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Abstract

The ”General-Self-Control-Preference” model introduced by Noor and Takeoka (2010) allows to take
into account non linear costs of Self-Control. In this paper we extend this theory to situations in which
a decision-maker faces ambiguity. We focus on the fact that lack of information is a potential source of
temptation. Indeed lack of information doesn’t allow the decision-maker to put a probability measure on
uncertain events. Our basic hypothesis is that in an ambiguous situation, individuals are not confident
enough about their beliefs and could therefore be tempted to use other beliefs to evaluate the alterna-
tives in the second period. We study a two period model where ex ante dominated choice may tempt the
decision-maker in the second period. Individuals have preferences over sets of alternatives that represent
second period choices. We provide a Choice-Theoretic model where the ex ante belief is a probability
measure whereas ex post belief is a Choquet-capacity, allowing to take into account individual attitudes
towards ambiguity in the second period.
KEYWORDS: Temptation, Self-control, Ambiguity, Choquet-Expected-Utility, Comonotonic-Temptation-
Independence.
JEL CLASSIFICATION: D81.

1 Introduction

In most economic situations, individuals take their decisions in an ambiguous environment. As shown

by the Ellsberg’s Paradox, Savage’s theory cannot model preferences with an aversion towards ambiguity.

During the last two decades, the decision theorists have provided many models to rationalize behaviors

under ambiguity. Loosely speaking, the main explanation from these theories is that the lack of objective

information prevents a precise measurement of the likelihood of an event. However, while beliefs are based on

an imprecise measure, they are stable across time. We provide an axiomatic foundation for the preferences

of the agents with unstable beliefs under Ambiguity. To achieve this, we combine the General-Self-Control-

Preference and the Choquet-Expected-Utility models introduced by Noor-Takeoka (2010) and Schmeidler

(1989). The model studied in this paper belongs to the class of ”time-varying-beliefs” models introduced by

Epstein (2006) and Epstein-Kopylov (2007).

As noted by Epstein and Kopylov (2007), aversion to ambiguity in the standard model is static and doesn’t

capture the notion of a belief that can change over time. Yet, an ambiguous context suggests that individuals
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could doubt the reliability of their beliefs and so could not have a definitive opinion upon the realization of

the states of the world. To take into account the variation of beliefs even in the absence of new information,

Epstein and Kopylov (2007) combine the model of ambiguity with the model of temptation of Gul and

Pesendorfer (2001, henceforth GP). In the GP model, the choice is not determined by an unique preference

ordering: the choices are the aggregated result of two conflicting orderings: a temptation preference that

captures the agent’s desires, and a normative preference1 that captures his view of what choices he should

make. This duality is also presents for choices under uncertainty. Since there are not enough objective

information to describe likelihoods states of the world, we can think that individuals are not influenced

solely by their rational beliefs to make a choice. Indeed the force of the emotions such as fear, anxiety, or

excitation cannot be completely eliminated by the beliefs based upon an imprecise measure. Hence, it seems

that beliefs are constituted by two conflicting components: a part analyzing the uncertainty of the situation

and the other part representing a more immediate perception of reality. The first part is the normative

component of beliefs while the second part can be understood as an emotional component.

We must still define what we mean by normative beliefs. As shown by Noor (2011), the temporal distance

between the time of choice and the time of the consequences of this choice is fundamental in order to separate

the normative preference and temptation preferences. So, under ambiguity the normative belief could be

revealed when an agent is some time away from the consequences of his choice2. Inversely the temporal

proximity increases the weight of tempting beliefs in the decision-making.

In this paper we adopt the theoretical framework defined in Epstein and Kopylov (2007): uncertainty is

described by a finite states space S, and the decision problem occurs in three steps. A menu of Anscombe-

Aumann acts is chosen in the first step. In the second step the agent chooses an act in the menu selected in

the initial step. In the third step, a state of the world is realized and payoffs are received.

Now, we can provide an answer to the following legitimate question: why individuals tend to modify their

beliefs between the ex-ante and the ex post choice, while the uncertainty upon the situation does not change?

This phenomenon can be interpreted in the following way: in an ambiguous situation, a decision-maker is

not confident enough about his belief and could therefore be tempted to use other beliefs in order to evaluate

the alternatives in the second period. For instance, a well know stylized fact in psychology is that individuals

tend to lose confidence in their prospects when they approach the ”moment of truth” (see e.g Gilovich and

al. 1993). We focus on the fact that lack of information is a potential source of temptation.

Although our model has an undeniable affiliation with the model of Epstein and Kopylov, we differ on

two key points: firstly, we provide an different modeling of commitment under ambiguity. Secondly, in our

model, the costs of self-controls are not necessarily linear.

1For a behavioral fundation of this interpretation see Noor 2011.
2We don’t provide a behavioral foundation of this interpretation in our formal analyse, however most experimental evidences

confirm this interpretation (see e.g Armor and Taylor (2002) and Trope and Liberman (2003))
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1) Commitment

We provide an axiomatic foundation to preference for commitment under ambiguity: the tempting preferences

is represented by the Choquet-Expected-Utility Model (Henceforth CEU) allowing to take into account

individual attitudes towards ambiguity in the second period. Formally: let f and g two AA acts such that f

is prefered ex-ante to g, then g is tempting for f if and only if CEU(g) > CEU(f). An interesting particular

case of CEU-temptation ranking is equal to the Hurwicz criterion’s:

CEU(f) = αmin
s∈S

u(f(s)) + (1− α) max
s∈S

u(f(s))

where α ∈ [0, 1]. In other words, the temptation-ranking puts focus uniquely on the extreme outcomes,

suggesting that the agent has in mind an over reaction to uncertainty during the ex-post choice.

2) Self-Control Cost

In our model, the cost of Self-Control is not necessarily linear. This assumption allows to capture a broader

pattern of preferences during the ex-post choice, namely what act chooses an agent in the menu selected

ex-ante. For instance, as shown by Noor and Takeoka (2010), non linear Self-Control explains some form

of Menu-Dependence. Under ambiguous context, this assumption seems relevant. Indeed the agents could

have a reaction regarding ambiguity which depends of the available choices.

The article starts with the description of the Setup in section 2. In Section 3 we dress the design of the

value of the menus and we propose and discuss an axiomatic foundation for the choice-theoretic model in

section 3.2. In section 4 we announce the representation results. We conclude this paper in section 5. The

proof are relayed in appendix.

2 Setup

Consider a finite set S of states of nature, 2S is the set of subsets of S called events, and Y = 4(X) is the

set of probability measures on the Borel σ-algebra of X, where X is a compact metric space of outcomes.

We assume that Y is embedded with the weak convergence topology, hence Y is compact and metrizable3.

We denote by F the set of all Ascombe-Aumann (AA) acts: the set of all finite valued 2S-measurable

functions f : S → Y . Given any y ∈ Y , with the usual abuse of notation denote y ∈ F , the constant

act such that y(s) = y for all s ∈ S, thus we identify Y with the subset of constant acts in F . For every

f, g ∈ F and α ∈ [0, 1] as usual we denote by αf + (1 − α)g (fαg for short) the act in F , which yields

αf(s) + (1−α)g(s) ∈ Y , for every s ∈ S. Hence we can derive the topology of F from the Cartesian product

of metric spaces YS ,

d(f, g) = sup
s∈S

dY (f(s), g(s)) (1)

3See Aliprantis and Border 2006, Theorem 15.11
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with f, g ∈ F and where dY (f(s), g(s)) is the metric generated by the weak convergence topology on Y.

