise. Alternatively,

we could have defined λx ⊕ λy for any real number λ ∈ (0, 1), by defining it for dyadic rationals first, and
then using continuity of the preferences to define it for the whole (0, 1). The two approaches are clearly
identical in our axiomatic structure; we choose to use the most restrictive definition to state the axioms in
the weakest form we are aware of.
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Even though the formal concept above is well defined in our setting, without more struc-
ture on the preferences there is no sense in which we can guarantee that the utility of
an outcome mixture z is in the middle of x and y: for one thing, this presumes that the
very notion of utility is well-defined and, in some sense, unique. We now provide a neces-
sary and sufficient condition to guarantee that this is the case. Consider some x, y, z′, z′′

such that z′ and z′′ are “in between” x and y. Then, consider the following two lotteries:
1
2
c1

2
x+ 1

2
z′

+ 1
2
c1

2
y+ 1

2
z′′

and 1
2
c1

2
x+ 1

2
z′′

+ 1
2
c1

2
y+ 1

2
z′

. The only difference between them is that: in

the former x is mixed with z′, and y with z′′, and then they are mixed together; in the latter
x is mixed first with z′′, and y with z′, and then they are mixed together. In both cases, the
only weights involved are weights 1

2
, and x is always mixed with some element worse than

it, while y is mixed with some element better than it. The only difference is in the ‘order’
of this mixture. The following axiom imposes that the agent should be indifferent between
these two lotteries – she should not care about such ‘order.’

A.4 (Objective Tradeoff-Consistency). For any x, y, z′, z′′ ∈ X such that δx � δz′ � δy,
δx � δz′′ � δy, and c 1

2
r+ 1

2
s exists for r = x, y and s = z′, z′′. Then, we have

1

2
c1

2
x+ 1

2
z′

+
1

2
c1

2
y+ 1

2
z′′
∼ 1

2
c1

2
x+ 1

2
z′′

+
1

2
c1

2
y+ 1

2
z′
.

The axiom above is clearly implied by Risk Independence – following which both lotteries
would be indifferent to a lottery that returns each option with probability 1

4
. At the same

time, it is much, much weaker than it. For example, it is easy to see that it is compatible
with the behavior of an agent who evaluates each lottery of the form 1

2
a+ 1

2
b, where δa � δb,

by the functional γ(1
2
)u(a) + (1− γ(1

2
))u(b), where γ(1

2
) could be any number between 0 and

1 – the elements γ(1
2
) would ‘cancel out’ leading to the indifference required by the axiom.

That is, Axiom 4 does not rule out even extreme forms of probability weighting. It is not
hard to see how essentially all generalizations of expected utility that have been suggested
in the literature satisfy this axiom – from RDU to Disappointment Aversion.19 Axioms of
this form are not uncommon in the literature: one can easily see Axiom 4 as an adaptation
of the E-Substitution Axiom in Ghirardato et al. (2001) for the case of objective lotteries.

Following this literature it is then straightforward to show how Axioms 1-4 are enough
to guarantee that the representation that we just hinted to is not only sufficient, but also
necessary. The following Lemma is a trivial consequence of (Ghirardato et al., 2001, Lemma
1). (The proof is therefore omitted.)

Lemma 1. A preference relation satisfies Axioms 1-4 if and only if they are (locally)
biseparable with a continuous utility function u, i.e. there exists a cardinally unique con-
tinuous utility function u : X → R and a parameter γ(1

2
) ∈ (0, 1) such that, for any

x, y, z, w ∈ X with δx � δy and δz � δw, we have that 1
2
x + 1

2
y � 1

2
z + 1

2
w if, and only

if, γ(1
2
)u(x) + (1− γ(1

2
))u(y) ≥ γ(1

2
)u(z) + (1− γ(1

2
))u(w).

The Lemma above shows that Axiom 4 is enough to guarantee that there is a meaningful
way in which the outcome mixture of definition 2 locates a z which has a utility half way
between that of x and y.

19One exception to this is the Weighted Utility Model of Chew (1983).
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Before we proceed, we note how in this section we have defined, following the literature,
one particular way of identifying the outcome mixture of two consequences in X. However,
one could think of many other ways of doing so. For example, if for some reason we knew
that the utility of an agent is linear on X, we could have simply used a standard convex
combination. It is important to note that the analysis that we present below would work
with any way of defining outcome mixtures. The generalization to mixture of lotteries and
acts that we are about to discuss, or the generalized notion of hedging that we will introduce
later, are all independent on how the mixture between elements of X is obtained – provided
that it does capture the point with a utility precisely ‘in the middle.’

2.2.3 Outcome-mixtures of Lotteries and Acts

One of the key (and, to our knowledge, novel) contributions of our paper is to extend the
notion of outcome mixtures to mixture of lotteries and of acts. This will be an essential step
in defining the notion of hedging which is the core of our analysis.

We begin by extending the concept to a mixture of lotteries. First, consider the simplest
case: two degenerate lotteries. Their mixture can be easily defined following the notion
above: for any two x, y ∈ X, and for any dyadic λ ∈ (0, 1), the mixture between δx and δy is
the degenerate lottery δλx⊕(1−λ)y. We can similarly define the mixture between a degenerate
lottery δy and a generic lottery p ∈ ∆(X): replace what p returns with the ⊕-mixture with
y, keeping the probabilities constant. That is, for every p ∈ ∆(X) with p =

∑
p(xi)δxi , we

define the mixture as λp⊕ (1− λ)δy =
∑
p(xi)δλxi⊕(1−λ)y.

Less straightforward, however, is to define outcome-mixture of two non-degenerate lot-
teries, mainly because there are many possible ways to do it. To see why, consider two
lotteries p = 1

2
x + 1

2
y and q = 1

2
z + 1

2
w. How can we define a mixture between them? We

could combine x with z, and y with w, and we obtain the lottery 1
2
(1

2
x⊕ 1

2
z) + 1

2
(1

2
y ⊕ 1

2
w).

Or, we could combine x with w, and y with z, and then obtain a different lottery. But we
can also see p as p = 1

4
x+ 1

4
x+ 1

4
y+ 1

4
y and q as q = 1

4
z+ 1

4
z+ 1

4
w+ 1

4
w, and combine them

in yet many other ways. Or, decompose them differently, to find many other combinations.
All of this shows that there is a large number of ways to combine these two lotteries. We

denote by
⊕1

2
p,q the set of all such mixtures.20

Alternatively, we could interpret the set
⊕1

2
p,q as follows.21 Under the assumption that our

agent has a well-defined utility function over the set X, we could see each lottery p ∈ ∆(X)
as a random variable Vp that assigns to each event in [0, 1] a certain utility, i.e. p = Vp :
[0, 1]→ R. Since the ⊕-mixture is nothing but a mixture of the utilities, then the mixtures

20Formally,
⊕ 1

2
p,q is constructed as follows. Consider any lottery p and q, and notice that, because both

are simple lotteries, we could always find some x1, . . . xn, y1, . . . , yn ∈ X, and some γ1, . . . , γn ∈ [0, 1]
such that p =

∑n
i=1 γiδxi , q =

∑n
i=1 γiδyi . (For example, the lotteries p = 1

2x + 1
2y and q = 1

3z + 2
3w

could be both written as p = 1
3x + 1

6x + 1
6y + 1

3y and q = 1
3z + 1

6w + 1
6w + 1

3w.) Then, the set
⊕ 1

2
p,q

will be the set of all combinations r such that r =
∑n
i=1 γi(

1
2xi ⊕

1
2yi). That is, we have

⊕ 1
2
p,q := {r ∈

∆(X) : ∃x1, . . . xn, y1, . . . , yn ∈ X,∃γ1, . . . , γn ∈ [0, 1] such that p =
∑n
i=1 γiδxi

, q =
∑n
i=1 γiδyi and r =∑n

i=1 γiδ( 1
2xi⊕

1
2yi)
}.

21We thank Fabio Maccheroni for suggesting the following interpretation.
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in
⊕1

2
p,q could be seen as the mixtures between the random variables corresponding to p and

q. But of course to define the mixture between two random variables we need to know their

entire joint distribution – e.g. we need to know their covariance. The set
⊕1

2
p,q could then be

seen as the set of all mixtures with weight 1
2

of the random variable corresponding to p and
q for any joint distribution. The multiplicity of mixtures would then stem from the multiple
possible joint distributions that could be found.

Finally, we define the notion of outcome-mixture for acts. We do so point-wise: an act

h is a 1
2
-mixture between two acts f and g if h(ω) ∈

⊕1
2
f(ω),g(ω) for all ω ∈ Ω, that is, if for

every state it returns a lottery which is a mixture between the lotteries returned by f or g.

We denote
⊕1

2
f,g the set of all such mixtures of two acts.

2.2.4 Main Axioms

Now that we are endowed with the notions of outcome mixtures, we can use them to define the
main axiom: hedging. We begin with a simple example. Consider some lottery p = 1

2
x+ 1

2
y,

and the lottery r that could be obtained by mixing p with itself, i.e. r ∈
⊕ 1

2
p,p. We would

argue that an agent who is, in some sense, ‘averse to exposure to risk,’ should rank r as
at least as good as p. To wit, notice how r is constructed. At one extreme, it could be
constructed by mixing x with x, and y with y, generating r = p, so r is at least as good as
p. At the other, r could be obtained by mixing x and y, and y with x, giving us r = δ1

2
x⊕1

2
y
.

That is, r would become a degenerate lottery the utility of which is exactly in the middle
between that of x and y. An agent who is attracted to certainty, and who dislikes exposure
to risk, will then like r at least as much as p. A similar argument would naturally hold
for any other way of constructing r: for example, we could have r = 1

4
x + 1

2
δ1

2
x⊕1

2
y

+ 1
4
y,

which once again will be at least as good as p for any agent who dislikes exposure to risk.

The intuition here is simple: any lottery in
⊕ 1

2
p,p has the same expected utility as p, but has

(weakly) lower variance in utility. In this sense, by mixing good with bad outcomes, the
process of hedging reduces the exposure to risk. This means that an agent who is attracted
towards such reduction should exhibit a preferences for hedging.

A similar argument naturally applies to hedging between different lotteries. To wit,
consider two lotteries p = 1

2
x + 1

2
y and q = 1

2
z + 1

2
w, where x, z � y, w, and suppose that p

is indifferent to q. Take some r which could be obtained by mixing p and q with weight 1
2
,

i.e. r ∈
⊕ 1

2
p,q. Again, an agent who is ‘averse to exposure to risk’ should like r as at least as

much as p and q. On the one hand, r can formed by mixing the two ‘good’ elements with
each other (x and z), and the two ‘bad’ ones (y and w) with each other. But since p and
q are indifferent to each other, then these mixture should not be worse for the agent: the
expected utility of r will be halfway between that of p and q, but its variance in utility terms
must be weakly less than average of the variance of p and q. On the other hand, r could be
formed by mixing the good element in p with the bad element in q, and vice-versa, giving
us r = 1

2
δ1

2
x⊕1

2
w

+ 1
2
δ1

2
y⊕1

2
z
. Again, in this case we would have that the process of hedging is

similar to ‘pulling extremes towards the center’, reducing the variability: so an agent who is
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averse to this variability should not be averse to hedging. This lead us to argue that if we
wish to posit an ‘aversion to exposure to risk,’ we could posit that for any p, q, r ∈ ∆(X)

such that p ∼ q and r ∈
⊕ 1

2
p,q, we should have r � p ∼ q.

We now extend this argument to hedging between acts. For simplicity, consider now two
non-degenerate acts f, g ∈ F such that f ∼ g and such that f(ω) and g(ω) are degenerate

lotteries for all ω. Now consider some h ∈
⊕ 1

2
f,g, and notice that h(ω) = δ1

2
f(ω)⊕1

2
g(ω)

. Since

there are no lotteries involved, going from f and g to h does not affect the exposure to
risk – in either case, there is none. But it will reduce the exposure to ambiguity : this is
precisely the idea of the original hedging axiom of Schmeidler (1989).22 An agent who is not
ambiguity seeking would then (weakly) prefer hedging, and she will rank h as at least as
highly as f and g. Combining the two arguments of attraction towards hedging for lotteries
and for acts, we then obtain the following axiom – the main postulate of the paper.

A.5 (Hedging). For any f, g ∈ F , and for any h ∈
⊕ 1

2
f,g, if f ∼ g, then h � f .

This axiom can be seen as capturing both pessimism in the form of ambiguity aversion,
and pessimism in the form of violations of EU in the direction suggested by the Allais
paradox.

Our final axiom is the translation of the idea of the Certainty-Independence axiom of
Gilboa and Schmeidler (1989) to our setup:23 when two acts are mixed with a ‘neutral’
element, their ranking should not change. As opposed to Certainty-independence, however,
the ‘neutral element’ will not only be a constant acts, but a degenerate lottery, which is
‘neutral’ from the point of view of both risk and ambiguity. Moreover, we will use outcome-
mixtures instead of probability ones, because our agent could have non-linear reactions to
probability mixtures.24

A.6 (Degenerate-Independence (DI)). For any f, g ∈ F , dyadic λ ∈ (0, 1), and for any
x ∈ X,

f � g ⇔ λf ⊕ (1− λ)δx � λg ⊕ (1− λ)δx.

2.3 First Representation: subjective view of objective risk

We are now ready to introduce our first representation. To better express it, it will be useful
to define the notion of a measure-preserving map from lotteries into acts on [0, 1]. The idea
is simple: we can map every objective lottery p ∈ ∆(X) to an act defined on the space [0, 1]

22In fact, if, additionally, we impose Risk Independence, then preference for hedging in outcome mixtures
is identical to preference for hedging in probabilities. In turns, when applied only to acts that map to
degenerate lotteries, this is precisely the axiom suggested in Ghirardato et al. (2003).

23A preference relation satisfies Certainty-Indepedence if for any f, g ∈ F , and for any p ∈ ∆(X) and
λ ∈ (0, 1), we have f � g iff λf + (1− λ)p � λg + (1− λ)p.

24It is not hard to see that this axiom is actually strictly weaker than Certainty-Independence. To wit,
notice that the latter implies that the agent satisfies standard independence on constant acts, which in turn
implies that probability mixtures and outcome are indifferent for her – we must have λf + (1 − λ)δx ∼
λf ⊕ (1 − λ)δx for all f ∈ F , x ∈ X, and λ ∈ (0, 1). But then, Certainty-Independence would naturally
imply the axiom below.
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that assigns to each state in [0, 1] a consequence in X. It is as if the agent imagined that,
to determine the prize of the objective lottery p, an imaginary ‘urn’ of size [0, 1] will be
used: after assigning to each ball in this imaginary urn a consequence in X, thus creating
an act from [0, 1] to X, there will be an extraction which will determine the final prize. (A
visualization which is rather close to being true in most experimental settings.) For example,
the lottery p = 1

2
x+ 1

2
y could be mapped to the act on [0, 1] that returns x after the states

[0, 1
2
), and returns y after the states [1

2
, 1]. Indeed there are many possible such maps; we

focus only on those in which each lottery is mapped to an act such that the Lebesgue measure
of the states which return a given prize is identical to the probability assigned to that prize
by the original lottery. We call these measure-preserving maps.25

Definition 3. We say that a function µ : ∆(X) → [0, 1]X is measure-preserving if for all
p ∈ ∆(X) and all x ∈ X, `(µ−1(x)) = p(x).

We can then introduce our first representation, the Multiple Priors-Multiple Distortions
representation.

Definition 4. Consider a complete and non-degenerate preference relation � on F . We
say that � admits a Multiple Priors and Multiple Distortions Representation (MP-MD)
(u,Π,Φ) if there exists a continuous utility function u : X → R, a convex and compact set
of probability measures Π on Ω, and a convex and weak-compact set of Borel probability
measures Φ on [0, 1], which contains the Lebesgue measure ` and such that every φ ∈ Φ is
atomless and mutually absolutely continuous with respect to `, such that � is represented
by the functional

V (f) := min
π∈Π

∫
Ω

π(ω) U(f(ω))dω.

where U : ∆(X)→ R is defined as

U(p) := min
φ∈Φ

∫
[0,1]

φ(s) u(γ(p)(s))ds

for any measure-preserving map γ : ∆(X)→ [0, 1]X .

In a Multiple Priors and Multiple Distortions Representation the decision maker is en-
dowed with three elements: a utility function u; a set of priors Π over the states in Ω;
and a set of priors Φ over [0, 1]. With respect to ambiguity, she behaves in a way which
is conceptually identical to how she would behave in the MaxMin Expect Utility model of
Gilboa and Schmeidler (1989): she has a set of priors Π on the states of the world, and
she uses the worst one of them to aggregate the utility assigned to the lotteries that the act
returns in every state. Where the model above differs from MMEU is in how the evalua-
tion on objective lotteries is done. In particular, our agent need not follow vNM expected
utility. Instead, first she maps each objective lottery into an act on the space [0, 1] (in a
measure-preserving fashion). Then she considers a set of priors Φ over [0, 1], which includes
the Lebesgue measure `, and she uses the worst one of them to compute the utility of the
lottery at hand – much in line with the MMEU model. When Φ = {l} her evaluation of

25A similar concept is used in Wakker (2001).
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lotteries will be equivalent to vNM expected utility, and the model as a whole will coincide
with MMEU.26 But when Φ ⊃ {l} her ranking of objective lotteries will be different: she
will be ‘pessimistic’ towards them, (weakly) lowering their evaluation by using a prior in Φ
which returns a lower expected value than `.27 Since her valuation of degenerate lotteries
will not be affected – as it is independent from the prior in Φ that is used – it is easy to see
how this leads to certainty bias and Allais-like behavior. (See Section 2.6.1 for more.)