Since Y is a compact space, the Tychonoff theorem implies that F is also a compact space. The objects of

our analyze are the subsets of F . Let M be the set of nonempty compact subsets of F . We endow M with

the topology generated by the Haussdorf metric

dM(A,B) := max

{
sup
f∈A

inf
g∈B

d(f, g), sup
g∈B

inf
f∈A

d(f, g)

}
. (2)

Futhermore since F is a compact space with the metric d, M is also a compact space with the metric dM.4

3 Model

3.1 Utility

The General-Self-Control-Preference model accommodates temptation with not necessarily linear Self-Control

costs by keeping Set-Betweenness. The main motivation of this weakening is to capture uphill self-control

retaining the essential idea of the GP model: in situations where there exists tempting alternatives an

individual could deviate of her ”normative preference”. The agent want to resist to temptation must to

use her self-control, but this resistance implies a frustration which is represented by an opportunity costs.

Therefore if the agent maintains her initial choice, the utility of the best alternative is decreased by the

cost of self-control. If the frustration due to the temptation resistance is too strong, the agent is constrain

to cede to temptation and chooses a dominated alternative. In order to avoid costs of self-control caused

by temptation, the agent chooses during first period, a menu whitout tempting alternatives. This explains

a preference for commitment in the ex-ante choice. Hence the utility of menu A is write in GP model as

follows

U(A) = max
f∈A
{u(f)− (max

g∈A
v(g)− v(f))}

where u is a von Neuman utility representing the ”normative preference” and v is a von Neuman utility

representing the temptation ranking. The cost of self-control is evaluated according to the most tempting

alternative in the menu A: maxg∈A v(g) − v(f). Noor and Takeoka allow to keep this interpretation about

the preference commitment, but in their theory the value of a menu A is represented by an ”indirect utility”

function:

U(A) = max
f∈A
{u(f)− c(f,max

g∈A
v(g))}

where c(f,maxg∈A v(g)) is strictly increasing and positive function in its second argument. Moreover the

function c satisfied two minimal features of Self-Control cost:

- a) c (f, v(g)) > 0⇒ v(g) > v(f). This means that the self- control cost is positive only when self-control

is exerted.

4See Kopylov (2009)
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- b) u(f) > u(g) and v(g) > v(f) ⇒ c (f, v(g)) > 0. This means that the self-control cost of resisting

temptation is strictly positive.

To better capture the impact of ambiguity on ex-post decisions, we represent Temptation-utility with

Choquet-Expected-Utility criterion. Although it is most often as modeling non neutrality ambiguity, the

Choquet-Expected-Utility (CEU) is sometimes interpreted in terms of over or under reaction to uncertainty,

since the agent chooses an action with a subjective perception of uncertainty represented by a capacity. As

well know, a capacity is a normalized monotone set function. Since S is finite, CEU can be write as:∫
S

u(f)dυ =

m∑
j=1

(u(xj)− u(xj+1)) υ

(
j⋃
i

Ei

)
(3)

for all acts f ∈ F such that u(x1) > · · · > u(xm) > 0.

In this paper we extend the Noor and Takeoka model’s of temptation to situations where a Decision Maker

is facing ambiguity. Namely in our model the value of menu of Anscombe-Aumann acts A is formulated as

follows:

U(A) = max
f∈A
{EU(f)− c(f,max

g∈A
CEU(·))}

where EU(·) is the classical SEU-Model, and the function c sastified a) and b). We can remark that both

subjective and objective probabilities are present in the model but they are treated differently: for simplicity

we assume that objective lotteries are not a source of temptation. Therefore the function of Self-Control

cost admits a supplementary property:

- c) {f(s)} ∼ {f ′(s)} and {g(s)} ∼ {g′(s)} for all s ∈ S ⇒ c (f, CEU(g)) = c (f ′, CEU(g′)).

This simply says that if f, f ′ are equivalents from lotteries point of view, and identically for g, g′, then there

is not additionally cost of Self-Control. To resume, our model of utility has the form:

Definition 1 (Choquet General Self Control Preference). We say that < has Choquet General Self-Control

Preference if A < B ⇔W (A) >W (B) where W :M→ R is defining in the following way

W (A) = max
f∈A

{∑
s∈S

µ(s)u(f(s))− c
(
f,max

g∈A

∫
S

u(g(s))dυ(s)

)}
(4)

where µ : 2S → [0, 1] is a probability, υ : 2S → [0, 1] is a capacity, u : Y → R is a continuous function

and c : F × CEU (F) → R+ is a continuous function that is weakly increasing in its second argument and

satisfies a), b) and c).

3.2 Axioms

We suppose that the DM is sophisticated, namely the agent understands when choosing a menu at the ex

post stage, she will choose an act from that menu, moreover, she anticipates that the passage of time will

have an effect on her belief. Hence the menu A is chosen according to < on M in ex-ante. The first axiom
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is standard:

A1 (Weak Order): < on M is complete, transitive and non-trivial.

A2 (Continuity): For each A ∈M, {B ∈M : B < A} and {B ∈M : A < B} are closed sets.

A3 (Commitment-Independence): For all f, g, h ∈ F , and for all α ∈ (0, 1),

{f} < {g} ⇔ {αf + (1− α)h} < {αg + (1− α)h}

A2 provides the continuity of preferences in the classical sense. Axioms A1-A3 imply by a standard

result an Expected Utility representation over singletons, in other words the DM is ambiguity neutral for

singletons.

A4 (Set-Betweenness): For all A,B ∈M, A < B ⇒ A < A ∪B < B

The interpretation of this axiom is standard when it is assumed that the DM is sophisticated. For instance

if the menu A is preferred to menu B, then A � A ∪ B reveals that B contains some acts which are source

of temptation. In this case, the commitment in ex-ante period allows to avoid either the cost of self-control

or either to cede at the tempting alternatives. Following the above interpretation (suggest e.g by Noor and

Takeoka) for the particular case in which A = {f} and B = {g}, we can infer if g is a tempting act when

f is the best choice with respect to the normative preference. Since the ranking of singletons {f} < {g}

reveals the normative preference, the ranking {f} � {f, g} suggests that the presence of g could lead the

decision maker to deviate of her optimal choice. Inversely {f} ∼ {f, g} suggests that g doesn’t represents an

tempting alternative for the DM. Noor and Takeoka (2010) show that in this context, a supplementary axiom

must be imposed: there is no temptation-reversal when two acts are mixed with a common act. During the

ex-ante choice, if the DM reveals that g tempts f , then αg + (1 − α)h should be also an alternative which

tempts αf + (1− α)h. More formally:

Definition 2 (Temptation-Independence). For all acts f, g, h ∈ F , if {f} � {g} then for any α ∈ (0, 1), (i)

and (ii) holds:

(i) {f} � {f, g} ⇒ {αf + (1− α)h} � {αf + (1− α)h, αg + (1− α)h}

(ii) {f} ∼ {f, g} ⇒ {αf + (1− α)h} ∼ {αf + (1− α)h, αg + (1− α)h}.

This assumption needs more discussion. The main goal of our model is to emphasize the link between

ambiguity perception and time. However, Temptation-Independence is not appealing under ambiguity. To

illustrate how the anticipation of ex-post ambiguous-belief can lead to a violation of Temptation Indepen-

dence, we focus on two example.

EXAMPLE 1: ex-post Optimism.

Suppose the DM anticipates that she will attracted by ambiguity when she chooses an act in the menu
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selected ex-ante. For concreteness, imagine that the DM is face to an Ellsberg urn with 30 red balls and

60 green or yellows balls. There is two bets: f = (100, R; 0, G; 0, Y ) and g = (0, R; 110, G; 0, Y ). She must

choose ex-ante between {f}, {g} or {f, g}. If {f} � {g}, we can conclude that f is better than g with

respect to her normative belief’s. Clearly in our example f is an unambiguous act whereas g is ambiguous

act. So, the expected payoffs of f is based on precise probability, while the expected payoffs of g are by

definition unknown. Since the DM is attracted by ambiguity in the second period, it’s seems plausible that

{f} � {f, g}. Because the payoff of g(G) is more important than f(R) , she could be tempted to overestimate

the probability of the event G, and to deviate of her best choice in the second period if the menu {f, g} is

chosen during first period. In order to cancel the effect of temptation she commits in her best choice {f}.

Now suppose the two following bets: f ′ = (50, R; 5, G; 60, Y ) and g′ = (0, R; 60, G; 60, Y ). We can remark

that f ′ = 1
2f + 1

2h and g′ = 1
2g + 1

2h, with h = (0, R; 10, G; 120, Y ). From Singleton-Independence we have

{f ′} � {g′}, but the dominated bets g′ is not ambiguous. Therefore the commitment towards {f ′} ex-ante

is superfluous and the following ranking should be observed: {f ′} ∼ {f ′, g′}.♦

EXAMPLE 2: ex-post Pessimism.

Suppose the DM anticipates that she will averse towards ambiguity when she chooses an act in the menu

selected ex-ante. There is two bets: f = (100, R; 0, G; 0, Y ) and g = (0, R; 0, G; 110, Y ). As in Example 1, she

must choose ex-ante between {f}, {g} or {f, g}. If {g} � {f}, we can conclude that g is better than f with

respect to her normative belief’s. Clearly in our example f is an unambiguous act whereas g is ambiguous

act. Since the DM is averse towards ambiguity in the second period, it’s seems plausible that {g} � {g, f}:

thought the payoff of g(Y ) is more important than f(R), she could be tempted to underestimate the proba-

bility of the event Y , leading the DM to choose f in the second period in order to avoid the ambiguous act.

Now suppose the two following bets: f ′ = (50, R; 60, G; 5, Y ) and g′ = (0, R; 60, G; 60, Y ). We can remark

that f ′ = 1
2f + 1

2h and g′ = 1
2g + 1

2h, with h = (0, R; 120, G; 10, Y ). From Singleton-Independence we have

{g′} � {f ′}, but the best choice g′ is not ambiguous. Therefore f ′ is not attractive for the DM, and the

commitment towards {g′} ex-ante is not necessarly. In other word we get {g′} ∼ {g′, f ′}.♦

In Example 1 and 2, temptation reversal arises because h is not comonotone to f and g. To better capture

the impact of ex-post ambiguity on decisions, it’s seems more realistic to restrict Temptation-Independence

for comonotonic acts.5 More formally:

A5 (Comonotonic-Temptation-Independence): If f, g, h ∈ F are pairwise comonotonic and {f} � {g}, then

Temptation-Independence holds.

A5 highly suggests that temptation can be represented by an CEU criterion. By analogy with respect

to a classical preference relation, it appears that we can interpret temptation as a binary relation on F :

5Two acts f and g are say comonotonics if and only if (f(s)− f(s′))(g(s)− g(s′)) > 0 for all s, s′ ∈ S.
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Definition 3 (Temptation relation). Let T and NT two binary relations on F . We say that for all f, g ∈ F

- gTf (g tempts f) if {f} � {f, g} < {g}

- gNTf (g no tempts f) if {f} ∼ {f, g} � {g}.

Nevertheless, we can note that temptation relation is not complete: if {f} ∼ {g} by definition we cannot

say if g tempts or doesn’t tempts f . Moreover, A4 doesn’t implies transitivity:

gTf and hTg ; hTf

In fact, if gTf and hTg, then {f} � {h}, therefore from A4 we get

{f} � {f, h} < {h} or {f} ∼ {f, h} � {h}.

In other words if g tempts f and h tempts g, then necessarily {f} < {f, h}. Thus it’s difficult to draw an

analogy between the temptation relation and a classical preference relation. In the absence of the transitivity

property on temptation relation, Noor and Takeoka strengthens Temptation-Independence in order to achieve

a binary relation more structured.

Definition 4 (Temptation-Convexity). For f, g, h ∈ F if {f} � {g}, {g′}, then for any α ∈ [0, 1], (i) and

(ii) holds:

(i) {f} � {f, g} and {f} � {f, g′} ⇒ {f} � {f, αg + (1− α)g′}

(ii) {f} ∼ {f, g} and {f} ∼ {f, g′} ⇒ {f} ∼ {f, αg + (1− α)g′}.

This axiom simply says that if g and g′ tempt f , then any mixture of g and g′ tempts f . A stronger

form of this property is central to capture temptation ranking: it can be formulated as follows:

Definition 5 (Strong-Temptation-Convexity). For f, f ′, g, g′ ∈ F if {f} � {g}, {f ′} � {g′} then for any

α ∈ (0, 1) (i) and (ii) holds:

(i) {f} � {f, g} and {f ′} � {f ′, g′} ⇒ {αf + (1− α)f ′} � {αf + (1− α)f ′, αg + (1− α)g′}.

(ii) {f} ∼ {f, g} and {f ′} ∼ {f ′, g′} ⇒ {αf + (1− α)f ′} ∼ {αf + (1− α)f ′, αg + (1− α)g′}.

Noor and Takeoka (2011) show that if Temptation-Independence holds then Temptation-Convexity and

Strong-Temptation-Convexity are in fact equivalent. According to the weakening of Temptation-Independence

we must modifying also Temptation-Convexity and Strong-Temptation-Convexity for they be adapted to an

ambiguous context. More precisely, we define an comonotonic cone by the following set:

Cρ :=

{
f ∈ F : f(sρ(1)) 4 f(sρ(2)) 4 . . . 4 f(sρ(S))

}
where ρ is any permutation of S. We maintain Temptation-Convexity only if f, g, g′ lie in the same comono-

tonic cone, and Strong-Temptation-Convexity holds only if
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- f and f ′ are comonotonic

- g and g′ are comonotonic

- f, f ′ doesn’t lie to the same comonotonic cone that g and g′.

However, with our weakening of Temptation-Independence and of Temptation-Convexity we cannot derive

the Strong-Temptation-Convexity axiom as in the paper of Noor and Takeoka. Hence we must postulate the

following axiom:

A6 (Comonotonic-Temptation-Convexity): Let f, f ′, g, g′ ∈ F .

(i) If {f} � {g}, {g′} and f, g, g′ ∈ Cρ, then Temptation-Convexity holds

(ii) Let {f} � {g}, {f ′} � {g′} such that f, f ′ ∈ Cρ and g, g′ ∈ Cρ̂, if and ρ 6= ρ̂, then Strong-Temptation-

Convexity holds.

From a Behavioral point of view, A6 is not very different to A5. We can interpreted A6 as follows: in the

classical model of temptation, if Independence holds for any menus, namely

A < B ⇒ αA+ (1− α)C < αB + (1− α)C

then Kopylov (2009.b)6 show that A ∼ co(A), where co(·) is the convex hull of any set. This means that a

menu is indifferent with respect to it properly randomization. In a ambiguous context, we can understood

A6 as a suitably restriction of randomization to comonotone acts: there is no temptation reversal if the

randomization is suitably effected according to (i) and (ii) of A6.

The next axiom means that subjective acts and lotteries are treated differently: while the agent chooses

new beliefs ex post about her subjective uncertainty, she does not modify her preference on lotteries during

the three period. We consider lotteries as an component of taste and for simplicity we suppose that taste

are constant across time. This leads to the following axioms:

A7 (Monotonic-Strategic-Rationality): If f, g ∈ F and f(s) < g(s) for all s ∈ S then {f} ∼ {f, g} < {g}.