Let us illustrate this intuition by means of a example, in which we consider an approx-
imation in which our urn contains only 100 balls (instead of a measure 1 of them). Our
DM acts as if the outcome of any lottery will be determined by drawing a ball from this
urn. However, it is as if the probability of drawing each ball is not necessarily 1

100
, but can

be larger or smaller depending on whether that ball is associated with a good or bad prize.
Specifically, consider the case where the probability of each ball can be between 0.009 and
0.011, thus leading to a set of priors Φ equal to

Φ = {p ∈ ∆({1, 100}) | pi ∈ [0.009, 0.011] ∀ i ∈ 1..100}.

Consider now the lottery p = 1
2
$10 + 1

2
$0, and say it is mapped to an act such that balls

1-50 give $10 and balls 51-100 give $0. In this case, our DM would reduce the probabilities
associated with balls 1-50 to 45% thinking that she is ‘unlucky’ and that the ‘good balls’
will not come out, while at the same time raising to 55% the probabilities associated with
balls 51-100, the ones associated with the ‘bad’ outcome.

One possible interpretation of the agent’s behavior in this representation is that she
treats, in some sense, objective lotteries like ‘ambiguous objects:’ it is as if she didn’t quite
know how to evaluate them – as if they were ‘ambiguous’ for her – and she reacted by being
‘ambiguity averse’ towards them, by mapping each lottery to an act and then following a
procedure essentially identical to MMEU. The degree of her aversion is given by the size of
the set Φ, and, as we mentioned, if Φ is not a singleton our agent will exhibit violations of
expected utility of the type exhibited by the Allais paradox.

2.4 Second representation: minimal of RDU

The Multiple Priors Multiple Distortions representation describes a form of distortion of
objective probabilities that is somewhat different from other established ways to distort
objective probabilities, such as the one used by the Rank Dependent Utility (RDU) repre-
sentation, in which a ‘weighting function’ is applied to the cumulative distribution of the
objective lottery. In what follows we introduce an alternative representation in which our
decision maker follows a more standard procedure to distort probabilities.

We start from recalling the Rank Dependent Utility model of Quiggin (1982) for prefer-
ences over the lotteries in ∆(X).

26More precisely, it concedes with the special case of MMEU in which the utility function on consequences
is continuous. This implies that the MP-MD model is a generalization of MMEU with a continuos utility
function.

27In general, this could depend on how the agent maps lotteries to acts over [0, 1], as there are many
possible measure-preserving maps that the agent can use. However, one of the features of the representation
above is that the set of priors works for any possible measure-preserving map (and returns the same value).
In Section 2.6.4 we show how we could alternatively find an equivalent representation in which the agent
uses a fixed, specific map (e.g. from best to worst).
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Definition 5. We say that a function ψ : [0, 1] → [0, 1] is a probability weighting if it is
increasing and it is such that ψ(0) = 0, ψ(1) = 1. For every non-constant function u and for
every probability weighting ψ, we say that a function is a Rank Dependent Utility function
with utility u and weight ψ, denoted RDUu,ψ, if, for any enumeration of the elements of the
support of p such that xi−1 � xi for i = 2, . . . , |supp(p)|, we have

RDUu,ψ(p) := ψ(p(x1))u(x1) +
n∑
i=2

[
ψ(

i∑
j=1

p(xj))− ψ(
i−1∑
j=1

p(xj))
]
u(xi). (2)

The main feature of the RDU model is that the decision maker follows a procedure
similar to expected utility, except that she distorts the cumulative probability distribution
of each lottery using a probability weighting function. It is well-known that the RDU model
has many desirable properties, such as preserving continuity (as long at the probability
weighting is continuous) and FOSD. Depending on the shape of φ, moreover, the model
allows for attraction or aversion towards certainty: the former takes place when φ is convex
– leading to to an Allais-like behavior; the opposite takes place when φ is convex; when φ
is linear it coincides with expected utility. (See Quiggin (1982), and also Wakker (1994),
Nakamura (1995), Chateauneuf (1999), Starmer (2000), Wakker (2001, 2010), Abdellaoui
(2002), Kobberling and Wakker (2003) and the many references therein.) The RDU model
is arguably the most well-known representation used to study violations of expected utility
on objective lotteries. The Cumulative Prospect Theory model of Tversky and Kahneman
(1992), for example, is built on its framework.

We are now ready to introduce our next representation, which will be similar to a MP-
MD representation, but the decision maker will use an RDU functional to distort objective
probabilities. However, as we are trying to capture Allais-like behavior, such functional will
be convex (pessimistic); and since we have a MMEU-like representation, we will have set of
RDU distortion the worst of which will be used by the agent.

Definition 6. Consider a complete and non-degenerate preference relation � on F . We
say that � admits a Multiple Priors and Multiple Convex Rank Dependent Representation
(MP-MC-RDU) (u,Π,Ψ) if there exists a continuous utility function u : X → R, a convex
and compact set of probability measures Π on Ω, and a convex, (point-wise) compact set
of differentiable and convex probability weightings Ψ such that � is represented by the
functional

V (f) := min
π∈Π

∫
Ω

π(ω) U(f(ω))dω.

where U : ∆(X)→ R is defined as

U(p) := min
ψ∈Ψ

RDUu,ψ(p).

Just like in the MP-MD representation, in a Multiple Priors and Multiple Convex Rank
Dependent Representation our agent has a set of probabilities which she uses to evaluate acts
just like the MMEU model. Here, however, instead of using a set of priors over [0, 1], she has
a set of probability weightings Ψ, and she uses the worst one of those in a RDU functional to
evaluate objective lotteries. This set has two features. First, it is composed only of convex
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– hence pessimistic – distortions. Second, Ψ could also be a singleton: this means that the
RDU model with convex distortion is a special case of the representation above. (In Section
2.6.3 we discuss a comparison with RDU more in detail.) At the same time, just like the
MP-MD representation, also this representation is a generalization of MMEU – they coincide
when Ψ contains only the identity function.

Finally, notice that if a preference relation admits a Multiple Priors and Multiple Convex
Rank Dependent Representation (u,Π,Ψ), then in many cases we can enlarge the set Ψ by
adding distortions which are less severe than those already present, and that will therefore
leave the behavior unchanged – that is, we can add redundant elements.28 We therefore
define a notion of ‘minimal’ representation, in which these redundant elements are removed.

Definition 7. We say that a set of probability weightings Ψ included in any representation
is minimal if there is no Ψ′ ⊂ Ψ such that the same preferences can be represented by a
representation of the same form that includes Ψ′ instead of Ψ.

2.5 Representation Theorem

We are now ready to introduce our representation theorem.

Theorem 1. Consider a complete and non-degenerate preference relation � on F . Then,
the following are equivalent

(1) � satisfies Axioms 1-6.

(2) � admits a Multiple Priors and Multiple Distortions Representation (u,Π,Φ).

(3) � admits a Multiple Priors and Multiple Convex RDU Representation (u,Π,Ψ).

Moreover, u is unique up to a positive affine transformation, Π, Φ are unique, and there
exists a unique minimal Ψ.

Theorem 1 shows that the axiomatic structure discussed above is equivalent to both
representations. That is, imposing a preference for (generalized) hedging, together with
our other more standard axioms, is tantamount to positing that the decision-maker has a
MMEU-like representation for her ranking of acts, but also that she has a subjective view of
objective risk, as it happens in a MP-MD representation. Moreover, this itself is equivalent to
the existence of an alternative representation in which the agent evaluates objective lotteries
using the min of a set of convex RDU functionals. Finally, all the components of both
representations are identified uniquely.

28For example, if the identity function doesn’t belong to Ψ, we can add it to the set and leave the behavior
unchanged; or, we can add any convex combination of any element of Ψ and the identity function, and again
leave the behavior unchanged.
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2.6 Discussion

2.6.1 Relation with the Allais Paradox

We now turn to describe how both models above could generate certainty bias and an Allais-
like behavior. First of all, our main axiom, Hedging, directly implies a form of certainty bias.
Consider x, y, z ∈ X such that u(z) = 1

2
u(x) + 1

2
u(y). This implies that we could obtain δz

as a outcome mixture of 1
2
x+ 1

2
y with itself. But then, hedging immediately implies that we

have δz � 1
2
x + 1

2
y, leading to (weak) certainty bias. Our first representation has a similar

feature: while the evaluation of degenerate lotteries cannot be distorted (i.e. we must have
V (δx) = U(δx) = u(x)), that of non-degenerate ones could be if the decision maker uses a
prior φ more pessimistic than the Lebesgue measure `. An identical argument applies also
to our second representation.29

Similarly, it is easy to see how the choice pattern of the Allais experiment can be ac-
commodated by both representations: for example, recall that a special case of our second
representation is the RDU model with convex distortions, which is well-known to allow for
such behavior. Importantly, moreover, the two models not only allow for Allais-like behavior,
but they rule out the possibility of an opposite preference. For brevity, we discuss this in
Appendix A.

2.6.2 Relation with the Ellsberg Paradox

In both representations discussed above there is a sense in which the decision maker could
be seen as ambiguity averse: when |Π| > 1, the agent has a set of priors and uses the worst
one of those to judge uncertain events – just like the MaxMin Expected Utility model of
Gilboa and Schmeidler (1989). Importantly, however, this does not imply that the agent
will necessarily exhibit the Ellsberg paradox: both the Ellsberg behavior and its opposite
are compatible with our representations, even if |Π| > 1.30 To wit, consider an urn with 100
balls, which could be Red or Black, in unknown proportions. An experimenter will extract
a ball from this urn, and the color of the extracted ball determines the state of the world,
R or B. We will analyze the Decision Maker’s ranking between three acts: betting on R
– i.e. getting $10 if a red ball is extracted, $0 otherwise; betting on B; and an objective
lottery which pays $10 or $0 with equal probability. Let us assume, for simplicity, that the
decision maker is indifferent between betting on red or black. The typical Ellsberg behavior
is that the decision maker strictly prefers the objective lottery to either of the bets. We say
that a decision maker exhibits the opposite behavior is she is indifferent between betting
on red or black, but strictly prefers both to the objective lottery. We will now show how
both patterns are compatible with our representations. The former case is trivially true in
a MP-MD representation when |Π| > 1 and |Φ| = 1: in this case we know that our model
coincides with the MaxMin Expected Utility, which is compatible with the Ellsberg behavior.
Consider now the case in which |Π| = 1 and |Φ| > 1: this agent distorts – pessimistically
– objective probabilities but not subjective ones, and therefore will prefer betting on red
or black rather than betting on the objective lottery – thus exhibiting the opposite of the

29Note, however, that our model does not necessarily guarantee the property of Negative Certainty Inde-
pendence of Dillenberger (2010). See Section 4 for more.

30Examples of this kind appear already in Epstein (1999) and Wakker (2001).
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Ellsberg paradox. A similar result could of course be obtained also when |Π| > 1, as long
as the distortions of objective probabilities are ‘stronger’ than those of subjective ones. In
fact, this is the case because neither of the representations, nor the axioms, posit that the
agent should be more pessimistic for subjective risk than she is for objective one, therefore
allowing both for Ellsberg and its opposite. As pointed out in Wakker (2001), Ellsberg-type
behavior is a product of relative, rather than absolute pessimism, and while our Hedging
axiom regulates the latter, it does not rescrit the former.

In Section 3 we address this issue in more depth, and we provide a novel behavioral axiom
which will allow us to characterize axiomatically the special case of our model in which the
agent never exhibits the opposite of the Ellsberg behavior.

2.6.3 Comparison with RDU

As evident from the existence of a Multiple Priors and Multiple Convex RDU representation,
our model is much related to Rank Dependent Utility. In fact, if we focus on the special case
in which |Ω| = 1, our model becomes a model of preferences over (vNM) lotteries in which
the agent has a set of convex probability weightings, and uses the worst of them to evaluate
objective lotteries using the RDU functional form. Since our set of probability weightings
could be a singleton, the RDU model with convex distortions becomes a special case of ours.

There are two important behavioral differences between our model and standard RDU.
First, because each probability weighting used in our model is convex, and because the agent
uses the worst one of them, then our agent can never exhibit a behavior that goes ‘against
Allais:’ she is either certainty-biased, or she satisfies expected utility – she is never ‘certainty-
averse.’ By contrast, the RDU model is more flexible, as it also allows for certainty-aversion
by allowing concave probability weighting. This is naturally due to our focus on pessimistic
agents – the basic goal of our paper – via our main axiom, Hedging.

However, once we focus on convex probability weightings, our model is strictly more
general than standard RDU. While in RDU the agent has a fixed distortion to be used for
every lottery, in our representation she may have multiple distortions, and use a different
one depending on the lottery at hand. Importantly, while this flexibility is irrelevant when
lotteries have only two prizes in their support, it might play an important role in more
general cases. To wit, consider the following 2 lotteries: p = 1

3
$0 + 1

3
$1 + 1

3
$10, 000

; q = 1
3

$0 + 1
3

$9, 999 + 1
3

$10, 000. In the RDU model the agent must use the same
probability distortion for both p and q – the rank of the three outcomes is the same, and
since in RDU only the relative rank matter, the probability distortion is bound to be the
same.31 So the agent is bound always to distort the intermediate outcome in the same way
– despite the fact that in p this intermediate outcome is comparably ‘very bad,’ while in q
it is comparably ‘very good’. By contrast, our model could accommodate the situation in
which in p both the probabilities of $0 and of $1 are much overweighted and the probability
of $10,000 is underweighted; while for q only the probability of $0 is overweighted, and both
that of $9,999 and of $10,000 are underweighted – a behavior which, we would argue, is more
in line with standard notions of pessimism.

31In fact, this is one of the fundamental and characterizing features of RDU: see Diecidue and Wakker
(2001).
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The relation between our models and RDU becomes more evident once we notice that,
as has been noted in the literature, the RDU representation is formally identical to the
Choquet Expected Utility model of Schmeidler (1989), one of the most well-known models
used to study ambiguity aversion. In particular, in a setup in with a fixed state space, a
given set of outcomes, and an objective probability distribution over these states, the axioms
of Schmeidler (1989) together with a form of First Order Stochastic Dominance leads exactly
to RDU for acts defined on this space.32 In a similar spirit, we use a generalized version of
Schmeidler (1989)’s hedging axiom to obtain a representation which is similar to the MaxMin
Expected Utility model for the case of risk: it is not hard to see that, at least in a rather
loose sense, our model of decision making under risk compares to RDU in a similar way
to which the Choquet Expected Utility compares to the MaxMin Expected Utility model –
hence the differences between RDU and our model discussed above.

A natural question is then to identify the conditions which guarantee that our set of
distortions Ψ is a singleton – the special case of our model which coincides with convex
RDU on objective lotteries. It is not hard to see that all we need is an axiom that guar-
antees that the preferences of our agent must be of the RDU form for objective lotteries.
To this end we could use, for example, the Probability trade-off consistency Axiom of Ab-
dellaoui (2002). Or, as the discussion above should make clear, we could simply posit the
equivalent of Schmeidler (1989)’s axiom of Comonotonic Independence: we could posit both
the Comonotonic Sure-Thing Principle and the Comonotonic Mixture Independence axioms
of Chateauneuf (1999), or any other provided by the literature. Together with our other
axioms, these will guarantee that we could represent our preferences using a single RDU
functional (not necessarily convex). Since from our representation we also know that we can
represent as the min of a set of convex functionals, then we can represent using a unique
convex RDU functional.33

2.6.4 Maps from lotteries into acts

One of the features of the Multiple Priors Multiple Distortions representation is that our
agent maps each objective lottery into an act on [0, 1] using a measure-preserving map. This
map could take many forms, and the representation guarantees the existence of a set of priors
which would work for any map (as long as it is measure-preserving). Alternatively, we could
have looked for a representation in which the agent uses a fixed, specific map. For example, we
could have focused on the map γ̄ ‘from best to worst:’ for any lottery p, enumerate the out-
comes in its support from best to worst, i.e. xi−1 � xi for i = 2, . . . , |supp(p)|, and define γ̄(p)
as γ̄(p)

(
[0, p(x1)

)
= x1 and γ(p)

(
[
∑i−1 ij=1p(xi),

∑i
j=1 p(xi))

)
= xi for i = 2, . . . , |supp(p)|.

(Intuitively, γ assigns the best outcomes to the smallest states in [0, 1], and the worst out-

32See, among others, Wakker (1990), Chew and Wakker (1996), Wakker (1996), Chateauneuf (1999),
Diecidue and Wakker (2001), and in particular Wakker (2010) for an in-depth analysis. The key component
is the use of Schmeidler (1989)’s axiom of Comonotonic Independence, which posits that if we focus only on
acts which ‘move together’ in the sense of agreeing which are the ‘good’ and ‘bad’ states, then independence
should be satisfied.

33In turns, this implies that our axioms (esp. Hedging) together with those that characterize RDU, imply
the Attraction for Certainty Axiom of Chateauneuf (1999), or Probabilistic Risk Aversion as defined in
Abdellaoui (2002), or the pessimism condition of Wakker (2001), since they are all implied by the existence
of a convex RDU representation.
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comes to the higher ones.) Then, the following observation shows that if a Multiple Priors
Multiple Distortions representation exists, so must this alternative representation with this
fixed map. At the same time, focusing on a specific map allows us to derive additional
properties of the set of priors Φ.