Moreover if for all i = 1, . . . , n <∞, fi(s) ∼ f ′i(s) for all s ∈ S, then
⋃n
i=1{fi} ∼

⋃n
i=1{f ′i}.

If the evaluation of a lottery does not depend on the state, then a dominating act should be preferred

under commitment. Similarly, if f dominates g, we would not expect f to be tempted by g. The second part

of axiom say that if {f(s)} ∼ {f ′(s)}, {g(s)} ∼ {g′(s)} for all s ∈ S, then {f, g} ∼ {f ′, g′}. This property

holds for menus A and B that have same number of acts.

A8 (Temptation-Aversion): For any f, g, h ∈ F if {f} � {f, g} � {g} then if {h} � {h, g} or {g} ∼ {g, h} �

{h} implies that {f, h} < {f, g}.
6See also Dekel and al (2001)
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This axiom means that if g is more tempting than h, then agents prefer the menu with the less tempting

alterntive: {f, h} < {f, g}.

4 Representation Results

4.1 Capture commitment under Ambiguity

In this section, we introduce the representation of the temptation relation by an Choquet-Expected-Utility.

Theorem 1. If < on M satisfies A1-A4 and A7 then (i) and (ii) are equivalents:

(i) < satisfies A5 and A6

(ii) There exists a unique capacity υ : 2S → [0, 1] and I : F → R such that if {f} � {g} then

{f} � {f, g} ⇔ I(g) =

∫
S

u(g)dυ > I(f) =

∫
S

u(f)dυ (5)

where u : Y → R is increasing, continuous, mixture linear and unique up to affine transformation.

Proof. See Appendix 3.2.

Because we have assumed that the individual is neutral towards ambiguity for singleton in the ex ante

stage, the preference for commitment or equivalently anticipation of temptation in the ex post stage can be

interpreted as a increasing sensitivity towards ambiguity when the third stage approaches. We specify the

temptation utility as follow:

Definition 6. Let f, g ∈ F , we say that f and g are correlated on Extreme outcomes (CEO) if C(f) = C(g)

and C(f) = C(g), where

C(f) := {s ∈ S : {f(s′)} < {f(s)}, ∀s′ ∈ S}

C(f) := {s ∈ S : {f(s′)} 4 {f(s)}, ∀s′ ∈ S}.

Definition 7. We say that υ is Hurwicz capacity if υ(∅) = 0, υ(S) = 1 and for any E ⊂ S, υ(E) = α.

A5’ (H-Temptation): For f, g ∈ F , if f, g, h are CEO then

(i) {f} � {f, g} ⇔ {αf + (1− α)h} � {αf + (1− α)h, αg + (1− α)h}

(ii) {f} ∼ {f, g} ⇔ {αf + (1− α)h} ∼ {αf + (1− α)h, αg + (1− α)h}

Proposition 1. If < on M satisfies A1-A7 then (i) and (ii) are equivalents:

(i) < satisfies A5’

(ii) υ is a Hurwicz capacity
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Proof. See Appendix.

A5” (Ambiguity aversion-Temptation): For f, g, h ∈ F if {f} ∼ {f, g} and {f} ∼ {f, h} then for any

α ∈ (0, 1), {f} < {f, αg + (1− α)h}.

Proposition 2. If < on M satisfies A1-A7 then (i) and (ii) are equivalents:

(i) < satisfies A5”

(ii) υ is a convex capacity

Proof. See Appendix.

A5”’ (Ambiguity Loving-Temptation): For f, g, h ∈ F , if {f} � {f, g} and {f} � {f, h} then for any

α ∈ (0, 1), {f} < {f, αf + (1− α)g}.

Proposition 3. If < on M satisfies A1-A7 then (i) and (ii) are equivalents:

(i) < satisfies A5”’

(ii) υ is a concave capacity

Proof. See Appendix.

A brief outline of the proof of theorem 1:

We adopt a geometrical proof for this theorem. Since S is finite we use the method of piecewise linear

integral on comonotonic cone to built an Choquet integral: firstly we represent the temptation relation by

a linear form on all comonotonic cones, secondly the representation are extended entire domain. In order

to represent the temptation relation on each comonotonic cone, we use the Hyperplan Theorem. Hence

we identify TF on F to TB(u) on B(u), where B(u) is the set of all function ϕ : S → R such that

u(y∗) 6 ϕ(s) 6 u(y∗)7. Clearly, B(u) generates RS . Therefore we can apply the Hyperplan Separation

Theorem, because B(u) is a subset of vectorial space. Next, the proof take places in three stages:

• Applying the Hyperplan Separation to each comonotonic cone denoted Cρ where ρ is a permutation of

S, we prove the existence of probability vector representing the temptation relation for all act. The proof of

the unicity of the probability is slightly different as usual. Firstly we show that for any act f in Cρ and g

in Cρ, there exists a unique probability such that {f} � {f, g} if and only if Eπρf (g) > Eπρf (f). Secondly we

show that for any f, g ∈ Cρ, we have necessarly πρf = πρg . Hence for each Cρ, the temptation-relation is well

represented by

{f} � {f, g} ⇔ Eπρ(g) > Eπρ(f),

7y∗ and y∗ are the worst and the best loteries respectively.
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where f, g ∈ Cρ.

• In the classical representation of comonotone preferences, since any constant act lies in all comonotonic

cones, with a standard argument of transitivity, we can easily link all the comonotone cones between them,

and obtain an Choquet Integral. However, in our case, the transitivity of temptation relation doesn’t holds,

for instance if f ∈ Cρ and g, h ∈ Cρ̂, then gTf and hTg ; hTf . Hence we must built an Choquet Integral

without transitivity. We argue as follow: let Cρ and Cρ̂ and fix any f ∈ Cρ. We define the two following

sets:

{g ∈ Cρ̂ : gTf or fNTg} and {g ∈ Cρ̂ : gNTf or fTg}.

From A6 we show that this sets are convex and disjoint. So we can apply the Hyperplan Theorem, an deduce

the existence of probability vector γρ̂f which represents the temptation relation at any f ∈ Cρ, namely there

exists a ∈ R such that:

{f} � {f, g} ⇔ Eγρ̂f
(g) > a,

where g ∈ Cρ̂. By a similar proof of stage 1 we show the unicity of the probability vector, namely γρ̂f = γρ̂f ′

for all f, f ′ ∈ Cρ. Next we show that a = Eπρ(f). Hence we get

{f} � {f, g} ⇔ Eγρ̂(g) > Eπρ(f).

• Now, we must show that

{f} � {f, g} ⇔ Eπρ̂(g) > Eπρ(f). (6)

The mainly argument is to show that we have necessarily πρ̂ = γρ̂, and we obtain the desired result. The

building of the Choquet integral with (6) derive from standard arguments (see e.g Ryan 2009; Chateauneuf,

Kast and Lapied 2001).♦

4.2 Representation Theorem

Our main result is that the axioms on menus characterize the functional form described in Section 3.1. We

say < is non degenerate if there exists f, g ∈ F such that {f} � {f, g} � {g}.

Theorem 2. The binary relation < on M(F) is represented by a Choquet-General-Self-Control-Preference

if and only if < satisfies A1-A8. Suppose that (u, π, υ, c) and (u′, π′, υ′, c′) are both representation of a non

degenerate Choquet-General-Self-Control. Then there exists α > 0 and β ∈ R such that u′ = αu+β, µ = µ′,

and υ = υ′. Moreover, c′(f, l) = αc(f, (l − β)/α) on the set:{
(f, l)

∣∣∣∣ ∫
S

u′(f)dυ > l or {f} � {f, g} � {g} for some g with

∫
S

u′(g)dυ = l

}
.

Proof. See appendix 3.3
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While the Choquet-General-Self-Control-Preference is a representation for an ex-ante preference over

menus, it suggests that ex-post choice is given by the choice correspondance defined by

C(A) := arg max
f∈A

{∑
s∈S

µ(s)u(f(s))− c
(
f,max

g∈A

∫
S

u(g(s))dυ(s)

)}
.

This correspondence explains the deviation of standard SEU model, when the agent chooses an act in the

menu A. An interesting particular case is when the function is represented by

c(f,max
g∈A

CEU(g)) = φ(ω)

where ω = maxg∈A CEU(g) − CEU(f), φ : [0, ω∗] → R+
8 is increasing, continuous and convex. In this

simply form, when in some menu ω exceeds a fixed value, the Self-Control costs increase rapidly.

5 Concluding remarks

To conclude, we describe some variation of the above model.

Ambiguity sensitivity in ex-ante stage

We can think that to represent the singletons-preference by a SEU is not very realistic. Indeed why don’t

the agents have Ellsberg preferences when the consequences of choice are delayed? We can easily replace the

singleton-independence by

{f} � {g} ⇔ α{f}+ (1− α)h � α{g}+ (1− α){h}

when f, g and h are pairwise comonotonic. Hence we should get:

W (A) = max
f∈A

{∫
S

u(f)dυ − c
(
f,max

f∈A

∫
S

u(g(s))dρ

)}
where υ, ρ are capacities. We could argue that ex-ante, the agents have a small sensitivity to ambiguity and

a huge sensitivity to ambiguity during the ex-post choice. A generalization to a broader class of criterion,

such as the MEU for singletons is, in our opinion also possible.

Random-Strotz-Utility under Ambiguity

Chatterjee and Krishna (2008) have axiomatized under risk the following model:

U(A) := αmax
f∈A

u(f) + (1− α) max
g∗∈Bv(A)

u(g∗)

where Bv(A) := {f ∈ A | f ∈ arg maxg∈A v(·)}. The theorem of representation of temptation in Section

4.1 is independent of the General-Self-Control model and could be used to model a Random-Strotz-Utility

8ω∗ = max f ∈ FCEU −minf∈F CEU
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under ambiguity, where the temptation-utility is a CEU criterion and not a classical von Neuman-utility.

Appendix 1: Related Materials

1.1 Hyperplan separation theorem

Theorem (Aliprentis and Border, p.276). In a finite dimensional vector space, any two disjoint convex sets

can be properly separated by a nonzero linear functional.

Theorem (Aliprentis and Border, p.279). In a finite dimensional vector space two nonempty convex sets

can be properly separated if and only if their relative interiors are disjoints.

Theorem (Aliprentis and Border, p.279). Let C be a nonempty convex subset of a finite dimensional Haus-

dorff space and let x belong to C. Then there is a linear functional properly supporting C at x if and only if

x /∈ ri (C).

1.2 Hausdorff metric

Recall thatM(F) is the set of compact menus therefore we can write the Hausdorrf metric in the following

way

dM(A,B) := max

{
max
x∈B

d(x,A),max
x∈A

d(x,B)

}
(7)

where d(f,A) = ming∈A d(f, g). Denote by Nε(g) and Nε({f, g}) the ε-neighborhood of g and {f, g} respec-

tively where ε > 0.

Claim 1. If limn→∞ gn = g, then {f, gn} → {f, g} when n→∞.

Proof: We say that An → A in Hausdorff metric if dM(An, A) → 0 when n → ∞. Pick any binary menus

in M(F), say {f, g}. Hence we have to show that if limn→∞ gn = g then dM({f, g}}, {f, gn}) → 0 when

n→∞. We have for all n

maxx∈{f,gn} d(x, {f, g}) = max{min{d(f, f), d(f, g)},min{d(gn, g), d(gn, f)}}.

By definition min{d(f, f), d(f, g)} = 0 and min{d(gn, f), d(gn, g)} → 0 when n → ∞. Therefore when

n→∞ we get maxx∈{f,gn} d(x, {f, g})→ 0. The same result holds for maxx∈{f,g} d(x, {f, gn}). Hence when

n→∞, we get dM({f, g}, {f, gn}) = max
{

maxx∈{f,gn} d(x, {f, g})→ 0,maxx∈{f,g} d(x, {f, g′})→ 0
}
→ 0,

as desired.

Appendix 2: Proof of Theorem 1

2.1 Preliminary results
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Lemma 1. If < satisfies A1-A3, there exists an affine functions u : Y → R such for all x, z ∈ Y , x < z ⇔

u(x) > u(z).

Proof. This is an immediate consequence of von-Neumann theorem since the independence axiom for constant

act is implied by Commitment-Independence.

Lemma 2. If < on M satisfies A1-A4 and A7 then given u : Y → R of lemma 1, there exists a continuous

function T :M(F)→ R such that

(i) For A ∈M(Y ), T (A) = maxyi∈A u(yi) and {yi} < {yj} ⇔ T ({yi}) > T ({yj}).

(ii) For all A,B ∈M A < B ⇔ T (A) > T (B), and for all f, g ∈ F {f} < {g} ⇔ T ({f}) > T ({g}).

Proof. For all constant act A7 holds, hence {yi} < {yj} ⇒ {yi} ∼ {yi, yj}. By lemma 1 with T ({yi}) = u(yi)

we can put T ({yi}) = T ({yi, yj}) > T ({yj}) and by a recurrence argument (i) holds. Turn to (ii), by A4

and A7 {y∗} < A < {y∗}9, and by A2 {{f} ∈ M : {f} < A} and {{f} ∈ M : A < {f}} are closed set.

Thus there exists a unique α ∈ [0, 1] such that {αAy∗ + (1 − αA)y∗} ∼ A. Put T (A) = αA and (ii) holds.

Moreover T is continuous because < satisfies continuity and hence the set {A ∈ M : T (A) > γ} and

{A ∈M : T (A) 6 γ} are closed for all γ ∈ R.

We let B denote the set of real-valued 2S-measurable functions, or equivalently the vector space generated

by characteristics functions 1A of the events A ∈ 2S . If f ∈ F and u : Y → R, we denote by ϕ = u(f) the

element of B defined by u(f)(s) = u(f(s)) for all s ∈ S. Given a non-singleton interval K in the real line,

we denote by B(K) the subset of the functions in B taking values in K. Clearly, B = B (R). Since S is

finite we can identify B to RS . Define M(B,K) as the set of closed and compact subset of B(K). In other

words M(B,K) is the set of menus on B(K). We denote by M0(B, u) the set of finite menus in M(B,K).

Lemma 3. If < on M satisfies A1-A4 and A7 then there exists a continuous function W :M(B, u) → R

such that (i), (ii) holds

(i) For all f ∈ F , there exists a probability vector µ ∈ RS such that W ({u(f)}) = T ({f}) = Eµu(f).

(ii) For all ∪ni=1{fi} ∈ M0, W (∪ni=1{u(fi)}) = T (∪ni=1{fi}).

Proof. (i) this is an immediate consequences of Ascombe-Aumann Theorem because all conditions for sin-

gletons hold. Turn to (ii): from A7, the function W :M0(B, u)→ R is well defined.