Observation 1. Suppose that � admits a MP-MD representation. Then, it must also admit
a representation which is identical to an MP-MD representation, but in which: 1) the agent
uses the map γ̄ (defined above) to map lotteries into priors in [0, 1]; 2) the set of priors on
[0, 1] used in this representation are all ‘non-descreasing,’ i.e. theirs PDFs are all (weakly)
increasing functions; 3) the minimal such set is unique. To see why, notice that if � admits a
MP-MD representation, then it must also admit a MP-MC-RDU representation with set of
distortions Ψ. For any ψ ∈ Ψ, consider its derivative ψ′, and call D the set of all derivatives.
Indeed each element of D is a non-decreasing function, and by construction it must integrate
to 1 on [0, 1]. Now consider each member of D as a PDF, and call Φ’ the corresponding set
of priors on [0, 1]. It is easy to see that Φ’ is in fact the desired set of priors.

2.7 Hedging-Neutrality and Restricted Violations

As we mentioned in the discussion above, one of the features of our representations is that
they allow for the simultaneous violations of both Anscombe-Aumann expected utility on
acts, and of vNM expected utility on objective lotteries. We now turn to analyze the behav-
ioral axioms that allow us to restrict violations to only one of these domains. To do this,
we can impose various forms of ‘hedging neutrality,’ i.e. posit that the decision maker has
no incentive to hedge in one domain or another. There are three ways in which we could do
this: by imposing that the decision maker never has an incentive to hedge; that she never
has such incentive between acts that map only to degenerate lotteries; that she never has
such incentive between degenerate acts. The following axioms formalize this.

A.7 (Hedging Neutrality). For any f, g ∈ ∆(X), and for any h ∈
⊕ 1

2
p,q, if f ∼ g, then

h ∼ f .

A.8 (Hedging-Neutrality on Acts). For any f, g, h ∈ F such that f ∼ g, h ∈
⊕1

2
f,g and

such that for all ω ∈ Ω we have f(ω) = δx and g(ω) = δy for some x, y ∈ X, we have h ∼ f .

A.9 (Hedging-Neutrality on Lotteries). For any p, q, r ∈ ∆(X) such that p ∼ q and

r ∈
⊕1

2
p,q, we have r ∼ p.

A different way to capture hedging neutrality is to posit that the agent is indifferent
between subjective and objective mixtures. The following axiom imposes this in the weakest
possible way: that there exists at least one situation in which probability and outcome
mixtures coincide. As we shall see below, this will be sufficient to guarantee Independence
for all lotteries.

21



A.10 (Local Neutrality for Subjective and Objective Mixtures). There exists x, y ∈
X and a dyadic λ ∈ (0, 1) such that δx � δy and λx+ (1− λ)y ∼ δλx⊕(1−λ)y.

The following propositions shows effect of including these axioms to our framework.

Proposition 1. Consider a non-degenerate preference relation � that admits a MP-MD
representation (u,Π,Φ). Then the following holds:

(a) |Π| = 1 if, and only if, � satisfies Axiom 8 (Hedging Neutrality on Acts);

(b) The following are equivalent:

(1) Φ = {`};
(2) � satisfies Axiom 9 (Hedging Neutrality on Lotteries);

(3) � satisfies Risk Independence;

(4) � satisfies Axiom 10 (Local Neutrality for Subjective and Objective Mixtures).

(c) The following are equivalent:

(1) |Π| = |Φ| = 1, and Φ = {`};
(2) � satisfies Axiom 7 (Hedging Neutrality);

(3) � satisfies Independence.

We should emphasize point (b) in particular. It shows that to obtain a standard vNM
expected utility representation under the axiomatic structure of the MP-MD representation,
we can either impose standard vNM independence on lotteries (Risk Independence), or
simply Hedging Neutrality on Lotteries, or even more simply that there exist at least one
non-trivial case in which subjective and objective mixtures coincide: all of these postulates
are equivalent.

2.8 A comparative notion of attraction towards certainty

We now discuss a comparative notion of attraction towards certainty. In particular, we show
how the comparative notion of ambiguity aversion introduced in Ghirardato and Marinacci
(2002) translates to our setup, and implies both more ambiguity aversion and more proba-
bility distortions for objective lotteries. Consider two decision makers, 1 and 2, such that
2 is more attracted to certainty than 1 is: that is, whenever 1 prefers a certain option δx
to some act f , so does decision maker 2. Such attraction could be interpreted in two ways.
First, both agents treat both probabilities and events in the same way, but 2 has a utility
function which is more convex than that of 1. Alternatively, the curvature of the utility
function could be the same for both agents, but 2 could be ‘more pessimistic’ than 1 is.34

34Note that, as X can be an arbitrary compact set, by demanding that the curvature of the utility function
is the same, we understand that both agents apply the same utility to each object up to a positive affine
transformation.
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The approach of Ghirardato and Marinacci (2002) is to focus on this second case – looking at
the relative attraction towards certainty while keeping constant the curvature of the utility
function. We therefore need to posit that the curvature of the utility function of the two
agents is the same, which in our setup translates to a very simple requirement: we want
⊕1 = ⊕2, that is, both agents should have the same approach to outcome mixtures. With
this in mind, we can then use the following well-known definition introduced by (Ghirardato
and Marinacci, 2002, Definition 7):35

Definition 8. Let �1 and �2 be two complete and non-degenerate preference relations on
F . We say that �2 is more attracted to certainty than �2 if the following hold:

1. ⊕�1 = ⊕�2

2. for all x ∈ X and all f ∈ F
δx �1 f ⇒ δx �2 f

and
δx �1 f ⇒ δx �2 f.

This definition has precise consequences in our setup.

Proposition 2. Let �1 and �2 be two complete and non-degenerate preference relations
on F that admit Multiple Priors and Multiple Distortions Representations (u1,Π1,Φ1) and
(u2,Π2,Φ2). Then, the following are equivalent:

1. �2 is more attracted to certainty than �1 and ⊕�1 = ⊕�2;

2. u1 is a positive affine transformation of u2, Π2 ⊇ Π1 and Φ2 ⊇ Φ1.

Proposition 2 shows that if we consider two agents who have the same curvature of the
utility function, and such that 2 is more attracted to certainty than 1, then in any MP-MD
representation both set of priors Π and Φ of 1 are (weakly) smaller than those of 2.36

35There are two minor differences between what follows and (Ghirardato and Marinacci, 2002, Definition 7).
First, here we require ⊕�1 = ⊕�2 , instead of requiring that the two preferences are cardinally symmetric,
as defined in (Ghirardato and Marinacci, 2002, Definition 5). However, it is not hard to see that these
two conditions are equivalent, since both imply that the (unique) utility indexes must be positive affine
transformations of each other. The second difference is in the name: they interpret this comparative ranking
as higher ambiguity aversion, while we interpret it more simply as attraction towards certainty. The reason
is, calling this a comparative ambiguity aversion would not be precise here: our agents could be identically
ambiguity averse, but have a higher tendency to ‘distort probabilities’ which lead them to a higher attraction
towards certainty.

36The fact that the definition in Ghirardato and Marinacci (2002) captures both more ambiguity aversion
and more ‘probabilistic risk aversion’ is well known: see, for example, the discussion in the paper and in
Ghirardato (2004). For a comparative definition that captures only ambiguity aversion when the decision
maker preferences over objective lotteries might violate expected utility, see Epstein (1999).
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3 The Ellsberg Paradox and Relative Pessimism

In Section 2.6.2 we have shown how both the representations in Theorem 1 allow the agent
to violate Savage expected utility in a ‘pessimistic’ fashion, but, at the same time, exhibit the
opposite of Ellsberg behavior. This happens when the distortions on objective probabilities
are more pronounced than those of subjective ones – a possibility that has been noted in the
literature, for example in Epstein (1999) and Wakker (2001), and documented empirically in
Tversky and Fox (1995).37 We now refine our model to rule out this behavior: we characterize
axiomatically the special case of our model in which the agent’s behavior is always (weakly)
compatible with the Ellsberg paradox. In particular, we obtain a model in which the decision
maker could act in line with both the Allais and the Ellsberg paradoxes, potentially at the
same time, while she cannot exhibit the opposite of either.

To better express both the new axiom and the new representation, it will be useful to
introduce a notation to represent the reduction from subjective to objective risk. Consider
an act f ∈ F and suppose that for every state ω it returns a degenerate lottery, i.e. f(ω) = δy
for some y ∈ X. Consider also a prior π ∈ ∆(Ω), and notice that we can identify the lottery
in ∆(X) that is the derived from f using probabilities in π: that is, the lottery that returns
f(ω) with probability π(ω). This lottery is simply the reduction of f from subjective to
objective risk using prior π. We denote it by fπ. (An identical notion is used in Ok et al.
(2011).) We can then extend this definition also to acts that return non-degenerate lotteries,
preserving the intuition: for any act f ∈ F and prior π ∈ ∆(Ω), we denote by fπ the lottery
that returns, with probability π(ω), the certainty equivalent of f(ω). That is, fπ denotes
the constant act that yield the lottery

∑
π(ω)cf(ω) in every state.

Endowed with this notation, we can define our new axiom and representation.

A.11 (Incomplete Reduction of Uncertainty). For any f ∈ F there exits π ∈ ∆(Ω)
such that fπ ∼ f and gπ � g for all g ∈ F .

The intuition of Axiom 11 is the following. Consider some act f and suppose that the
axiom is violated: for every π ∈ ∆(Ω) such that f ∼ fπ, we have g � gπ for some g ∈ F .
If this were the case, it would mean that however we think the decision maker reduces the
subjective uncertainty of f to an objective one, i.e. for any π′ such that f ∼ fπ

′
, then there

37 One might naturally ask whether the term ‘ambiguity averse’ for such a decision maker would be
appropriate. While this is a terminological issue and we abstain from committing to a specific view, we note
how this has been subject of a discussion in the literature. On the one hand, intuitively there is a sense
in which the agent is ambiguity averse, as she violates Savage expected utility precisely in the ‘pessimistic’
fashion prescribed by ambiguity aversion. In line with this intuition, the definition of Ghirardato and
Marinacci (2002) would define her as ambiguity averse. On the other hand, when the agent exhibits the
opposite of Ellsberg’s behavior, then not only she violates the one empirical regularity that has led to the
study of ambiguity aversion, but she shows that her pessimism is smaller for subjective than for objective
bets – precisely the opposite of the standard intuition of ambiguity aversion. In line with this, the definition
in Epstein (1999) would classify her as not ambiguity averse. (Wakker, 2001, Section 6) suggests how we
should view the Allais paradox as reflecting ‘absolute’ pessimism, while the Ellsberg paradox as a ‘relative’
one, because it suggests that there is more pessimism for subjective uncertainty than for objective risk. From
this point of view, he suggests how uncertainty could be seen as comprising both ambiguity and risk, while
ambiguity aversion should be taken to represent this relative concept. He would therefore classify this agent
as uncertainty averse but ambiguity loving. (See also Ghirardato (2004) for more discussion.)
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would exist some other act g that is evaluated with a prior which is more optimistic (for g)
than the one used for f – we have that g � gπ

′
. The idea of the axiom is to rule out precisely

this case: whatever prior is used for g, it should be more pessimistic for g than the one used
to evaluate f . That is, if the decision maker uses different models to evaluate different acts,
she should use a model which is pessimistic with the act at hand. It is easy to see that the
Incomplete Reduction of Uncertainty is trivially satisfied by the MaxMin Expected Utility
representation of Gilboa and Schmeidler (1989). The following theorem shows that it is the
necessary and sufficient condition to obtain the special case of our model that satisfies the
Ellsberg behavior.

Theorem 2. Consider a complete and non-degenerate preference relation � on F . The
following are equivalent:

(1) � satisfies Axioms 1-6 and Axiom 11;

(2) there exists a continuous utility function u : X → R, a convex and compact set of prob-
ability measures Π̂ on Ω, and a convex, (point-wise) compact set of differentiable and
convex probability weightings Ψ such that � is represented by the following functional:
for any f ∈ F , and for any enumeration of the states in Ω such that f(ωi−1) � f(ωi)
for i = 2, . . . , |supp(p)|, we have

V (f) := min
π∈Π̂

U(fπ)

and
V (p) = U(p) = min

ψ∈Ψ
RDUu,ψ(p).

Moreover, u is unique up to a positive affine transformation, and there exists a unique
minimal Ψ.

We refer to the representation above as the Joint Multiple Priors Multiple Distortions
(J-MP-MD) Representation. This representation is much reminiscent of the MP-MC-RDU
representation, but with one relevant difference. While objective lotteries are ranked precisely
in the same way, the agent has now a new way of evaluating subjective acts. In a MP-MC-
RDU representation the agent simply considers a set of priors Π and uses the worst one of
these to evaluate each act. Here, instead, she proceeds in two steps. First, she considers a
set of priors Π̂, and using the most pessimistic one of them she maps the (subjective) act
into an objective lottery. Second, she distorts this objective lottery precisely in the same
way she distorts the other objective lotteries – using the worst of a set of RDU distortions.
That is, the decision maker distorts subjective acts twice.38

We should emphasize two features of the representation above. First, while it allows
for an Ellsberg-like behavior, it rules out the opposite one: indeed subjective acts are (pes-
simistically) distorted twice, and by construction they must be distorted weakly ‘more’ than
objective lotteries.

38While Theorem 2 shows the existence of a representation which is a special case of a MP-MC-RDU
representation, it is not hard to see how it could have instead derived an equivalent one which is instead a
special case of a MP-MD representation (following the same steps used to prove the equivalence in Theorem
1). For brevity, we leave this to the reader.

25



Second, notice that the preferences that admit one such representation (u, Π̂,Ψ) also
admit a MP-MC-RDU representation (u,Π,Ψ). The key observation is that while the utility
u of the two representation is the same (up to affine transformations) and the set of distortions
of objective lotteries Ψ is the same (as long as it is minimal), the set Π̂ is bound to be
smaller that the set Π. The reason is simple: while in the representation in Theorem 2 acts
are distorted twice, first using Π̂ and then using Ψ, in a MP-MC-RDU representation the
priors in Π are the only distortion that is applied, and must therefore include, in some sense,
the combination of the distortions of both Π̂ and Ψ. In fact, Π and Π̂ will coincide if and
only if the agent satisfies expected utility on objective lotteries (when Ψ includes only the
identity function). For example, consider the case in which there are two states of the world
s1 and s2, and suppose that we have Π̂ = {π}, where π(s1) = π(s2) = 1

2
– i.e. the agent

has a unique prior to evaluate them – but at the same time suppose that we have Φ = {φ}
where φ(1

2
) = 3

4
. It is easy to see that the same agent has a MP-MC-RDU representation

in which Π is not a singleton, but rather it must contain both π′ and π′′ where π′(s1) = 1
4
,

π′(s2) = 3
4

and π′′(s1) = 3
4

and π′′(s2) = 1
4
.

Given that we have two sets of priors, Π and Π̂, and given that these sets are often given
a specific interpretation, one might ask which one of them should be seen as the ‘correct’
one to use. In particular, in the example above which one is the correct set of priors? Is it
a singleton or not? If we follow the interpretation often implicitly or explicitly suggested in
the literature that the set of priors is the set of the possible ‘models of the world’ used by
the agent, which are employed by the decision maker to asses subjective uncertainty, and
therefore to reduce it to an objective one, then from this point of view it would then seem
that the ‘true’ set of priors is Π̂, and not Π. In fact, if the two sets differ from each other,
i.e. when the agent violate vNM EU on objective lotteries, then considering the set of Π
might actually be misleading, as it includes both the ‘true’ priors and the distortions applied
to objective lotteries. For instance, in the example above the decision maker effectively has
a unique way of reducing subjective uncertainty to risk – something that would not emerge
were we to only look at the set Π.

We should also emphasize how identifying the ‘true’ set of priors along these lines might
actually be important from a modeling perspective. A natural example concerns updating :
when new information about the state of the world is revealed, it is reasonable to expect the
agent to update her models of the world, i.e. Π̂, but not her distortions of objective lotteries,
i.e. Ψ; therefore, she should not update the full Π. Being able to identify the correct set of
priors might then be relevant if we wish to formalize how the agent actually reacts to new
information and updates her priors.

This discussion emphasizes one final point. To properly identify the set Π̂ we need to
be able to observe not only the preferences of the agent over (Savage) acts, but also her
preferences over objective lotteries, as is the case here. Observing only the former could in
fact allow us to pin down the set Π, but we wouldn’t be able to separate it from Π̂. This
means that even if we are only interested in modeling acts and we are not concerned with
the agent’s approach to objective lotteries at all – because, for example, we don’t believe
many of these exist in the real world – we might at the same time be interested in observing
how the agent reacts to them so that we can properly identify how she actually approaches
subjective uncertainty. In turn, this means that a setup in which both subjective and
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objective uncertainty are involved, like the one of Anscombe and Aumann (1963), although
originally introduced for mathematical convenience, is instead important to properly identify
the behavior that we are interested in.39

4 Overview of the related literature

A large literature, much too large to be surveyed here, has been devoted to developing
models that allow either for Allais or for Ellsberg-type behavior. However, far fewer models
exist that allow for both features at the same time in setups, such as that of Anscombe
and Aumann (1963), where both phenomena could appear independently. On the one hand,
the majority of models meant to study Allais-like behavior do not allow for the presence of
subjective probabilities at all, thus ruling out the presence of ambiguity aversion. On the
other hand, the vast majority of models meant to capture ambiguity aversion either do not
consider objective lotteries at all, operating in the setup of Savage (1954); or do consider
them, operating in the setup of Anscombe and Aumann (1963), but also assume that agents
satisfy vNM independence on objective lotteries, thus ruling out the possibility of Allais-like
behavior.40 The relevant axiom for this assumption, which posits that the agent satisfies
vNM independence on constant acts, is usually called Risk Independence, and it is implied
by almost all the weakening of independence suggested in the literature for this setup.41 From
the point of view of the literature on Ambiguity Aversion, therefore, one can see our paper as
taking the standard setup of Anscombe and Aumann (1963), and generalizing MMEU with a
representation that coincides with it on acts which do not involve objective lotteries, while at
the same time weakening the assumption of Risk Independence and allowing for Allais-type
behavior for objective lotteries. Indeed ours is not the first paper to relax Risk Independence
in this setup. First of all, Ghirardato et al. (2001, 2003) show that one can obtain exactly
a MaxMin Expected Utility representation by considering outcome mixtures, while at the
same time disregarding objective lotteries – thus not restricting, but also not modeling, how
the agent reacts to them. On the other hand, Drapeau and Kupper (2010) considers a
model which corresponds to one in which agents exhibit uncertainty averse preferences a’
la Cerreia et al. (2010) on acts that do not involve objective lotteries, while modeling her
reaction to objective risk in a way similar to the model of Cerreia-Vioglio (2010).42 As we
shall see in our discussion of the latter, however, while this allows for violations of vNM

39As we mention in Section 2.1, in our analysis we don’t need the full setup of Anscombe and Aumann
(1963): we also simply observe the preferences of the agent over the union of Savage acts and objective
lotteries over the same prize space.