Let K = u (Y ), and define a weak order <M(B,u) upon M(B, u), such that

∪ni=1{u(fi)} <M(B,u) ∪ni=1{u(f ′i)} ⇔W (∪ni=1{u(fi)}) >W (∪ni=1{u(f ′i)}) . (8)

9Where y∗ and y∗ are the constant acts such that for all f ∈ F , {y∗} < {f} < {y∗}
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We can extend (9) for any menu in M(B, u), since M(B, u) is compact space, the set of finite menu’s is

dense. Hence for any menu A ∈M(B, u), there exists a sequence of finite menus Ai, such that Ai → A. We

can conclude by the continuity of W that

W (A) >W (B)⇔ A <M(B,u) B.

By above lemma W : M(B, u) → R represents <, therefore < is equivalent to <M(B,u). In other words

<M(B,u) satisfies A1-A7. By abus of notation we write <M(B,u)=<.

2.2 Proof of Theorem 1

We define the comonotonic cone of ϕ ∈ B(u) ⊂ B by the set of all acts that is ordered by identix way

each of their componments. We denote this comonotonic cone by

Cρ := {ϕ ∈ B(u) : ϕ(sρ(1)) 6 ϕ(sρ(2)) 6 . . . 6 ϕ(sρ(S))} (9)

where ρ is inclued in the set of all bijective mapping from S to S.

Step 1: We prove that the temptation relation is represented by a linear function Iρ : B → R such that

for all ϕ,ψ ∈ Cρ we have {ϕ} � {ϕ,ψ} if and only if Iρ(ψ) > Iρ(ϕ), where Iρ(ϕ) =
∑
s∈S π

ρ(s)ϕ(s) with

πρ ∈ RS is a unique probability vector.

Step 2: Let ϕ ∈ Cρ and ψ ∈ Cρ̂, we show that there exists a unique non zero linear form Q : B → R such

that {ϕ} � {ϕ,ψ} if and only if Q(ψ) > Iρ(ϕ).

Step 3: We show that for any ψ ∈ Cρ̂, Q(ψ) =
∑
s∈S π

ρ̂(s)ψ(s).

Step 4: We construct a capacity υ : 2S → [0, 1] such that for all ϕ,ψ ∈ B(u) we have

{ϕ} � {ϕ,ψ} ⇔
∫
S

ψ(s)dυ(s) >

∫
S

ϕ(s)dυ(s).

Proof of Step 1: Take any ϕ ∈ Cρ: If {ϕ} ∼ {y∗} then by definition {ψ} < {ϕ} for all ψ ∈ Cρ, therefore

there is nothing to prove. If there don’t exists ψ ∈ Cρ such that {ϕ} � {ϕ,ψ}, then putting πρ(s) = µ(s) for

all s ∈ S we get from lemma 3, Iρ(ϕ) = W ({ϕ}), hence A4 implies that W ({ϕ}) = W ({ϕ,ψ}) > W ({ψ})

for all ϕ,ψ ∈ Cρ such that {ϕ} � {ψ}, and we obtain the desired results. Turn now at the case where the

temptation relation is nontrivial on Cρ, that is, for any ϕ there exists ψ ∈ Cρ such that {ϕ} � {ϕ,ψ}. Let

the two sets

Lρ(ϕ) :=

{
ψ ∈ Cρ : {ϕ} � {ϕ,ψ}

}
and Kρ(ϕ) :=

{
ψ ∈ Cρ : {ϕ} ∼ {ϕ,ψ} � {ψ}

}
.

By non triviality of temptation Lρ(ϕ) is nonempty. It is the same for Kρ(ϕ). Indeed, pick λ ∈ R+ such that

ϕ − λ1S > y∗, obviously ϕ and ϕ − λ1S are comonotonics and ϕ − λ1S ∈ B(u). Hence A7 is satisfied and

we get {ϕ} ∼ {ϕ,ϕ− λ1S} � {ϕ− λ1S}, this implies that ϕ− λ1S ∈ Kρ(ϕ). Thus Kρ(ϕ) 6= ∅. It’s easy to
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show that Kρ(ϕ) and Lρ(ϕ) are disjoints and it’s follow directly from A6, that are convex sets. Moreover

B is a finite dimensional vector space hence all conditions for the application of the separation Hyperplan

Theorem10 hold, Kρ(ϕ) and Lρ(ϕ) can be separated by a nonzero linear functional Jϕ : B → R and c ∈ R

such that

Jϕ(ψ) 6 c 6 Jϕ(ψ′) where ψ ∈ Kρ(ϕ) and ψ′ ∈ Lρ(ϕ). (10)

Since B ≡ RS , from Riesz Representation Theorem we can put Jϕ(·) = 〈qϕ, ·〉 where qϕ ∈ RS and qϕ 6= 0S .

Now we will show that Jϕ(ϕ) = c. For prove this we show that ϕ is a suppport point of cl(Kρ(ϕ)) and

cl(Lρ(ϕ)).

Lemma 4. ϕ is a support point of cl (Kρ(ϕ)) and cl (Lρ(ϕ)).

Proof. ϕ /∈ ri (Lρ(ϕ))11 since by definition ϕ /∈ Lρ(ϕ). Hence we have to show that ϕ is an boundary point

of Lρ(ϕ). To show this we prove that for all open neighborhood O ∈ RS of ϕ we have O ∩ Lρ(ϕ) 6= ∅.

For any Neighborhood O of ϕ by definition there exists an open ball centered at ϕ noted Bε(ϕ) ⊂ O with

ε > 0. Pick ψ ∈ Lρ(ϕ), by A5 we get {ϕ} � {ϕ, αϕ + (1 − α)ψ} for all α ∈ (0, 1), putting α < ε we have

αϕ + (1 − α)ψ ∈ Bε(ϕ)12. Therefore Bε(ϕ) ∩ Lρ(ϕ) 6= ∅, implying that ϕ ∈ cl (Lρ(ϕ)). By Theorem of

support points13, ϕ is a support points of cl (Lρ(ϕ)). By similar arguments with ψ ∈ Kρ(ϕ) we can show

that ϕ is a support point of cl (Kρ(ϕ)).

By above lemma, Jϕ is a supporting Hyperplan of cl (Kρ(ϕ)) and cl (Lρ(ϕ)) at ϕ. Hence we can put

Jϕ(ϕ) = c and we get

Jϕ(ψ) 6 Jϕ(ϕ) 6 Jϕ(ψ′) (11)

where ψ ∈ Kρ(ϕ) and ψ′ ∈ Lρ(ϕ). Moreover Jϕ(·) is a positive linear functionnals. Indeed if not we have

Jϕ(ϕ) 6 Jϕ(ϕ − λ1S) for all λ ∈ R+ such that ϕ − λ1S ∈ B(u). If Jϕ(ϕ) = Jϕ(ϕ − λ1S), then Jϕ(·) = 0

for all ψ ∈ B, contradicting the theorem of separation. If Jϕ(ϕ) < Jϕ(ϕ − λ1S) then equation (10) implies

that ϕ− λ1S ∈ Lρ(ϕ), but from A7 we get ϕ− λ1S ∈ Kρ(ϕ): contradiction, because Kρ(ϕ) and Lρ(ϕ) are

disjoints.

Lemma 5. If {ϕ} � {ψ} and Jϕ(ψ) = Jϕ(ϕ) then {ϕ} ∼ {ϕ,ψ} � {ψ}.

Proof. If ψ = y∗ then it’s follows directly from A7 that {ϕ} ∼ {ϕ,ψ} � {ψ}. Now we suppose that ψ 6= y∗.

By A2 {A ∈M(B, u) : {ϕ} ∼ A} is a closed set, thus by claim 2, if {ϕ} ∼ {ϕ,ψn} for all n and that

limn→∞ ψn = ψ we have {ϕ} ∼ {ϕ,ψ}. Pick ψn = ψ − 1
|n|+1δ1S where δ > 0 is such that ψ − δ1S ∈ B(u).

This ensure that ψn ∈ B(u) for all n. Hence A7 is satisfied and we get {ψ} � {ψ − 1
|n|+1δ1S}. Since

10See Appendix 1
11ri(Lρ(ϕ)) 6= ∅ because Lρ(ϕ) is convex.
12Indeed RS is a locally convex topological vector space.
13See Appendix 1

17



Jϕ(·) is a positive nonzero linear functional we have Jϕ(ψ − 1
|n|+1δ1S) < Jϕ(ψ) for all n. Moreover for

any ψ′, if {ϕ} � {ψ′} and Jϕ(ψ′) < Jϕ(ϕ) then {ϕ} ∼ {ϕ,ψ′}. Indeed suppose not: if {ϕ} � {ϕ,ψ′},

then we have by equation (10) that Jϕ(ψ′) > Jϕ(ϕ): in contradiction to Jϕ(ψ′) < Jϕ(ϕ). Therefore we

get {ϕ} ∼ {ϕ,ψ − 1
|n|+1δ1S} � {ψ −

1
|n|+1δ1S} for all n. Clearly limn→∞ ψn = ψ and by A2 we have

{ϕ} ∼ {ϕ,ψ} � {ψ} as desired.

By above lemma we can conclude that Jϕ(ψ) 6 Jϕ(ϕ) < Jϕ(ψ′) where ψ ∈ Kρ(ϕ) and ψ′ ∈ Lρ(ϕ). In

other words {ϕ} � {ϕ,ψ} if and only if Jϕ(ϕ) < Jϕ(ψ).

Lemma 6. There exists a unique probability vector πρϕ ∈ RS such that Jϕ(·) = 〈πρϕ, ·〉

Proof. We know that qϕ 6= 0 and because Jϕ is positive there are at least a s ∈ S such that qϕ(s) > 0. Hence∑
s∈S qϕ(s) > 0. Moreover {ϕ} � {ϕ,ψ} ⇔ 〈αqϕ, ψ〉 > 〈αqϕ, ϕ〉 for all α > 0. Putting α = 1/

∑
s∈S qϕ(s) we

normalize qϕ by a probability vector of RS denoted by πρϕ and it is the unique probability vector representing

temptation as above.

Now we have to show that for any ϕ on Cρ, π
ρ
ϕ is the unique probability vector representing the temptation

relation. For this we define the binary relation � on Cρ × Cρ as follows:

{ϕ} � {ϕ,ψ} ⇔ 〈πρϕ, ϕ〉 = 〈πρϕ, ψ〉 and {ϕ} � {ψ},

where ϕ,ψ ∈ Cρ. Let Hα := {ψ ∈ B : 〈πρ, ψ〉 = 〈πρ, ϕ〉} the hyperplan at ϕ. The lemma 6 assure the unicity

of a probability πρϕ for each ϕ ∈ Cρ, hence the set of acts ψ ∈ Cρ such that {ϕ} � {ϕ,ψ} is characterized by

ψ ∈ Vα where Vϕ = Hα ∩ {ψ ∈ Cρ : {ϕ} � {ψ}}.

Lemma 7. For any ϕ,ϕ′ ∈ Cρ, πρϕ(s) = πρϕ′(s) for all s ∈ S.

Proof. Clearly � sastified A5. Therefore if we take ϕ′ ∈ Cρ we get {ϕ} � {ϕ,ψ} ⇔ {αϕ + (1 − α)ϕ′} �

{αϕ + (1 − α)ϕ′, αψ + (1 − α)ϕ′}. Pick |S − 1| acts ψi ∈ Vϕ where i = 1, . . . , S − 1 and such that for all

i 6= j we have ψi 6= τψj with τ 6= 0, ensuring that the family {ψ1, . . . , ψS−1} is linearly independent, and

take any ψS ∈ Vϕ. We denote by Dϕ the family of acts {ψ1, ψ2, . . . , ψS} and take co(Dϕ), thus we have

dim(co(Dϕ)) = dim(Vϕ) = S − 1. From A5 and by linearity of 〈πρϕ, ·〉 we get

{αϕ+ (1− α)ϕ′} � {αϕ+ (1− α)ϕ′, αψi + (1− α)ϕ′} ⇔ 〈πρϕ, αϕ+ (1− α)ϕ′〉 = 〈πρϕ, αψi + (1− α)ϕ′〉,

for all i = 1 . . . , S. LetDαϕ+(1−α)ϕ′ the family {αψ1+(1−α)ϕ′, . . . , αψS+(1−α)ϕ′}. We can easily verify that

{αψ1+(1−α)ϕ′, . . . , αψS−1+(1−α)ϕ′} are linearly independent, so dim(co(Dαϕ+(1−α)ϕ′)) = S−1. Its follows

that co(Dαϕ+(1−α)ϕ′) generate the hyperplan H := {ψ ∈ B : 〈πρ, ψ〉 = α〈πρ, ψi〉 + (1 − α)〈πρ, ψ′〉}. In the

other hand, from lemma 6 we know that for any act in Cρ there exists a unique probability vector representing
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the temptation relation at αϕ+(1−α)ϕ′. Thus we have for any ψ ∈ Cρ, {αϕ+(1−α)ϕ′} � {αϕ+(1−α)ϕ′, ψ}

if and only if ψ ∈ Vαϕ+(1−α)ϕ′ , or equivalently

{αϕ+ (1− α)ϕ′} � {αϕ+ (1− α)ϕ′, ψ} ⇔ 〈πραϕ+(1−α)ϕ′ , αϕ+ (1− α)ϕ′〉 = 〈πραϕ+(1−α)ϕ′ , ψ〉 (12)

Suppose that πρϕ(s) 6= πραϕ+(1−α)ϕ′(s) for a least s ∈ S, then this equivalent to πρϕ 6= bπραϕ+(1−α)ϕ′ where

b 6= {0, 1}. In other words H ∩Hαϕ+(1−α)ϕ′ 6= ∅, and by definition dim(H ∩Hαϕ+(1−α)ϕ′) = S − 2. Since

the dimension of co(Dαϕ+(1−α)ϕ′) is equal to S − 1 this implies that there exists a least an ψ such that

ψ ∈ co(Dαϕ+(1−α)ϕ′) and ψ /∈ Vαϕ+(1−α)ϕ′ . Therefore we have {αϕ+ (1− α)ϕ′} � {αϕ+ (1− α)ϕ′, ψ} and

ψ /∈ Vαϕ+(1−α)ϕ′ : contradiction of equation (13). Therefore πρϕ(s) = πραϕ+(1−α)ϕ′(s) for all s ∈ S. Similarly

tacking ψi ∈ Vϕ′ as above we deduce that πρϕ′(s) = πραϕ+(1−α)ϕ′(s) for all s ∈ S. Hence we have showed that

πρϕ(s) = πραϕ+(1−α)ϕ′(s) = πρϕ′(s) for all s ∈ S, with any ϕ,ϕ′ in Cρ.

It’s easy to see that

{ϕ} ∼ {ϕ,ψ} ⇔

{
{ϕ} � {ϕ,ψ} ⇔ 〈πρ, ϕ〉 = 〈πρ, ψ〉
{ϕ} ' {ϕ,ψ} ⇔ 〈πρ, ϕ〉 > 〈πρ, ψ〉

Thus unicity of πρ with regard to � implies the unicity of πρ for the temptation relation on Cρ×Cρ. Hence

for any ϕ,ψ ∈ Cρ such that {ϕ} � {ψ} we have {ϕ} � {ϕ,ψ} ⇔ 〈πρ, ψ〉 > 〈πρ, ϕ〉. This conclude the proof

of step 1.