40In addition, a few papers consider objective lotteries together with subjective uncertainty while using
Savage acts: for example, Klibanoff et al. (2005). These papers as well add the additional assumption that
the agent satisfies vNM expected utility on lotteries.

41This is true for the models in Gilboa and Schmeidler (1989) and Maccheroni et al. (2006), since both
Centainty Independence and Weak-Certainty Independence imply the much weaker Risk Independence. And
it is also true in the much more general models of Cerreia et al. (2010), Cerreia-Vioglio et al. (2011), and
Ghirardato and Siniscalchi (2010). See Gilboa and Marinacci (2011) for a survey.

42More precisely, since Drapeau and Kupper (2010) studies a preorder which corresponds to the risk
perception instead of studying the agent’s preferences, as standard in their literature, their results are
formally equivalent but ‘inverted:’ instead of positing quasi-concavity, they posit quasi-convexity, and instead
of obtaining the inf over a set of measures, they obtain the sup.
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independence, these are not necessarily in the direction suggested by the Allais paradox. By
contrast, in our model agents always violate vNM independence for objective lotteries in the
direction suggested by Allais paradox – this is precisely our goal. Finally, in Klibanoff et al.
(2005) a corollary to the main theorem generalizes the representation to the case of non-EU
preferences on objective lotteries; this case, however, is not fully axiomatized, and does not
model jointly the attitude towards risk and uncertainty.43

From a procedural point of view, our paper considers the notion of outcome mixtures,
which we denote by the symbol ⊕, instead of probability mixtures. Procedures of this kind
are indeed not new: we refer to Ghirardato et al. (2001, 2003), Wakker (1994), Kobberling
and Wakker (2003), and to the many references therein. More precisely, one could see our
approach as the translation of the one of Ghirardato et al. (2003) to the case of objective
probabilities. We then use this approach to introduce the novel notion of outcome mixture
of lotteries and of acts, a central step in our analysis.

Our model is naturally related also to the models that study violations of expected utility
in the case of risk (and not ambiguity) using representations and techniques reminiscent of
the ones developed to study ambiguity aversion. First of all, our work is conceptually closely
related to that of Maccheroni (2002) and Cerreia-Vioglio (2010): both provide representation
in which the decision maker treats objective lotteries as ‘ambiguous objects,’ as we do.
Neither model, however, studies ambiguity aversion – they both work in the setup of vNM.
Even focusing on this setup, moreover, both models have a fundamental difference with ours.
While in our representation the decision maker has a fixed utility function, but has multiple
probability distortions to evaluate lotteries, in both the papers above the opposite holds: the
agent uses the correct probabilities, which are fixed, but at the same time she acts as if she
had ambiguity over her utility. In particular, Maccheroni (2002) assumes that preferences
are continuous, satisfy a weakening of vNM independence, as well as traditional convexity,44

and obtains a representation such that the agent has a set of utility functions, and evaluates
each lottery according to the worst of these utilities for that lotteries – a representation
which is much the counterpart of ours, with multiple utilities instead of multiple probability
distortions. Then, Cerreia-Vioglio (2010) generalizes this model by dropping independence
entirely, and only requiring a weaker form of convexity, quasi-convexity.45 He then derives
a representation which generalizes that in Maccheroni (2002) in a similar way in which
Cerreia et al. (2010) generalizes the one in Gilboa and Schmeidler (1989). The conceptual
difference in the representation between these models and ours entails an important difference
in behavior: while our model is designed to address the Allais paradox, and, more in general,
attraction towards certainty, the ones in Maccheroni (2002) and Cerreia-Vioglio (2010) have
a different goal, and agents in both of their models may exhibit certainty aversion – the
opposite of Allais. This is particularly easy to see in the model of Maccheroni (2002): since
there are multiple utilities and the agent is considering the worst one of them, then she
would rather not face a certain outcome, where the worst utility can be chosen by the
malevolent nature, but rather face a lottery, where nature needs to choose the worst utility

43In addition, Chew and Sagi (2008) suggest how using the notion of ‘conditional small worlds’ that they
introduce could generate a behavior which is consistent with both the Ellsberg and the Allais paradoxes.

44A preference relation � on a convex set is convex if for all p, q, r, if p � r and q � r, then αp+(1−α)q � r.
45More precisely, he only requires that, for any to lotteries p, q such that p ∼ q we have αp+ (1−α)q � p

for all α ∈ (0, 1).
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for all elements in the support, and therefore cannot make the agent ‘too worse off.’46 From
this point of view, therefore, one can see Maccheroni (2002) and Cerreia-Vioglio (2010) as
exploring the consequences of convexity or quasi-convexity, while we aim to study a notion
of pessimism.

Although there are few models that allows for both the Allais and the Ellsberg paradox to
be present at the same time in the setup of Anscombe and Aumann (1963), as we mentioned
in the introduction the idea of a connection between these behaviors is not new. We have
already discussed (Section 2.6.3) how previous authors have noted that the RDU representa-
tion is formally identical to the Choquet Expected Utility model of Schmeidler (1989), and
how, in a similar spirit, we use a generalized version of Schmeidler (1989)’s hedging axiom to
obtain a representation which is similar to the MaxMin Expected Utility model for the case
of risk. In addition to deriving a different model, as opposed to this literature we also study
the case of simultaneous presence of ambiguity aversion and Allais-like behavior, instead
of focusing on a specific one of these. This is possible because we operate in the standard
setup of Anscombe and Aumann (1963), where both features could be present at the same
time and independently. By contrast, the approach followed by most of these papers would
not apply in such setup, and, in general, would not apply to the case in which lotteries are
elements of the simplex, as in von-Neumann Morgenstern or as in the questions of the Allais
experiment.47

Perhaps the paper most closely related to ours is Wakker (2001). This paper focuses
on the case in which the preferences of the agent are of the Choquet Expected Utility
form – of which RDU is the special case that applies when lotteries are objective – and
shows that a generalization of the common consequence effect can be used to characterize
pessimism (convexity) in both the objective and subjective domains. Our generalized notion
of preference for hedging could be seen as an assumption with a similar spirit – providing a
generalized notion of pessimism that applies to both objective risk and subjective uncertainty.
This notion is applicable to a broader class of preferences than those considered in Wakker
(2001): on subjective uncertainty, it is well known that the multiple priors model is more
general that the Choquet expected utility model; and we show in Section 2.6.3 that our
representation generalizes convex RDU. On the other hand, to define our notion we use
outcome mixtures, which forces us to impose a richer structure on the space of consequences
(connectedness). Wakker (2001) also shows that the conditions that imply pessimism for
subjective uncertainty do not guarantee Ellsberg-type behavior in the presence of non-EU
behavior over objective risk. We obtain a similar result, but we include a novel axiom that
allows us to characterize a model in which this is guaranteed.

Following Segal (1987, 1990), a different channel to connect the Allais and Ellsberg para-
dox has been suggested: both could be seen as stemming from a failure of reduction of
compound lotteries. In particular, Segal (1990) shows how RDU can be derived precisely
from such postulate; Dillenberger (2010) then links preference for one shot resolution of un-

46Consider, for example, an agent whose preferences are represented a’ la Maccheroni (2002) with the
following utilities: u1(x) = 0, u1(y) = 1, u2(x) = 1, u2(y) = 0. Indeed this agent would rank x ∼ y, but she
would also rank 1

2x+ 1
2y � x, in violation of attraction towards certainty.

47Most of this literature studies a setup in which the object of choice are Savage acts defined on a given
set of states of world with an objective probability distributions over them – a setup where it is much easier
to posit Schmeidler (1989)’s Comonotonic Independence.
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certainty with an axiom called Negative Certainty Independence, which is strongly linked
to Allais-like behavior. At the same time, Segal (1987) argues how the Ellsberg paradox
could be seen in a similar light: he argues that “the ambiguous lottery (x, S; 0, S) (ambigu-
ous in the sense that the decision maker does not know the probability of S) should be
considered a two-stage lottery, where the first, imaginary, stage is over the possible values
of the probability of S” (Segal, 1987, pg. 177).48 From this point of view, then, the two
paradoxes are linked. This connection, however, is based on a specific interpretation of the
Ellsberg paradox; as opposed to our analysis, moreover, this approach is based on the richer
setup in which two-stage lotteries are observable.49 Halevy (2007) tests in a lab experiment
whether subjects who exhibit Ellsberg-like behavior also fail to reduce compound lotteries,
and finds that about half of them do (while many of the others have a behavior compatible
with the models of Halevy and Feltkamp (2005), Klibanoff et al. (2005), and Seo (2009)).
Dean and Ortoleva (2012) also tests the relation between ambiguity aversion and failure to
reduce compound lotteries, and also documents an extremely strong relation.

Our work is also related to the recent Gumen et al. (2011), which is also built on the
intuition of subjective evaluations of objective lotteries. In particular, they introduce a
framework where they can analyze subjective distortions of objective probabilities: they
study the preferences of a decision maker on space of pairs composed of 1) a probability
measure over a state space and of 2) an Anscombe-Aumann act (over the same state space)
– an object that they call a ’info-act.’ The idea is that an info-act captures either a situation
of objective uncertainty, or that of subjective risk. Using this framework, they are then
able to define a behavioral notion of ‘pessimism’ for risky prospects in a way reminiscent
of uncertainty aversion. After defining the natural mappings between these preferences and
the more standard preferences over lotteries, they then show how their behavioral notion
of pessimism in the info-act world implies that the corresponding preference over lotteries
exhibits a form of pessimism consistent with the Allais paradox — for example, if they
admitted a RDU representation, it would have a convex probability weighting. Their paper
has therefore a different focus from ours: while we derive a characterization theorem in the
standard setup of Anscombe and Aumann (1963), they introduce a novel space that allows
them to define a more general notion of pessimism, but do not look for a representation
theorem.

Finally, our model is also naturally related to other generalizations of vNM expected
utility. We have already discussed (Section 2.6.3) how our model is much related to the
RDU model of Quiggin (1982): while the restriction of our model to objective lotteries (i.e.
when |Ω| = 1) is not nested with the general formulation of RDU, it is a strict generaliza-
tion of RDU with convex probability distortions. Yaari (1987) suggests a ‘dual theory’ of
choice under risk, in which, instead of imposing linearity with respect to probability mix-
tures, we have linearity with respect to direct mixing of payments of risky prospects. Our

48A similar approach was suggested, among others, by Becker and Brownson (1964), Yates and Zukowski
(1976), and Gärdenfors and Sahlin (1983).

49Indeed one could also see the setup of Anscombe and Aumann (1963) as ‘rich,’ as it entails both objective
and subjective uncertainty with an implicit assumption about the timing of resolution of each of them. As
we argued in Section 2.1, however, this feature is entirely irrelevant for us: we could have carried out our
analysis even if we simply observed the agent’s preference over the union of vNM lotteries and of Savage
acts.
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approach differs as we do not need to impose even the latter linearity, as we use the notion of
outcome-mixtures. Our results are also related to those of Dillenberger (2010), which shows
the equivalence, under some basic assumptions, between Negative Certainty Independence
(NCI), and PORU, which is preference for one-shot resolution of uncertainty. Moreover, he
also shows that NCI is not satisfied by RDU unless it is expected utility. On the one hand,
it is easy to construct examples of our model which might violate NCI. On the other hand,
whether the only model in our class of preferences that satisfies NCI is expected utility is
still an open question. A second strand of literature aims to capture Allais-type behavior
by weakening the requirement of independence to that of betweenness:50 see, among others,
Chew (1983), Dekel (1986), and the disappointment aversion model of Gul (1991). It is well
known that this class of model is distinct from the RDU class. Similarly, it is also easy to
construct an example of our model which violates the betweenness axiom.

5 Conclusion

In this paper, we have introduced a novel link between two of the most discussed paradoxes
in decision theory: ambiguity aversion and the Allais paradox. We have demonstrated that
a preference for hedging, properly defined, can lead to both behaviors, and we have derived
a representation which generalizes the Gilboa and Schmeidler (1989) multiple priors model
by allowing the agent to treat objective probabilities like subjective objects, with ‘multiple
priors’ of their own. The resulting model of choice under risk is a generalization of the RDU
model with convex distortions.

While our model does not require an agent who exhibits Allais-type behavior to be
ambiguity averse, or vice versa, our result on the existence of a similar channel to capture
both tendencies – preference for hedging – suggests that this might be the case. In this
light, we emphasize the recent Dean and Ortoleva (2012), which tests the existence of an
empirical relation between these behaviors. They show not only the significant presence of
each individual paradox, but also the presence of a significant positive relationship between
the propensity to exhibit each of them: subjects who exhibit one behavior are significantly
more likely to exhibit the other.

We conclude by discussing possible extensions to the model. In the present paper we have
derived a MMEU-like representation for non-expected utility by deriving the equivalents
of preferences for hedging and certainty independence. A natural extension would then
be to generalize this latter model following the generalizations of MMEU. For example,
one could relax Axiom 6 and look for a representation along the lines of the Variational
Preferences of Maccheroni et al. (2006) or the Uncertainty Averse preferences of Cerreia et al.
(2010). We should point out, however, that this might not be straightforward. The reason
is, our approach was constructed adapting the notion of outcome mixtures of consequences
introduced in Ghirardato et al. (2003), which requires a form of bi-separability that need
not be satisfied by the generalizations above – in particular, they might not satisfy the
conditions of Lemma 1. For this reason, a different approach to outcome-mixtures in X
would be required. If this were found, however, then one could immediately use our notion

50A preference relation satisfied betweenness if, for any p, q ∈ ∆(X), p ∼ q implies αp+ (1− α)q ∼ p for
all α ∈ [0, 1].
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of mixture of lotteries and acts – which, as we argued, is irrespective of how mixtures on X
are constructed – and define a preference for hedging, paving the way for the generalizations
hinted above.

Appendix A: Relation with the Allais Paradox

In Section 2.6.1 we have argued how both the MP-MD and the MP-MC-RDU can allow for the behavior
observed in the Allais paradox. In what follows, we show that both models also rule out the possibility of
an opposite preference. To wit, consider the following four lotteries: p1 = $1, p2 = .01 · $0 + .89 · $1 + .1 · $x,
p3 = .89 · 0$ + .11 · $1, and p4 = .9 · $0 + .1 · $y. Recall that the Allais experiment asked to compare the
lotteries above assuming x = y = $5, and then observed the first preferred to the second, but the fourth
preferred to the third. Let us now instead choose x and y in such a way to make p1 ∼ p2 and p3 ∼ p4.
Then, we have a choice pattern which conforms with ‘Allais’ if and only if x ≥ y. We will now prove that
this must be the case for any MP-MD representation (u,Π,Φ); for simplicity we assume that u is linear
(the argument could be easily generalized). Let us define the following three events on the unit interval:
E1 = [0, 0.89), E2 = [0.89, 090), E3 = (0.90, 1]. Then, consider the (measure preserving) map from lotteries
into acts on [0, 1] defined by the following table:

E1 E2 E3

p1 $1 $1 $1
p2 $1 $0 $x
p3 $0 $1 $1
p4 $0 $0 $y

Let α be the smallest weight put on E3 by any prior in Φ, and β be the smallest weight put on E2 by

one of the priors for which φ(E2) = α. Notice first of all that we must have u(p2) ≤ (1− α− β) + αx, since

p2 could be evaluated using the prior above or a worse one, so 1 = u(p1) = u(p2) ≤ (1− α− β) + αx, hence
α+β
α ≤ x. Notice also that we must have u(p4) = αy, and u(p3) ≤ min(0.11, α + β).51 Suppose first that

we have α + β ≤ 0.11. Then, we have αy = u(p4) = u(p3) ≤ α + β, hence y ≤ α+β
α , which means x ≥ y

as desired. Suppose instead that α + β > 0.11. This means that we have αy = u(p4) = u(p3) ≤ 0.11, so

y ≤ 0.11
α . Since x ≥ α+β

α and α+ β > 0.11 we have x > 0.11
α , so x > y as sought.

Appendix B: Proofs

Proof of Theorem 1

Proof of (1) ⇒ (2). The proof will proceed with the following 6 steps: 1) we construct a derived pref-

erence relation on the Savage space with consequences X and set of states Ω × [0, 1]; 2) we prove that

the continuity properties of the original preference relation imply some continuity property of the derived

preference relation. 3) we prove that this derived relation is locally bi-separable (in the sense of Ghirardato

and Marinacci (2001)) for some event in the space Ω × [0, 1]; 4) we prove that this derived relation admits

a representation remininscent MaxMin Expected Utility in the larger Savage space; 5) we use this result to

provide a representation for the restriction of � to constant acts; 6) we merge the two representations to

obtain the desired representation for the acts in F ′.
Step 1. Denote by Σ∗ the Borel σ-algebra on [0, 1], and consider a state space Ω′ := Ω× [0, 1] with the

appropriate sigma-algebra Σ′ := Σ× Σ∗. Define F ′ the set of simple Savage acts on Ω′, i.e. Σ′-measurable,

51We know that u(p3) ≤ 0.11 since Φ contains the Lebesgue measure.

32



finite valued functions f ′ : Ω′ → X. To avoid confusion, we use f ′, g′, . . . to denote generic elements of this

space.52 Define ⊕ on F ′ like we did in F : once we have ⊕ defined on X, for any f ′, g′ ∈ F ′ and α ∈ (0, 1),

αf ′ ⊕ (1 − α)g′ is the act in F ′ such that (αf ′ ⊕ (1 − α)g′)(ω′) = αf ′(ω′) ⊕ (1 − α)g′(ω′) for all ω′ ∈ Ω′.

(Moreover, since each act in F ′ is a function from Ω× [0, 1] into X, for all f ′ ∈ F ′ and for all ω ∈ Ω abusing

notation we can denote f ′(ω, ·) : [0, 1] → X as the act that is constant in the first componente (Ω) but not

on the second component ([0, 1]).)
We now define two maps, one from F to F ′, and the other from F ′ to F . Define first of all γ−1 : F ′ → F

as
γ−1(f ′)(ω)(x) = `(f ′(ω, ·)−1(x))

where `(·) denotes the Lebesgue measure. It is easy to see that γ−1(f) is well defined. Now define γ : F → 2F
′

as
γ(f) = {f ′ ∈ F ′ : f = γ−1(f ′)}.

Notice that, by construction, we must have γ(f) ∩ γ(g) = ∅ for all f, g ∈ F such that f 6= g. (Otherwise,

we would have some f ′ ∈ F ′ such that γ−1(f ′) = f and γ−1(f ′) = g, which is not possible since f 6= g.)

Moreover, notice that we must have that γ(δx) = {x}. Finally, notice that γF := ∪f∈Fγ(f) = F ′ by

construction.

Define now �′ on F ′ as follows: f ′ �′ g′ if, and only if, f � g for some f, g ∈ F such that f = γ−1(f ′)

and g = γ−1(g′). Define by ∼′ and �′ is symmetric and asymmetric parts. (Notice that this implies f ′ ∼′ g′

if f ′, g′ ∈ γ(f) for some f ∈ F .)

We will now claim that �′ is a complete preference relation on F ′.

Claim 1. �∗ is a complete preference relation.

Proof. The completeness of �′ is a trivial consequence of the completeness of � and the fact that γ(F) = F ′.
Similarly, the reflexivity follows from the reflexivity of �′. To prove that �′ is transitive, consider some

f ′, g′, h′ ∈ F ′ such that f ′ �′ g′ and g′ �′ h′. By construction, we must have some f, g, h ∈ F such that

f = γ−1(f ′), g = γ−1(g′), and h = γ−1(h′) such that f � g and g � h. By transitivity of �, we also have

f � h, hence f ′ �′ h′ as sought.

Step 2. We now prove that the continuity properties of � are inherited by �∗. For any sequence

(f ′n) ∈ (F ′∞, and any f ′ ∈ F ′, we say that f ′n → f ′ pointwise if fn(ω)→ f (in the relevant topology) for all

ω ∈ Ω′.

Claim 2. For any (fn) ∈ (F)∞, f ∈ F , if there exists (f ′n) ∈ (F ′∞, f ′ ∈ F ′ such that fn = γ−1(f ′n) for

all n, f = γ−1(f ′), and such that f ′n → f ′ pointwise, then we must have that fn → f .

Proof. We will prove the claim for the case in which fn and f are constant acts, i.e. fn, f ∈ ∆(X). The

extension to the general case follows trivially. Assume that f ′n and f ′ as above exist: we will now prove

that if pn = γ−1(f ′n) for all n, and if p = γ−1(f), then pn → p (weakly). Consider now some continuous

v, and notice that we must have that
∫
X
v(u)dpn =

∫
[0,1]

v(f ′n)d` by contruction of γ. (Recall that ` is the

Lebesgue measure.) Moreover, since v is continuous and since f ′n pointwise converges to f ′, we must then

have that
∫

[0,1]
v(f ′n)d` →

∫
[0,1]

v(f ′)d` =
∫
X
v(u)dp: in turns, this means

∫
X
v(u)dpn =

∫
X
v(u)dp. Since

this was proved for a generic continuous v, we must have pn → p (in weak convergence).

52Following the same abuses of notation of the main setup, for any x ∈ X we also refer to the constant
act x ∈ F ′ which returns x in every state.
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Step 3. We now prove that �′ is locally biseparable for some event A ∈ Σ′. Consider the event

A = Ω × [0, 1
2 ]. Define ΣA as the algebra generated by A, i.e. ΣA := {∅, A,AC ,Ω′}, and by F ′A the

corresponding set of acts, which is a subset of F ′. We will now prove that the restriction of �′ on acts

measurable under A is biseparable in the sense of Ghirardato and Marinacci (2001). We procced by a

sequence of Claims.

Claim 3. There exist x, y ∈ X such that δx � δy.

Proof. Suppose, by means of contradiction, that δx ∼ δy for all x, y ∈ X. Then, we would have that

pDFOSD q for all p, q ∈ ∆(X). By Axiom 1 (FOSD), therefore, we would have p ∼ q for all p, q ∈ ∆(X). In

turns, by Axiom 2 (Monotonicity) we must have f ∼ g for all f, g ∈ F , but this contradicts the assumption

that � is non-degenerate.

Claim 4 (Dominance). For every f ′, g′ ∈ F ′, if f ′(ω′) �′ g′(ω′) for every ω′ ∈ Ω′, then f ′ � g′.

Proof. Consider some f ′, g′ ∈ F ′ such that f ′(ω′) �′ g′(ω′) for every ω′ ∈ Ω′. Now consider f ′(ω, ·) and

g′(ω, ·) for some ω ∈ Ω, and notice that we have that both γ−1(f ′(ω, ·)) and γ−1(g′(ω, ·)) are constant acts

(in F). Since we have f ′(ω,A) �′ g′(ω,A) for all A ∈ Σ∗, and since x �′ y if and only if δx � δy, then we

must also have that γ−1(f ′(ω, ·))DFOSD γ−1(g′(ω, ·)) by construction. By Axiom 1 (FOSD), then, we must

have γ−1(f ′(ω, ·)) � γ−1(g′(ω, ·)) for all ω ∈ Ω. In turns, this means that, for the acts f̂ , ĝ ∈ F defined by

f̂(ω) := γ−1(f ′(ω, ·)) and ĝ(ω) := γ−1(g′(ω, ·)) for all ω ∈ Ω, we have f̂ � ĝ by Axiom 2 (Monotonicity).

But then, notice that we must have that f ′ ∈ γ(f̂) and g′ ∈ γ(ĝ) by construction. But this means that we

have f ′ �′ g′ as sought.

Claim 5. For any x, y ∈ X, γ−1(xAy) = 1
2x+ 1

2y.

Proof. Notice first of all that, since xAy ∈ F ′ is a constant act, then so much be γ−1(xAy). Moreover,

notice that by definition of γ−1 we must have that for all ω ∈ Ω, γ−1(xAy)(ω)(x) = 1
2 ; similarly, for all

ω ∈ Ω γ−1(xAy)(ω)(y) = 1
2 . This implies that we have γ−1(xAy(ω)(x) = 1

2x+ 1
2y as sought.

Claim 6. For every x, y ∈ X, there exists z ∈ X such that z ∼′ xAy.

Proof. Consider x, y ∈ X, and notice that γ−1(xAy) = 1
2x+ 1

2y by claim 5. Now notice that, by Axiom 3

(Continuity) and 1 (FOSD), there must exist z ∈ X such that 1
2x+ 1

2y ∼ δz. We have previously observed

that γ−1(z) = δz, which implies γ−1(z) ∼ γ−1(xAy), which implies xAy ∼′ z as sought.

Given Claim 6, for any x, y ∈ X, define ce′(xAy) := z for some z ∈ X such that xAy ∼′ z.

Claim 7 (Essentiality). A is an essential event for �′.53

Proof. Consider any x, y ∈ X such that δx � δy – Claim 3 guarantee that they exist. Now consider the

p = 1
2x+ 1

2y. By Axiom 1 (FOSD) we must have δx � p � δy. Now consider the act xAy ∈ F ′. Notice that

we have xAy(ω × [0, 5]) = x and xAy(ω × [0.5, 1]) = δy for all ω ∈ Ω. By construction, therefore, we must

have xAy ∈ γ(p), x ∈ γ(δx) and y ∈ γ(δy). By definition of �′, then, we have x �′ xAy �′ y as sought.

53We recall that an event E is essential if we have x �′ xAy �′ y for some x, y ∈ X.
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Claim 8 (A-Monotonicity). For any non-null event B ∈ ΣA, and x, y, z ∈ X such that x, y � z we
have

x �′ y ⇐ xBz �′ yBz.

Moreover, for any non-universal54 B ∈ ΣA, x, y, z ∈ X s.t. x, y � z

x �′ y ⇐ zBx �′ zBy

Proof. Consider an event B ∈ ΣA, and x, y, z ∈ X such that x �′ y. Notice that by construction this

implies δx � δy. Notice also that the non-null events in ΣA are A,AC , and Ω′. In the case of B = Ω′ we

have xBz = x and yBz = y, which guarantees that x �′ y. Now consider the case in which B = A. By

Claim 5, γ−1(xAz) = 1
2x + 1

2z, and γ−1(yAz) = 1
2y + 1

2z. Since δx � δy, then 1
2x + 1

2z BFOSD
1
2y + 1

2z,

which, by Axiom 1 (FOSD), implies 1
2x+ 1

2z �
1
2y+ 1

2z, hence γ−1(xAz) � γ−1(yAz). By construction of �′

this implies xAz �′ yAz. Now consider the case in which B = Ac. This implies that we have xACz = zAx

and yACz = zAy. Notice, however, that by construction we must have zAx ∈ γ( 1
2x + 1

2z). Since we also

have xAz ∈ γ( 1
2x + 1

2z), by construction of �′ we must have zAx ∼′ xAz. Similarly, we have zAy ∼′ yAz.
We have already proved that we must have xAz � yAz, and this, by transitivity, implies zAA �′ zAy as

sought.

Now consider some B ∈ ΣA which is non-universal. If B = ∅, we trivially have that x �′ y ⇐ zBx �′

zBy. Now consider the case in which B = A. In this case we have x �′ y and we need to show zAx �′ zAy:

but this is exactly what we have showed above. Similarly, when B = AC , we need to show that if x �′ y
then xAz �′ yAx – which is again exactly what we have shown before.

Claim 9 (A-Continuity). Let {g′α}α∈D ⊆ F ′A be a net that pointwise converges to g′. For every f ′ ∈ F ′,
if g′α �′ f (resp. f �′ g′α) for all α ∈ D, then g′ �′ f ′ (resp. f ′ �′ g′).

Proof. This claim is a trivial consequence of the continuity of � and of Claim 2. To see why, consider

f ′, g′ ∈ F ′ and a net {g′α}α∈D ⊆ F ′A that pointwise converges to g′ such that g′α �′ f ′ for all α ∈ D. By

contruction we must have γ−1(g′α) � γ−1(f ′). Now, notice that, if g′α pointwise converges to some g′, then

we must have that γ−1(g′α) converges to γ−1(g′) by Claim 2. But then, by continuity of � (Axiom 3), we

must have γ−1(g′) � γ−1(f ′), and therefore g′ �′ f ′ as sought. The proof of the opposite case (f �′ g′α for

all α ∈ D) is analogous.

Claim 10 (A-Substitution). For any x, y, z′, z′′ ∈ X and B,C ∈ ΣA such that x �′ z′ �′ y and
x �′ z′′ �′ y, we have

ce′xBz′Cce
′
z′′By ∼′ ce′xCz′′Bce′z′Cy.

Proof. Consider first the case in which B = ∅. In this case, the claim becomes ce′z′Cce
′
y ∼′ ce′z′Cy, which

is trivially true. The case C = ∅ is analogous. Now consider the case B = Ω′. The claim becomes

ce′xCce
′
z′′ ∼′ ce′xCz′′ which again is trivially true. The case in which C = Ω′ is again analogous.

We are left with the case in which B = A and C = AC . (The case B = AC and C = A is again

analogous.) In this case the claim becomes ce′xAz′A
Cce′z′′Ay ∼′ ce′xACz′′Ace

′
z′Cy, which is equivalent to

ce′z′′AyAce
′
xAz′ ∼′ ce′z′′AxAce′yAz′ . Now notice that since ce′xAy ∈ X for all x, y ∈ X, by claim 5, we have that

γ−1(ce′z′′AyAce
′
xAz′) = 1

2ce
′
z′′Ay + 1

2ce
′
xAz′ . At the same time, consider some r, s ∈ X, and notice that, since

ce′rAs ∼′ rAs by contruction, then we must have γ−1(ce′rAs) ∼ γ−1(rAs). Since γ−1(rAs) = 1
2r+ 1

2s again by

claim 5, then we have that γ−1(ce′rAs) ∼ 1
2r+

1
2s. Moreover, since ce′rAs ∈ X, then we must have that δce′rAs

∼
δc 1

2 z+
1
2 s

. Since this is true for all r, s ∈ X, then by Axiom 1 (FOSD) we must have 1
2c 1

2 z
′′+

1
2y

+ 1
2c 1

2x+
1
2 z
′ ∼

54An event is universal if y ∼ xAy for all x, y ∈ X such that x � y.
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1
2ce
′
z′′Ay + 1

2ce
′
xAz′ , hence γ−1(ce′z′′AyAce

′
xAz′) ∼ 1

2c 1
2 z
′′+

1
2y

+ 1
2c 1

2x+
1
2 z
′ . By analogous arguments, we must

have γ−1(ce′z′′AxAce
′
yAz′) ∼ 1

2c 1
2 z
′′+

1
2x

+ 1
2c 1

2y+
1
2 z
′ . At the same time, Axiom 4 we must have c 1

2 z
′′+

1
2y

+

1
2c 1

2x+
1
2 z
′ ∼

1
2c 1

2 z
′′+

1
2x

+ 1
2c 1

2y+
1
2 z
′ , which by transitivity implies γ−1(ce′z′′AyAce

′
xAz′) ∼ γ−1(ce′z′′AxAce

′
yAz′),

hence ce′z′′AyAce
′
xAz′ ∼ ce′z′′AxAce′yAz′ as sought.

Notice that these claims above prove that �′ is locally-biseparable in the sense of Ghirardato and

Marinacci (2001).

Step 4. We now prove that �′ admits a representation similar to MMEU. We proceed again by claims.

Claim 11 (C-Independence). For any f ′, g′ ∈ F ′, x ∈ X and α ∈ (0, 1)

f ′ ∼′ g′ ⇒ αf ′ ⊕ (1− α)x ∼′ αg′ ⊕ (1− α)x.

Proof. Consider f ′, g′ ∈ F ′ such that f ′ ∼′ g′. Notice that we could have f ′ ∼′ g′ in two possible

cases: 1) γ−1(f ′) = γ−1(g′); 2) γ−1(f ′) 6= γ−1(g′) but γ−1(f ′) ∼ γ−1(g′). In either case, we must have

γ−1(f ′) ∼ γ−1(g′). By Axiom 6, then, we must have that for any x ∈ X and α ∈ (0, 1), αγ−1(f ′)⊕(1−α)δx ∼
αγ−1(g′)⊕ (1− α)δx. Let us now consider αγ−1(f ′)⊕ (1− α)δx, and notice that, by construction, we must

have that f ′ ⊕ (1 − α)x ∈ γ(αγ−1(f ′) ⊕ (1 − α)δx): in fact, we must have that for every ω ∈ Ω and

every y ∈ X, (αγ−1(f ′) ⊕ (1 − α)δx)(ω)(αy ⊕ (1 − α)x) = `(f ′(ω)−1(αy ⊕ (1 − α)x). In turns, this means

that γ−1(f ′ ⊕ (1 − α)x) = αγ−1(f ′) ⊕ (1 − α)δx. Similarly, g′ ⊕ (1 − α)x ∈ γ(αγ−1(g′) ⊕ (1 − α)δx) and

γ−1(g′⊕ (1−α)x) = αγ−1(g′)⊕ (1−α)δx. Since we have αγ−1(f ′)⊕ (1−α)δx ∼ αγ−1(g′)⊕ (1−α)δx, then

by transitivity γ−1(f ′⊕ (1−α)x) ∼ γ−1(g′⊕ (1−α)x), hence f ′⊕ (1−α)x ∼′ g′⊕ (1−α)x as sought.

Claim 12 (Hedging). For any f ′, g′ ∈ F ′ such that f ′ ∼′ g′

1
2f
′ ⊕ 1

2g
′ �′ f ′.

Proof. Consider f ′, g′ ∈ F ′ such that f ′ ∼′ g′. Notice that we could have f ′ ∼′ g′ in two possible

cases: 1) γ−1(f ′) = γ−1(g′); 2) γ−1(f ′) 6= γ−1(g′) but γ−1(f ′) ∼ γ−1(g′). In either case, we must

have γ−1(f ′) ∼ γ−1(g′). Now consider the act 1
2f
′ ⊕ 1

2g
′: we will now prove that, for all ω ∈ Ω,

γ−1( 1
2f
′(ω, ·) ⊕ 1

2g
′(ω, ·)) ∈

⊕ 1
2
γ−1(f ′(ω,·)),γ−1(g′(ω,·)). To see why, notice that for all ω ∈ Ω, ( 1

2f
′(ω, ·) ⊕

1
2g
′(ω, ·))(A) = 1

2f
′(ω,A) ⊕ 1

2g
′(ω,A) for all A ∈ Σ∗: that is, for every event in [0, 1] is assigns an

x ∈ X which is the ⊕- 1
2 -mixtures of what is assigned by f ′(ω, ·) and g′(ω, ·). But this means that

γ−1( 1
2f
′(ω, ·) ⊕ 1

2g
′(ω, ·)) must be a constant act (lottery in ∆(X)) such that, if Hf ′,g′

x := {A ∈ Σ∗ :

x = 1
2f
′(ω,A)] ⊕ 1

2g
′(ω,A)}, then γ−1( 1

2f
′(ω, ·) ⊕ 1

2g
′(ω, ·))(x) = `( ∪

A∈Hf′,g′
x

A). But then, we must have

that γ−1( 1
2f
′(ω, ·) ⊕ 1

2g
′(ω, ·)) ∈

⊕ 1
2
γ−1(f ′(ω,·)),γ−1(g′(ω,·)). By construction of ⊕ in the space F ′, then, we

must have that γ−1( 1
2f
′ ⊕ 1

2g
′ 12
γ−1(f ′),γ−1(g′). But then, since we have already enstablished that we have

γ−1(f ′) ∼ γ−1(g′), by Axiom 5 (Hedging) we must have that γ−1( 1
2f
′ ⊕ 1

2g
′) � γ−1(f ′), which implies

1
2f
′ ⊕ 1

2g
′ �′ f ′ as sought.

Claim 13. There exists a continuous non-constant function u : X → R and a non-empty, weak∗ compact
and convex set P of finitely additive probabilities of Σ′ such that �′ is represented by the functional

V ′(f ′) := min
p∈P

∫
Ω′
u(f ′)dp.

Moreover, u is unique up to a positive affine transformation and P is unique. Moreover, |P | = 1 if and only

if �′ is such that for any f ′, g′ ∈ F ′ such that f ′ ∼′ g′ we have 1
2f
′ ⊕ 1

2g
′ ∼′ f ′.
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Proof. This Claim follows directly from Theorem 5 in (Ghirardato et al., 2001, page 12), where the essential

event for which axioms are defined is the event A defined above. (It should be noted that weak∗-compactness

of P follows as well.) The last part of the Theorem, which characterizes the case in which |P | = 1, is a

well-known property of MMEU representations. (See Gilboa and Schmeidler (1989).)

Step 5. We now use the result above to provide a representation of the restriction of � to constant acts.

To this end, let us first look at the restriction of �′ to acts in F ′ that are constant in their first component:

define F∗ ⊂ F ′ as F∗ := {f ′ ∈ F ′ : f ′(ω, ·) = f ′(ω′, ·) for all ω, ω′ ∈ Ω}. Define by �∗ the restriction of �′

to F∗.

Claim 14. There exists a unique nonempty, closed and convex set Φ of finitely additive probabilities over
Σ∗ sucht that �∗ is represented by

V̂ ∗(f∗) := min
p∈Φ

∫
[0,1]

u(f∗(s)) dp

Proof. This result follows trivially from Claim 13 once we define Φ as projection of P on [0, 1].

Claim 15. There exists a unique nonempty, closed and convex set Φ of finitely additive probabilities over
Σ∗ such that, for any enumeration of the support of {x1, . . . , x|supp(p)|}, the restriction of � to ∆(X) is
represented by the functional

V ∗(p) := min
φ∈Φ

|supp(p)|∑
i=1

φ([

i−1∑
j=1

p(xj),

i∑
j=1

p(xj)])u(xi)

Proof. Construct the set Φ of closed and convex finitely additive probabilities over Σ∗ following Claim 14,

and define V̂ ∗ accordingly. Notice first of all that, by construction of γ and by definition of F∗, we must

have that γ(p) ⊆ F∗ for all p ∈ ∆(X). We will now argue that, for all p, q ∈ ∆(X), we have p � q if and only

if f∗ �∗ g∗ for some f∗, g∗ ∈ F∗ such that γ−1(f∗) = p and γ−1(g∗) = q. To see why, notice that if p � q,

then we must have f∗ �′∗, hence f∗ �∗ g∗. Conversely, suppose that we have f∗ �∗ g∗ for some f∗, g∗ ∈ F∗

such that γ−1(f∗) = p and γ−1(g∗) = q, but q � p. But then, by definition of �′ we should have g∗ �′∗, a

contradiction.

Notice now that for every p ∈ ∆(X), if f∗, g∗ ∈ γ(p), then we must have V̂ (f∗) = V̂ (g∗): the reason is, by

construction of �′ we must have f∗ ∼′∗, hence f∗ ∼∗ g∗, hence V̂ (f∗) = V̂ (g∗). Define now V : ∆(X)→ R
as V ∗(p) := V̂ ∗(f∗) for some f∗ ∈ γ(p). By the previous observation this is well defined. Now notice that

we have p � q if and only if f∗ �∗ g∗ for some f∗, g∗ ∈ F∗ such that γ−1(f∗) = p and γ−1(g∗) = q, which

holds if and only if V̂ ∗(f∗) ≥ V̂ ∗(g∗), which in turns hold if and only if V ∗(p) ≥ V ∗(q), which means that

V ∗ represents the restriction of � on ∆(X) as sought.

Claim 16. �∗ satisfies Arrow’s Monotone Continuity axiom. That is, for any f, g ∈ F∗ such that f �∗ g,

and for any x ∈ X and sequence of events in Σ∗ E1, . . . , En with E1 ⊆ E2 ⊆ . . . and ∩n≥1En = ∅, there

exists n̄ ≥ 1 such that

xEn̄f �∗ g and f �∗ xEn̄g.

Proof. Consider f, g, x, and E1, . . . as in the claim above. Notice first of all that for any s ∈ Ω′, there must

exist some n̂ such that for all n ≥ n̂ we have s /∈ En: otherwise, if this was not true for some s ∈ Ω′, we

would have s ∈ ∩n≥1En, a contradiction. In turn, this means that we have xEnf → f pointwise: for any

s ∈ Ω′, there must exist some n such that s /∈ En, and therefore xEnf(s) = f(s) as sought. Notice then
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that by Claim 2, we must therefore have that γ−1(xEnf)→ γ−1(f). We now show that we must have some

n̄1 ≥ 1 such that xEn̄1
f �∗ g for all n ≥ n̄1. Assume, by means of contradiction, that this is not the case:

for every n ≥ 1, there exists some n′ ≥ n such that g �∗ xE′nf . Construct now the subsequence of E1, . . .

which includes these events, i.e. the events such that g �∗ xE′n′f : by the previous argument it must be a

subsequence of E1, . . . and we must have that E′1 ⊆ E′2 ⊆ . . . and ∩n≥1E
′
n = ∅. This means that we have

g �∗ xE′nf for all n. By contruction this then means that we have γ−1(g) � γ−1(xE′nf). Now consider

γ−1(xE′nf), and notice that we have proved above that γ−1(xE′nf) → γ−1(f) as n → ∞. By Axiom 3

(Continuity), then, we must have that γ−1(g) � γ−1(f), which in turns means that g �∗ f , a contradiction.

An identical argument shows that there must exist n̄2 ≥ 1 such that f �∗ xEn̄2g for all n ≥ n̄2. Any

n ≥ max{n1, n2} will therefore give us the desired rankings.

Claim 17. The measures in Φ are countably additive.

Proof. In Claim 16 we have showed that �∗ satisfies Arrow’s Monotone Continuity Axioms. Using Theorem

1 in Chateauneuf et al. (2005) we can then show that Φ must be countably additive.

Claim 18. The measures in Φ are atomless.

Proof. We will first of all follow a standard approach and define the likelihood ranking induced by the �∗.
In particular, define �L on Σ∗ as

A �L B ⇔ min
φ∈Φ

φ(A) ≥ min
φ∈Φ

φ(B).

Theorem 2 in Chateauneuf et al. (2005) show that every φ ∈ Φ is atomless if and only if for all A ∈ Σ∗ such

that A �L ∅, there exists B ⊆ A such that A �L B �L ∅. A ∈ Σ∗ such that A �L ∅, and notice that this

implies that we have min
φ∈Φ

φ(A) > 0, hence φ(A) > 0 for all φ ∈ Φ. Since every φ ∈ Φ is mutually absolutely

continuous with respect to the Lebesgue measure, this implies `(A) > 0. Since ` is atomless, then there

exists B ⊆ A such that `(A) > `(B) > 0. Notice that this implies `(A\B) > 0. Again since all φ ∈ Φ are

mutually absolutely continuous with respect to the Lebesgue measure, we must therefore have φ(A) > 0,

φ(A\B) > 0 and φ(B) > 0 for all φ ∈ Φ. But this means that we have φ(A) = φ(B) + φ(A\B) > φ(B) > 0

for all φ ∈ Φ. But this implies min
φ∈Φ

φ(A) > min
φ∈Φ

φ(B) > 0, hence A �L B �L ∅ as sought.

Claim 19. The Lebesgue measure ` belongs to Φ.

Proof. Assume by means of contradiction that ` /∈ Φ. By the uniqueness of Φ, we know that there must

therefore exist some f ∈ F∗ such that V̂ ∗(f) := min
p∈Φ

∫
[0,1]

u(f(s)) dp >
∫

[0,1]
u(f(s)) d`. Call p1 a generic

element of arg min
p∈Φ

∫
[0,1]

u(f(s)) dp. Notice that, since
∫

[0,1]
u(f∗(s)) dp1 >

∫
[0,1]

u(f(s)) d`, it must be the

case that p1(A) > `(A) for some A ⊂ [0, 1] such that u(f(A)) >
∫

[0,1]
u(f∗(s)) d`, and that p1(B) < `(B) for

some B ⊂ [0, 1] such that u(f(B)) < u(f(A)).

Suppose first of all that `(A) ≥ `(B). Now consider some f ′ ∈ F∗ constructed as follows. Consider any

C ⊆ A such that `(C) = `(B) and p1(C) > `(C). (This must be possible since p1(A) > `(A).) Notice that

we must therefore have p1(C) > p1(B) since p1(C) > `(C) = `(B) > p1(B). Now construct the act f ′ as:

f ′(s) = f(s) if s /∈ C ∪ B; f ′(C) = f(B); and f ′(B) = f(A). (Notice that what we have done is that we

have moved the ‘bad’ outcomes to some events to which p1 assigns a likelihood above the Lebesgue measure,

while we have moved the ‘good’ outcomes to some event to which p1 assigns a likelihood below the Lebesgue

measure.) Notice now that, by construction, we must have that f, f ′ ∈ γ(p) for some p ∈ ∆(X), hence we

must have f ∼∗ f ′. At the same time, since p1(C) > p1(B) and since u(f(B)) < u(f(A)) = u(f(C)), we

38



must also have V̂ ∗(f) =
∫

[0,1]
u(f(s)) dp1 >

∫
[0,1]

u(f ′(s)) dp ≥ min
p∈Φ

∫
[0,1]

u(f ′(s)) dp = V̂ ∗(f ′). But this

means that we have V̂ ∗(f) > V̂ ∗(f ′), hence f � f ′, contradicting f ∼∗ f ′. The proof for the case in which

`(A) < `(B) is specular.

Claim 20. All measures in Φ are mutually absolutely continuous, and, in particular, they are all mutually

absolutely continuous with respect to the Lebesgue measure `.

Proof. To prove this, we will prove that for every event E in [0, 1], if E is null for �∗ if and only if `(E) = 0.55

In turns this means that all measures are mutually absolutely continuous with respect to each other.

Consider some measurable E ⊂ [0, 1] such that `(E) = 0. Suppose, by means of contradiction, that

{φ ∈ Φ : φ(E) > 0} 6= ∅. Then, consider any x, y ∈ X such that δx � δy (which must exist by non-

triviality), and construct the act yEx ∈ F∗. Since {φ ∈ Φ : φ(E) > 0} 6= ∅, then we must have that

min
φ∈Φ

φ(E)u(y) + (1−φ(E))u(x) < u(x), which in turns means that yEx ≺∗ x (by Claim 14), hence yEx ≺′ x.

However, notice that, since `(E) = 0, we must have that γ−1(yEx) = δx = γ−1(x). By construction of �′,
then, we must have yEx ∼′ x, contradicting yEx ≺′ x.

Consider now some measurable E ⊂ [0, 1] such that `(E) > 0. We now want to show that φ(E) > 0

for all φ ∈ Φ. Suppose, by means of contradiction, that {φ ∈ Φ : φ(E) = 0} 6= ∅. Then, consider

any x, y ∈ X such that δx � δy (which must exist by non-triviality), and construct the act xEy ∈ F∗.
Since {φ ∈ Φ : φ(E) = 0} 6= ∅, then we must have that min

φ∈Φ
φ(E)u(y) + (1 − φ(E))u(x) = u(y), which in

turns means that xEy ∼∗ y (by Claim 14), hence xEy ∼′ y. However, notice that, since `(E) > 0, then

γ−1(xEy)BFOSD γ−1(y), which implies that we must have γ−1(xEy) � γ−1(y) by Axiom 2 (Monotonicity),

which implies xEy �′ y by construction of �′, contradicting xEy ∼′ y.

Claim 21. Φ is weak compact.

Proof. We already know that Φ is weak∗ compact. At the same time, we also know that every element

in Φ is countably-additive: we can then apply Lemma 3 in Chateauneuf et al. (2005) to prove the desired

result. (Notice that this argument could be also derived from standard Banach lattice techniques: as cited

by Chateauneuf et al. (2005) one could follow Aliprantis and Burkinshaw (2006), especially Section 4.2.)

Step 6. We now derive the main representations. First of all, define as F̂ the subset of acts in F ′ that
are constant in the second component: F̂ := {f ′ ∈ F ′ : f ′(ω, [0, 1]) = x for some x ∈ X}. Define �̂ the
restriction of � to F̂ . Now notice that there exists a convex and compact set of finitely additive probability
measures Π on Σ, such that �̂ is represented by the functional

V̂ (f̂) := min
π∈Π

∫
Ω

π(ω)u(f̂(ω, [0, 1]))dω.

Moreover, Π is unique. Again, this trivially follows from Claim 13, where Π is the project of P on Ω.

Claim 22. For any p ∈ ∆(X) there exists one x ∈ X such that δx ∼ p.

Proof. The claim trivially follows from Axiom 3 (Continuity) and Axiom 1 (FOSD).

55Recall that in this case we can define null events by saying that an event E is null if and only if φ(E) = 0
for some φ ∈ Φ.
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By Claim 22 we know that ce(p) is well defined for all p ∈ ∆(X). Now, for any act f , construct the
act f̄ ∈ F as f̄(ω) := δcf(ω)

. Notice that for any f, g ∈ F , we must have f � g if and only if f̄ � ḡ by

Axiom 2 (Monotonicity). At the same time, notice that, by construction of γ, for every f ∈ F , |γ(f̄)| = 1
and γ(f̄)(ω, [0, 1]) = δcf(ω)

. This means also that γ(f̄) ∈ F̂ for all f, g ∈ F . In turns, we must have that

for all f, g ∈ F , f � g if and only if γ(f̄) �′ γ(ḡ), which is equivalent to γ(f̄)�̂γ(ḡ), which we know is true
if and only if minπ∈Π

∫
Ω
π(ω)u(γ(f̄)(ω, [0, 1]))dω ≥ minπ∈Π

∫
Ω
π(ω)u(γ(f̄)(ω, [0, 1]))dω. At the same time,

we know that for each f ∈ F , we have that γ(f̄)(ω, [0, 1]) = δcf(ω)
. In turns, this means that we have

f � g ⇔ min
π∈Π

∫
Ω

π(ω)u(δcf(ω)
)dω ≥ min

π∈Π

∫
Ω

π(ω)u(δcg(ω)
)dω.

At the same time, from Claim 15, we know that for all p ∈ ∆(X), u(cp) = V ∗(δcep) = V ∗(p), where the first
equality holds by construction of V ∗, while the second equality holds because V ∗ represents the restriction
of � to ∆(X) and because cep ∼ p for all p ∈ ∆(X). Given the definition of V ∗ above, therefore, we obtain
that � is represented by the functional

V (f) := min
π∈Π

∫
Ω

π(ω) min
φ∈Φ

|supp(p)|∑
i=1

φ([

i−1∑
j=1

p(xj),

i∑
j=1

p(xj)])u(xi)dω,

which is the desired representation. (The uniqueness properties have been proved in the various steps.)

Finally, notice that, if � satisfies Axiom 7, then we must have that �′ is such that for any f ′, g′ ∈ F ′

such that f ′ ∼′ g′ we have 1
2f
′ ⊕ 1

2g
′ ∼′ f ′. But then, by Claim 13 we have that |P | = 1, which implies

|Π| = |Φ| = 1. Moreover, since ` ∈ Φ, we must therefore have Φ = {`}.

Proof of (2) ⇒ (3). Consider a preference relation that admits a Multiple-Priors and Multiple Dis-

tortions representation (u,Π,Φ). The proof will proceed with the following three steps: 1) starting from

a MP-MD representation, we will fix a measure-preserving function µ : ∆(X) → [0, 1]X such that it is,

in some sense that we shall define below, monotone (in the sense that it assigns better outcomes to lower

states in [0, 1]); 2) we will prove that we can find an alternative representation of � which is similar to a

Multiple-Priors and Multiple Distortions representation with (u,Π,Φ′), but which holds only for the measure-

preserving map defined above, and in which the set of priors Φ′ on [0, 1] is made only of ‘non-decreasing’

priors (they assign a lower value to earlier states); 3) we will prove that this representation implies the

existence of a MP-MC-RDU representation.

Step 1. Let us consider a measure-preserving function µ : ∆(X) → [0, 1]X with the following two

properties: for any p ∈ ∆(X) and for any x ∈ X, µ−1(x) is convex; for any p ∈ ∆(X) and x, y ∈ supp(p), if

δx ≺ δy, then for any r ∈ µ−1(x) and s ∈ µ−1(y), we have r > s. The idea is that µ maps lotteries into acts

which in which the set of states that return a given outcome is convex (first property), and such that the

worse outcomes are returned always by higher states (in [0, 1]).

We now define a binary relation B on Φ as follows: for any φ, φ′ ∈ Φ, we have φBφ′ if, and only if,∫
[0,1]

u(µ(p))dφ ≤
∫

[0,1]
u(µ(p))dφ′ for all p ∈ ∆(X). Notice that the relation B depends on both u and µ;

notice, moreover, that we have φBφ′ and φ′Bφ iff φ = φ′, which means that B is reflexive. Finally, notice

that B is also transitive by construction.

Claim 23. B is upper-semicontinuous when B is metrized using the weak metric. That is, for any

(φm) ∈ Φ∞ and φ, φ′ ∈ Φ, if φm → φ′ weakly and φmBφ for all m, then φ′Bφ.

Proof. Suppose that we have φm, φ, and φ′ as in the statement of the claim. This means that for any

p ∈ ∆(X) we have
∫

[0,1]
u(µ(p))dφm ≤

∫
[0,1]

u(µ(p))dφ. Notice moreover that, by construction of µ, there

must exist x1, . . . , xn ∈ X and y0, . . . , yn ∈ [0, 1], where y0 = 0 and yn = 1, such that µ(p)(y) = xi for
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all y ∈ [yi−1, yi] for i = 1, . . . , n. In turns, this means that for any φ̄ ∈ Φ, we have
∫

[0,1]
u(µ(p))dφ̄ =∑n

i=1 u(xi)φ̄([yi−1, yi]). This means that we have
∑n
i=1 u(xi)φm([yi−1, yi]) ≤

∑n
i=1 u(xi)φ([yi−1, yi]). At the

same time, recall that φ′ is absolutely continuous with respect to the Lebesgue measure: this means that,

by Portmanteau Theorem56, since φm → φ′ weakly, then we must have that φm([yi−1, yi]) → φ′([yi−1, yi])

for i = 1, . . . , n. But this means that we have
∑n
i=1 u(xi)φm([yi−1, yi]) →

∑n
i=1 u(xi)φ

′([yi−1, yi]), hence∑n
i=1 u(xi)φ

′([yi−1, yi]) ≤
∑n
i=1 u(xi)φ([yi−1, yi]), so

∫
[0,1]

u(µ(p))dφ′ ≤
∫

[0,1]
u(µ(p))dφ. Since this must be

true for any p ∈ ∆(X), we therefore have φ′Bφ as sought.

Step 2. Now define the set MAX(Φ, B) := {φ ∈ Φ : @φ′ ∈ Φ s.t. φ′Bφ and φ′ 6= φ}.

Claim 24. MAX(Φ, B) 6= ∅.

Proof. Since Φ is weak compact and B is upper-semi-continuous (in the weak metric), then standard results

in order theory show that MAX(Φ, B) 6= ∅: see for example Theorem 3.2.1 in Ok (2011).

Claim 25. For any p ∈ ∆(X) we have min
φ∈MAX(Φ,B)

∫
[0,1]

u(µ(p))dφ = min
φ∈Φ

∫
[0,1]

u(µ(p))dφ

Proof. Since by construction MAX(Φ, B) ⊆ Φ, it trivially follows that the right hand side of the equation

is smaller or equal than the left hand side for all p ∈ ∆(X). We are left to prove the converse. To

this end, say by means of contradiction that there exists some p ∈ ∆(X) and some φ̂ ∈ Φ\MAX(Φ, B)

such that
∫

[0,1]
u(µ(p))dφ̂ < min

φ∈MAX(Φ,B)

∫
[0,1]

u(µ(p))dφ. This means that we cannot have φ′Bφ̂ for any

φ′ ∈ MAX(Φ, B). Since B is transitive, we must therefore have that φ̂ ∈ MAX(Φ, B), a contradiction.

Finally, define the set

Φ′ := {φ ∈ MAX(Φ, B) : φ ∈ arg min
φ∈MAX(Φ,B)

∫
[0,1]

u(µ(p))dφ for some p ∈ ∆(X)}.

We now define the notion of state-increasing priors.

Definition 9. A prior φ on [0, 1] is state-increasing if there are do not exist any x1, x2, x3, x4 s.t. x1 <

x2 < x3 < x4, `([x1, x2]) = `([x3, x4]) and π([x1, x2]) > π([x3, x4]).

Claim 26. Every prior φ ∈ Φ′ is state-increasing.

Proof. Suppose by means of contradiction that there exists φ′ ∈ Φ′ which is not state-decreasing. This
means that there exist x1, x2, x3, x4 s.t. x1 < x2 < x3 < x4, `([x1, x2]) = `([x3, x4]) and φ′([x1, x2]) >
φ′([x3, x4]). Now notice the following. If we have a MP-MD representation, then for any measure preserving
map µ′ : ∆(X)→ [0, 1]X we must have

min
φ∈Φ

∫
[0,1]

u(µ(p))dφ = u(cep) = min
φ∈Φ

∫
[0,1]

u(µ′(p))dφ

for all p ∈ ∆(X), for any cep ∈ X such that δcep ∼ p. Since this must be true for every measure preserving

µ′ and for every p, then there must exist some φ̂ ∈ Φ such that φ′(A) = φ̂(A) for all A ⊂ [0, 1] such that

A∩([x1, x2]∪ [x3, x4] = ∅, and φ̂([x1, x2]) = φ′([x3, x4]) and φ̂([x3, x4]) = φ′([x1, x2]): the reason is, if we take

a measure preserving map µ′ which is identical to µ except that it maps to [x3, x4] whatever µ maps to [x1, x2],

and vice-versa, then there must exist a prior which minimizes the utility when µ′ is used, and which returns

56See (Billingsley, 1995, Chapter 5).
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exactly the same utility. Now notice that we must have that, by construction, φ′([x1, x2]) > φ′([x3, x4]),

and hence φ̂([x1, x2]) > φ̂([x3, x4]), where x1 < x2 < x3 < x4, `([x1, x2]) = `([x3, x4]). (The two priors are

otherwise the same.) But since µ assigns prizes with a higher utility to lower states, then this means that

we have
∫

[0,1]
u(µ(p))dφ̂ ≤

∫
[0,1]

u(µ(p))dφ′ for all p ∈ ∆(X). Since φ̂ 6= φ′, therefore, we have that φ̂Bφ′,

which contradicts the fact that φ′ ∈ Φ′ ⊆ MAX(Φ, B).

This analysis leads us to the following claim:

Claim 27. There exists a closed, weak compact subset Φ′′ of priors on [0, 1] such that every φ ∈ Φ′′ is
state-increasing, atomless, mutually absolutely continuous with respect to ` such that � is represented by

V (f) := min
π∈Π

∫
Ω

π(ω)Ū(f(ω))dω

where Ū : ∆(X)→ R is defined as

Ū(p) = min
φ∈Φ′′

∫
[0,1]

φ(s)u(µ(p))ds.

(Here u,Π and µ are defined above.)

Proof. Simply define the set Φ′′ as the closed convex hull of Φ′. Notice that this operation maintains the

property that every φ in it is state-increasing, and that it represents the preferences. Therefore, the result

follows from Claim 25 and 26 .

The set Φ′′ in Claim 27 might not be unique.57 However, we will now argue that there exists a unique

minimal Φ′′, where by minimal we understand a representation with a set Φ′′ such that there is no Φ̂′′ ⊂ Φ′′

which represents the same preferences and satisfies all the properties required by Claim 27 . Consider any

minimal representation of the form above with set of priors Φ̄′′ ⊆ Φ′′. To prove its uniqueness, assume by

contradiction that there exists another minimal representation of the same preferences with a set of priors

Φ̂′′ 6= Φ̄′′. Now construct the set H as the closed convex hull of (Φ\Φ̄′′) ∪ Φ̂′′.58 It is easy to see that we

must have H 6= Φ, since Φ̄′′ 6= Φ̂′′ and by the fact that Φ̄′′ is minimal. The key observation is then to notice

that (u,Π, H) is also a MP-MD representation of the same preferences. (By the uniqueness properties of

it we can assume that the utility function is the same). To see why, consider first a measure-preserving

map µ′ which maps worse outcomes to higher states in [0, 1], as the map µ defined above. For any such

map, for each lottery at least one of the minimizing priors must belong to Φ̄′′ in the first representation,

by construction. At the same time, the value of these acts computed using the worst prior in Φ̄′′ must be

equivalent to the value computed using the worst prior in Φ̂′′, because both represent the same preferences

in the representation in Claim 27, hence must have the same certainty equivalents for each lottery. But then,

the minimizing priors in the second representation must belong to Φ̂′′, and thus for any non-increasing map

both are representations of the same preferences.

Let us now consider a map µ′′ which is not ‘non-increasing,’ i.e. which need not map better outcomes

to better states. Notice that for any such map in the first representation we cannot have a lottery for which

the all minimizing prior belongs to Φ̄′′. To see why, notice that if this was the case, we could also construct

a lottery for which the minimizing priors also belongs to Φ̄′′ (for the map at hand), but for which the value

computed using a prior in Φ̄′′ is strictly lower if we used an ‘increasing’ map (as µ′ above) instead of µ′′. The

57For example, if it doesn’t already include it, one could add the identity function to the set, or any convex
combination of the identity function with any member of the set, and leave the representation unchanged.

58Recall that Φ the set of distortions of the MP-MD representation of the same preferences.
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reason is, we can simply consider a lottery which is ‘fine enough’, i.e. returns different outcomes with small

probability, so that the fact that the µ′′ is not ‘non-increasing’ matters. (Recall that any prior in Φ̄′′ assigns

lower weight to lower states, which means that using it we obtain lower values for maps that assign worse

outcomes to higher states.) But this means that for this lottery we would obtain a strictly lower utility when

we use a map like µ′ as opposed to when we use µ′′, which is impossible because the MP-MD representation

should be independent of the map used (the certainty equivalents must be the same). This proves that for

any map µ′′, we cannot have that the unique minimizing prior belongs to Φ̄′′. We now turn to argue that also

for such map the two MP-MD representations must represent the same preferences. Given our last result,

the only possibility for this not to be the case is that, for this map µ′′, there exists a lottery p for which

all the minimizing priors in the second representation belong to Φ̂′′. We will now argue that this cannot be

the case. If it were, then value of p computed using map µ′′ and a prior in Φ̂′′ must be strictly below the

value of p computed using the same map and the worst prior in (Φ\Φ̄′′). And since we have proved that the

we cannot have that the unique minimizing prior for the first representation belongs to Φ̄′′, then this means

that the value of p computed using map µ′′ and a prior in Φ̂′′ is strictly below that computed using map µ′′

and the worst prior in Φ. At the same time, notice that the value of p computed using the worst prior in Φ̂′′

and map µ′′ is weakly above that computed using the worst prior in Φ̂′′ and a ‘non-increasing’ map like µ′

above. In turns, however, we have proved that for any such map, this must be equal to the value computed

using the worst prior in Φ̄′′; by construction, this must be weakly higher than the value assigned by the first

representation when using map µ′. But this means that we have some p such that the value assigned by the

first representation when using map µ′ is strictly lower than the one assigned by the same representation

when using map µ′′. This contradicts the fact that a MP-MD representation represents the same preferences

regardless of the map, as these lotteries would have a different certainty equivalent depending on which map

we use.

Step 3. Consider now the representation in Claim 27, and for every φ ∈ Φ′′ construct first the corre-

sponding probability density function (PDF), pdfφ. Notice that pdfφ is well-defined since every φ is mutually

absolutely continuous with respect to the Lebesgue measure (this follows from the Radon-Nikodym Theorem,

(Aliprantis and Border, 2005, Theorem 13.18)). Moreover, notice that since every φ ∈ Φ′′ is state-increasing,

then every pdfφ is a non-decreasing function in [0, 1]. Moreover, since every φ ∈ Φ is mutually absolutely

continuous with respect to the Lebesgue measure, then pdfφ is never flat at zero. For each φ ∈ φ′′, construct

now the corresponding cumulative distribution function, and call the set of them Ψ. Notice that every ψ ∈ Ψ

must be convex, strictly decreasing, and differentiable functions – because the corresponding PDFs exist, are

non-decreasing, and never flat at zero. We are left to show that Ψ is point-wise compact: but this follows

trivially from the standard result that for any two distributions φ, φ′ on [0, 1] with corresponding CDFs ψ and

ψ′ such that both are continuous on [0, 1], we have that φ→ φ′ weakly if, and only if, ψ → ψ′ pointwise.59

The desired representation then follows trivially, as does the existence of a minimal representation. Finally,

the unique properties of the minimal representation follow trivially from the uniqueness properties of the

representation in Claim 27, discussed above.

Proof of (3) ⇒ (1). We start by proving the necessity of Axiom 3 (Continuity). For brevity in what

follows we will only prove that if � admits the representation in (3), then for any (pn) ∈ (∆(X))∞, and for

any p, q ∈ ∆(X), if pn � q for all n and if pn → p (in the topology of weak convergence), then p � q. The

proof for the specular case in which pn � q for all n is identical, while the extension to non-constant acts

follows by standard arguments once the convergence for constant acts is enstablished. To avoid confusion,

59This is a standard result. See, for example, the discussion in (Billingsley, 1995, Chapter 5).
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we denote pn →w p to indicate weak convergence, fn →p f to denote point-wise convergence, and → to

indicate convergence in R.

Claim 28. Consider ψn ∈ Ψ∞, ψ ∈ Ψ, pn ∈ ∆(X)∞, p ∈ ∆(X) such that ψn →p ψ and pn →w p. Then

RDUu,ψn(pn)→ RDUu,ψ(p).

Proof. Consider ψn ∈ Ψ∞, ψ ∈ Ψ, pn ∈ ∆(X)∞, and p ∈ ∆(X) as in the statement of the Claim. (What

follows is an adaptation of the Proofs in (Chateauneuf, 1999, Remark 9) to our case.) Notice that since X

is a connected and compact set, and since u is continuous, we can assume wlog u(X) = [0, 1]. Also, for

any t ∈ [0, 1], define At := {x ∈ X : u(x) > t}. Then, notice that for any p ∈ ∆(X) and ψ ∈ Ψ we have

RDUu,ψ(p) =
∫ 1

0
ψ(p(At))dt. Define now Hn, H : [0, 1]→ [0, 1] by Hn(t) = ψn(pn(At)) and H(t) = ψ(p(At)).

We then have RDUu,ψn
(pn) =

∫ 1

0
Hn(t)dt and RDUu,ψ(p) =

∫ 1

0
H(t)dt. Since |Hn(t)| ≤ 1 for all t ∈ [0, 1]

and for all n, then by the Dominated Convergence Theorem (see (Aliprantis and Border, 2005, Theorem

11.21)) to prove that RDUu,ψn(pn) → RDUu,ψ(p) we only need to show that Hn(t) → H(t) for almost all

t ∈ [0, 1]. To do this, we denote Mp := {r ∈ [0, 1] : ∃x ∈ supp(p) such that u(x) = r}, and we will show that

we have Hn(t) → H(t) for all t ∈ [0, 1]\Mp: since p is a simple lottery (with therefore finite support), this

will be enough.

Consider some t ∈ [0, 1]\Mp, and notice that we must have that At is a continuity set of p. To see why,

notice that, since u is continuous, At must be open, and we have that δAt = {x ∈ X : u(x) = t}; and since

t /∈Mt, then we must have p(δAt) = 0. By Portmanteau Theorem60 we then have pn(At)→ p(At). We will

now argue that for any such t we must also have Hn(t) → H(t), which will conclude the argument. To see

why, consider any t ∈ [0, 1]\Mp, and notice that we must have |Hn(t)−H(t)| = |ψn(pn(At))− ψ(p(At))| <
|ψn(pn(At)) − ψn(p(At))| + |ψn(p(At)) − ψ(p(At))|. At the same time: |ψn(pn(At)) − ψn(p(At))| can be

made arbitrarily small since pn(At)→ p(At) and ψn is continuous; and |ψn(p(At))−ψ(p(At))| can be made

arbitrarily small since ψn →p ψ. But then, we must have Hn(t)→ H(t) as sought.

Notice, therefore, that we can apply standard generalizations of Berge’s Theorem of the maximum, such

as (Aliprantis and Border, 2005, Theorem 17.13),61 and therefore prove that Axiom 3 (Continuity).

Next, we turn to prove the necessity of Axiom 5 (Hedging). To this end, let us define the notion of

enumeration.

Definition 10. A simple enumeration of a lottery q is a step function x : [0, 1] → X such that

l({z ∈ [0, 1]|f(z) = w} = q(w) ∀ w ∈ supp(q).

Let N(x) ∈ N be the number of steps in x, and xn be the value of f(x) at each step, and px(xn) be the

Lesbegue measure of each step xn.

Claim 29. Let p be some lottery, and x, y be two simple enumerations of p such that xi−1 � xi for all

2 ≤ i ≤ n. Then, if ψ is a convex RDU functional and u is a utility function that represents �, we have

W (x) = ψ(px(x1))u(x1) +
∑N(x)
i=2 (ψ(

∑i
j=1 p

x(xj))− ψ(
∑i−1
j=1 p

x(xj)))u(xi), which must be smaller or equal

to ψ(py(y1))u(y1) +
∑N(y)
i=2 (ψ(

∑i
j=1 p

y(yj))− ψ(
∑i−1
j=1 p

y(yj)))u(yi) = W (y).

60See (Billingsley, 1995, Chapter 5).
61In particular, in our case the correspondence ρ in the statement of the theorem would be constant and

equal to Ψ, which is non-empty and compact, while the function f in the statement of the theorem would
correspond to the function RDUu,ψ(p) seen as a function of both ψ and p – which, as we have seen, is
continuous.
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Proof. We begin by proving the claim for cases in which py map to rational numbers, then extend the claim

using the continuity ofW . As py(yi) is rational, for all i ∈ 1, . . . , N(y), we can write each py(yi) = mi

ni
for some

set of integers {mi} and {ni}. This means that there are a set of natural numbers {ki} such that py(yi) =
ki∏
ni

. Notice that we can rewrite the step function y as a different step function ȳ defined by the intervals{
[ j∏

ni
, j+1∏

ni
)
}∏

ni−1

j=0
), where the value of the function in the interval [ j∏

ni
, j+1∏

ni
) is equal to the value of

y in the interval [py(yl), p
y(ym) where l = max

{
t ∈ N|py(yt) ≤ j∏

ni

}
and min

{
t ∈ N|py(yt) ≥ j+1∏

ni

}
. In

other words, we have split the original step function y up into a finite number of equally spaced steps, while

preserving the value of the original function (again we can do this because the original function had steps

defined by rational number). We can therefore now think of ȳ as consisting of a finite numer of equally

lengthed elements that can be interchanged using the procedure we discuss below Note that redefining y

in this way does not change the function - i.e. y(t) = ȳ(t) ∀ t, and nor does it affect its utility - i.e.

W (y) = W (ȳ).

Now order the steps of ȳ using �, breaking ties arbitrarily: let ȳ1 denote the best step of ȳ, ȳ2 the next

best element and so on. We next define a sequence of enumerations and functions recursively:

1. Let 1ȳ = ȳ. Define the function 1r : {1...N(y)} → N such that 1r(j) is the original position of ȳj for

all j (i.e. 1r(j) =
{
n ∈ N|1ȳir(j) = ȳj

}
).

2. Define iȳ as iȳ(t) = ȳi for t ∈ [ i−1∏
ni
, i∏

ni
); iȳ(t) =i−1 ȳi for t ∈ [

i−1r(i)−1∏
ni

,
i−1r(i)∏

ni
); and iȳ(t) =i=1 ȳ(t)

otherwise.

3. Define ir(j) as the position of yj in iȳ for all j (i.e. ir(j) =
{
n ∈ N|iȳir(j) = ȳj

}
)

So, at each stage, this procedure takes the previous function, looks for the ith best step of ȳ and switches

it into the ith position in the enumeration (while moving whatever was in that slot back to where the best

element came from). The function ir keeps track of the location of each of the steps of ȳ in each iteration i.

The first thing to note is that the final element in this sequence,
∏
ni ȳ, is equivalent to x, in the sense that

W (x) = W (
∏
ni ȳ): clearly, each of these switches preserve the Lesbegue measure associated to each prize,

thus
∏
ni ȳ is an enumeration of p. Furthermore

∏
ni ȳi−1 �

∏
ni ȳi for all i by construction, meaning that

u(
∏
ni ȳ(t)) = u(x(t)) for all t.

Next, we show that W (iy) ≤ W (i−1y) for all i ∈ {2, ..
∏
ni} First, note that it must be the case that

i−1ȳi � ȳi: in words, the ith best element of ȳ must be weakly better than whatever is in the ith slot in
i−1ȳ. To see this, note that, if this were not the case, then it must be the case that i−1ȳi = ȳj for some

j < i. But, by the iterative procedure, ȳj must be in slot i−1ȳj 6=i−1 ȳi. Next, note that it must be the case

that i−1r(i) ≥ i. By the iterative procedure, for all j < i, i−1ȳj = ȳj 6= ȳi. Thus, as i−1r(i) is the location

of ȳi in i−1ȳj , it must be the case that i−1r(i) ≥ i.
Next, note that iy and i−1y differ only on the intervals [ i−1∏

ni
, i∏

ni
) and [

i−1r(i)−1∏
ni

,
i−1r(i)∏

ni
). Thus, we

can write the difference between W (iy) and W (i−1y) as (ψ(
∑i
j=1 p(

iyj)−ψ(
∑i−1
j=1 p(

iyj))) (u(i−1ȳi)−u(ȳi))

+(ψ(
∑r(i)
j=1 p(

iyj)− ψ(
∑r(i)−1
j=1 p(iyj)))(u(ȳi)− u(i−1ȳi)). This is equal to((

ψ

(
i∏
ni

)
− ψ

(
i− 1∏
ni

))
−
(
ψ

(
i−1r(i)∏

ni

)
− ψ

(
i−1r(i)− 1∏

ni

)))
(u(i−1ȳi)− u(ȳi)).

Now, as i−1ȳi � ȳi, it must be the case that u(i−1ȳi) ≤ u(ȳi), and so (u(i−1ȳi)−u(ȳi)) ≤ 0. Furthermore,

it must be the case that the term in the first parentheses is also weakly negative by the convexity of ψ. To
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see this, define the function ψ̄(x) = ψ
(
x+ i−1∏

ni

)
− ψ

(
i−1∏
ni

)
. This is a convex function with ψ̄ ≥ 0, and

so is subadditive. This means that we have ψ̄(
i−1r(i)∏

ni
− i−1∏

ni
) ≥ ψ̄(

i−1r(i)−1∏
ni

− i−1∏
ni

) +ψ̄((
i−1r(i)∏

ni
− i−1∏

ni
) −

(
i−1r(i)−1∏

ni
− i−1∏

ni
)). In turns, this is equal to ψ̄(

i−1r(i)−1∏
ni
− i−1∏

ni
) + ψ̄( 1∏

ni
). If we then substitute the original

function we get ψ(
i−1r(i)∏

ni
) ≥ ψ(

i−1r(i)−1∏
ni

) +ψ( i∏
ni

)-ψ( i−1∏
ni

). Thus, by iteration we have W (y) = W (ȳ) =

W (1ȳ) ≥W
(∏

ni ȳ(t)
)

= W (x) and we are done.

To extend the proof to enumerations with irrational p functions, take such a function y, and associated

x that is the rank order enumeration of y, whereby py(yi) is not guaranteed to be rational for all i ∈
1, . . . , N(y). Now note that py is a vector in RN(y). Note that we can construct a sequence of vectors

qi ∈ QN(y) such that
{
qi
}
→ py. Define the simple enumeration yi as the step function whereby yi(t) =

yn for t ∈ [
∑n−1
j=0 q

i
i−1,

∑n
j=0 q

i
i−1). The utility of the enumeration yi is given by W (yi) = ψ(qi1)u(y1) +∑N(y)

k=2

(
ψ(
∑k
j=0 q

i
i−1))− ψ(

∑k−1
j=0 q

i
i−1)

)
u(yk).

As qij → py(yj), and as ψ is continuous, then it must be the case that W (yi) → W (y). Similarly, if we

let xi be the rank enumeration of yi, then it must be the case that W (xi) → W ((x). Thus, if it were the

case that W (y) > W (x), then there would be some i such that W (yi) > W
(
xi
)
. But as yi is rational, this

contradicts the above result.

We now turn to prove that the Axiom 5 is satisfied. Again we will prove this only for degenerate acts –

the extension to the general case being trivial. Let p, q be two lotteries such that p ∼ q and r ∈
⊕ 1

2
p,q . Let

x be the enumeration of r, then there must be two enumerations zx and zy such that: 1) zi = 1
2z
x
i ⊕ 1

2z
y
i

for all i; 2) for every xi,
∑
i|zxi =xi

r(zi) = p(xi) and
∑
i|zyi =yi

r(zi) = p(yi). Now, the utility of r is given

by U(r) = minπ∈Π

∑
i(π(

∑i−1
j=0 r(zj)) − π(

∑i
j=0 r(zj)))u(zi) which is equal to minπ∈Π

∑
i(π(

∑i−1
j=0 r(zj)) −

π(
∑i
j=0 r(zj)))(

1
2 (u(zxi )+u(zyi ))), which is in turns equal to minπ∈Π[ 1

2 (
∑
i(π(

∑i−1
j=0 r(zj))−π(

∑i
j=0 r(zj)))u(zxi ))+

1
2 (
∑
i(π(

∑i−1
j=0 r(zj))−π(

∑i
j=0 r(zj)))u(zyi ))]. This must be larger or equal than 1

2 minπ∈Π(
∑
i(π(

∑i−1
j=0 r(zj))−

π(
∑i
j=0 r(zj)))u(zxi )) + 1

2 minπ∈Π(
∑
i(π(

∑i−1
j=0 r(zj))− π(

∑i
j=0 r(zj)))u(zy)).

Note that the enumerations are not in rank order, but, by Claim 29, reordering can only decrease the

utility of the enumeration by shuffling them into the rank order for every π ∈ Π. Let z̄x and z̄y be the rank

order enumerations of zx. We must then have that U(r) is larger or equal than 1
2 minπ∈Π(

∑
i(π(

∑i−1
j=0 r(zj))−

π(
∑i
j=0 r(zj)))u(zxi )) + 1

2 minπ∈Π(
∑
i(π(

∑i−1
j=0 r(zj)) − π(

∑i
j=0 r(zj)))u(zy)). This is larger or equal than

1
2 minπ∈Π(

∑
i(π(

∑i−1
j=0 r(zj))−π(

∑i
j=0 r(zj)))u(z̄xi ))+ 1

2 minπ∈Π(
∑
i(π(

∑i−1
j=0 r(zj))−π(

∑i
j=0 r(zj)))u(z̄yi )),

which is then equal to 1
2U(p) + 1

2U(q) as sought.

We now turn to Axiom 1 (FOSD). Let π be a continuous RDU functional. We know (e.g. (Wakker,

1994, Theorem 12,)) that it respects FOSD. Thus, suppose that p first order stochastically dominates q,

and let π∗ ∈ Π be the functional that minimizes the utility of p. We know that the utility of q under this

functional has to be lower than the utility of p, thus the utility of q (which is assessed under the functional

that minimazes the utility of q) is lower than that of p

Finally, Axiom 2 (Monotonicity) and Axiom 6 (Degenerate Independence) follow form standard argu-

ments, while Axiom 4 follows from Lemma 1.

Proof of Proposition 1

The proof of all the steps except the equivalence between (b).(1) and (b).(4) follows standard arguments and

it is therefore omitted. If Φ = {`} it is also trivial to see that Axiom 10 is satisfied. Assume now that Axiom

10 holds, and that �admits a MP-MD representation (u,Π,Φ). By Theorem 1 we know that it will also

admit a Minimal Multiple Priors and Multiple Convex RDU Representation (u,Π,Ψ). We now argue that
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we must have |Ψ| = 1 and that it contains only the identify function. Suppose this is not the case, and say

ψ ∈ Ψ where ψ is not the identity function. Since ψ must be convex and it must be a probability weighting

function (increasing, ψ(0) = 0, ψ(1) = 1), then we must also have that ψ(x) > x for all x ∈ (0, 1). But this

implies that we have RDUu,ψ(αx+ (1− α)y) < αu(x) + (1− α)u(y). Since ψ ∈ Ψ, we must then have that

for all x, y ∈ X such that u(x) 6= u(y), and for all α ∈ (0, 1), we must have αx + (1− α)y ≺ δαx⊕(1−α)y, in

direct violation of Axiom 10. We must therefore have that |Ψ| = 1 and that it contains only the identify

function, which in turn implies Φ = {`} as sought.

Proof of Proposition 2

Notice first of all that both �1 and �2 we can follow Steps from 1 to 4 of the proof of Theorem 1, and obtain

two preference relation �′1 and �′2 on F ′, both of which admit a representation as in Claim 13 of the form

(u′1, P
′
1) and (u′2, P

′
2). Notice, moreover, that we must have u′1 = u1 and u′2 = u2, and we must also have, by

construction, P ′1 = Π1 × Φ1 and P ′2 = Π2 × Φ2.

Suppose now that we have that �2 is more attracted to certainty than �1. Then, we must have

⊕�1
= ⊕�2

, which implies that u1 is a positive affine transformation of u2. But this means that u′1 is

a positive affine transformation of u′2, which means that, since both �′1 and �′2 are biseparable and have

essential events (as proved in the steps from the proof of Theorem 1), then by (Ghirardato and Marinacci,

2002, Proposition 6) �′1 and �′2 are cardinally symmetric. Moreover, since �2 is more attracted to certainty

than �1, it is easy to see that we must have that �′2 is more uncertainty averse than �′1 in the sense

of (Ghirardato and Marinacci, 2002, Definition 4). We can then apply (Ghirardato and Marinacci, 2002,

Theorem 17), and obtain that we must have P ′2 ⊇ P ′1. Since P ′1 = Π1 × Φ1 and P ′2 = Π2 × Φ2, this implies

Π2 ⊇ Π1 and Φ2 ⊇ Φ1.

Now suppose that we have Π2 ⊇ Π1, Φ2 ⊇ Φ1, and that u1 is a positive affine transformation of u2.

This first of all implies ⊕�1 = ⊕�2 . Moreover, it also implies that u′1 is a positive affine transformation of

u′2, and we must have P ′2 ⊇ P ′1. Again by (Ghirardato and Marinacci, 2002, Theorem 17) we then have that

�′2 is more uncertainty averse than �′1 in the sense of (Ghirardato and Marinacci, 2002, Definition 4), which

implies that �2 is more attracted to certainty than �1, as sought.

Proof of Theorem 2

The proof of the necessity of the axioms is trivial (in light of Theorem 1) and therefore left to the reader.

We now prove the sufficiency of the axioms. Since � satisfies axioms 1-6 we know it admits a Multiple

Priors - Multiple Convex RDU representation (u,Π,Ψ). Define V : F → R as in the definition of a

Multiple Priors and Multiple Convex Rank Dependent Representation. For any g ∈ F , construct the

set Πg := {π ∈ ∆(Ω) : gπ ∼ g and fπ � f for all f ∈ F}. By Axiom 11, Πg 6= ∅ for all g ∈ F . Now define

Π′ := ∪g∈FΠg. Notice the following three properties of the set Π′. First, Π′ 6= ∅; second, for all f ∈ F we

must have fπ � f for all π ∈ Π′; third for all f ∈ F there exists π ∈ Π′ such that fπ ∼ f . Define Π̂ as the

closed convex hull of Π′.

Now consider any f ∈ F , and any πf ∈ Π̂ such that fπf ∼ f . This means that we have, for any

enumeration of the states in Ω such that f(ωi−1) � f(ωi) for i = 2, . . . , |supp(p)|, we have V (f) = V (fπf ) =

minψ∈Ψ ψ(πf (ω1))U(f(ω1)) +
∑n
i=2

[
ψ(
∑i
j=1 πf (ωj)) − ψ(

∑i−1
j=1 πf (ωj))

]
U(f(ωi)). In turns, this means

that we have V (f) = V (fπf ) = min
ψ∈Ψ

RDUu,ψ(fπf ). For simplicity of notation, define H : ∆(Ω) → R as

H(π) := min
ψ∈Ψ

RDUu,ψ(fπ). Notice that we have that H(π) = V (fπ) by construction. Moreover, notice that

H is continuous by construction as well. We now prove V (f) ≤ min
π∈Π̂

H(π). We proceed in steps. First of
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all, notice that V (f) ≤ inf
π∈Π′

H(π).62 This is the case because, by the properties of Π′ discussed above, we

must have fπ � f for all π ∈ Π′. Now notice that V (f) ≤ min
π∈Π̄′

H(π), where by Π̄′ denotes the closure

of Π′. To see why, say by means of contradiction that there exists π ∈ Π̄′ such that H(π′) < V (f). Since

we know that V (f) ≤ infπ∈Π′ H(π), however, this means that there exists a sequence (πn) in Π′ such that

πn → π′, V (f) ≤ H(πn), but H(π′) < V (f). But this clearly contradicts the continuity of H. This proves

that V (f) ≤ minπ∈Π̄′ H(π).

Notice now that for any π, π ∈ ∆(Ω) and λ ∈ (0, 1), if V (f) ≤ H(π) and V (f) ≤ H(π′) then V (f) ≤
H(λπ+(1−λ)π′). To see why, notice that we have V (f) ≤ λ(H(π))+(1−λ)(H(π′)) ≤ min

ψ∈Ψ
(λRDUu,ψ(fπ)+

(1− λ)RDUu,ψ(fπ
′
)), where the last inequality is due to the fact that we are taking the min only once. In

turns, by convexity of ψ the latter is smaller or equal to min
ψ∈Ψ

RDUu,ψ(fλπ+(1−λ)π′) = H(λπ + (1 − λ)π′).

This, together with our previous results, imply V (f) ≤ minπ∈Π̂ H(π) as sought. At the same time, we

know that V (f) ≥ H(πf ) where πf ∈ Π̂, which means that we have V (f) ≥ minπ∈Π̂ H(π), and hence

V (f) = minπ∈Π̂ H(π) as sought.
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