Proof of Step 2: In this step we show that there exists a linear functional Qϕ(·) : B → R such that

{ϕ} � {ϕ,ψ} ⇔ Qϕ(ψ) > Iρ(ϕ) (13)

Where ϕ ∈ Cρ, ψ ∈ Cρ̂ and {ϕ} � {ψ}. Let the following sets:

NT+ :=

{
ψ ∈ Cρ̂ : {ψ} ∼ {ψ,ϕ} � {ϕ}

}
and T+ :=

{
ψ ∈ Cρ̂ : {ϕ} � {ϕ,ψ}

}
T− :=

{
ψ ∈ Cρ̂ : {ψ} � {ψ,ϕ}

}
and NT− :=

{
ψ ∈ Cρ̂ : {ϕ} ∼ {ϕ,ψ} � {ψ}

}
We have two case: {y∗} ∼ {ϕ} � {y∗} or {y∗} � {ϕ} � {y∗}.

First we analyse the case where {y∗} � {ϕ} � {y∗}. Let Z+(ϕ) := NT+ ∪T+ and Z−(ϕ) := T− ∪NT−.

First Z+(ϕ) and Z−(ϕ) are nonempty since from A7, Cρ̂∩{ψ : ψ(s) � ϕ(s),∀s ∈ S}∩{ψ : ϕ(s) � ψ(s),∀s ∈

S} is nonempty, thus NT+ and NT− are nonempty. We denote by co(·) the convex hull of any set in B(u).

Lemma 8. ri(coZ+(ϕ)) ∩ ri(coZ−(ϕ)) = ∅.

Proof. Since NT+, T+, NT− and T− are convex from A6, we get coZ+(ϕ) = λNT+ + (1 − λ)T+ and

coZ−(ϕ) = λNT−+(1−λ)T− with λ ∈ [0, 1]. Since ψ0 ∈ NT+ ⇒ {ψ0} � {ϕ} and ψ1 ∈ T+ ⇒ {ϕ} � {ψ1},

there exists λ∗ ∈ (0, 1) such that λ∗ψ0 + (1− λ∗)ψ1 ∈ coZ+(ϕ) and {λ∗ψ0 + (1− λ∗)ψ1} ∼ {ϕ}. Hence for

λ < λ∗ we get λψ0 + (1− λ)ψ1 ∈ T+ and for λ > λ∗ we get λψ0 + (1− λ)ψ1 ∈ NT+. In other words
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coZ+(ϕ) =

{
ψ ∈ Cρ̂ : {ψ} ∼ {ϕ} or ψ ∈ NT+ or ψ ∈ T+

}

coZ−(ϕ) =

{
ψ ∈ Cρ̂ : {ψ} ∼ {ϕ} or ψ ∈ NT− or ψ ∈ T−

}
For ψ = λψ0+(1−λ)ψ1 with λ 6= λ∗, we cannot have ψ ∈ coZ+(ϕ)∩coZ−(ϕ), since in contrary case we have

{ϕ} � {ϕ,ψ} and {ϕ} ∼ {ϕ,ψ} � {ψ} or we have {ψ} � {ψ,ϕ} and {ψ} ∼ {ψ,ϕ} � {ψ}: contradiction.

Turn to case where λ = λ∗. If ψ0 ∈ ri(NT+) and ψ1 ∈ ri(T+), we get λ∗ψ0 + (1 − λ∗)ψ1 ∈ ri(coZ+(ϕ))

since by classical results we know that λri(NT+) + (1 − λ)ri(T+) = ri(λNT+ + (1 − λ)T+). Take open-

ball Bε(λ∗ψ0 + (1 − λ∗)ψ1) ⊂ ri(coZ+(ϕ)) and suppose by contradiction that there exists ψ such that

ψ ∈ Bε(λ∗ψ0 + (1− λ∗)ψ1) ∩ coZ−(ϕ). Pick λ ∈ (0, 1) such that | λ− λ∗ |< ε, then ψ = λψ0 + (1− λ)ψ1 ∈

Bε(λ∗ψ0+(1−λ∗)ψ1). If λ > λ∗, then {ψ} � {ϕ}, thus ψ ∈ ri(NT+)∩T−, but by definition ri(NT+)∩T− =

∅: contradiction. Thus we get ψ /∈ coZ−(ϕ). Similarly for λ < λ∗, we get ψ /∈ ri(coZ+(ϕ)) ∩ coZ−(ϕ) = ∅.

Hence for all case we get ri(coZ+(ϕ)) ∩ ri(coZ−(ϕ)) = ∅ the desired results.

Hence we can apply Hyperplan Theorem, there exists a nonull linear functional Qϕ : B0 → R and a ∈ R

such that

Qϕ(ψ) 6 a 6 Qϕ(ψ′) where ψ ∈ co(Z−(ϕ)) and ψ′ ∈ co(Z+(ϕ)). (14)

Since by hypothesis {y∗} � {ϕ} � {y∗} NT+ and NT− are nonempty, we have Cρ̂ ∩ {ψ : ψ(s) � ϕ(s),∀s ∈

S} ⊂ NT+ and Cρ̂ ∩ {ψ : ϕ(s) � ψ(s),∀s ∈ S}. It follows that Qϕ(·) is a positive linear functional. Indeed

suppose not, then this implies that for y1S , y′1S such that {y1S} � {ϕ(s)} � {y′1S} for all s ∈ S we

have Qϕ(y′1S) > Qϕ(y1S). If Qϕ(y′1S) = Qϕ(y1S) then Qϕ(·) is null, this is impossible. If Qϕ(y′1S) >

Qϕ(y1S) > a, then this implies that y′1S ∈ Z+(ϕ), in contradiction with A7.

Lemma 9. If ψ ∈ Cρ̂ and Qϕ(ψ) = a, then {ϕ} ∼ {ϕ,ψ} if {ϕ} � {ψ}, and {ψ} ∼ {ψ,ϕ} if {ψ} � {ϕ}.

Proof. Since Qϕ(·) is a nonull positive linear functional, this lemma holds with the same types of arguments

as in lemma 5.

Therefore we get for ϕ ∈ Cρ and ϕ ∈ Cρ̂:

{ϕ} � {ϕ,ψ} ⇔ Qϕ(ψ) > a (15)

{ψ} ∼ {ψ,ϕ} � {ϕ} ⇔ Qϕ(ψ) > a (16)

{ϕ} ∼ {ϕ,ψ} � {ψ} ⇔ Qϕ(ψ) 6 a (17)

{ψ} � {ψ,ϕ} ⇔ Qϕ(ψ) < a (18)

Hence we can deduce the following lemma:

Lemma 10. There exists a unique probability vector γρ̂ ∈ RS such that Qϕ(·) = 〈γρ̂, ·〉
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Proof. By (16)-(19), the proof is the same of lemma 6.

Lemma 11. Iρ(ϕ) = a.

Proof. By definition any constant act y1S ∈ Cρ ∩ Cρ̂. Suppose by contradiction that Iρ(ϕ) 6= a. If Iρ(ϕ) =

c > a. Then there exists b ∈ R such that a > b > c. We have two case. If {b1S} � {ϕ}, then from step

1 one we get {b1S} ∼ {b1S , ϕ}, and from (19) we get {b1S} � {b1S , ϕ}: contradiction. If {ϕ} < {b1S},

then from Step 1 we get {ϕ} � {ϕ, b1S} and from (18) we get {ϕ} ∼ {ϕ, b1S}: contradiction. Now suppose

Iρ(ϕ) = c < a, pick b ∈ R such that a < b < c, we have again two cases. If {b1S} � {ϕ}, then from Step 1

{b1S} � {b1S , ϕ} and from (17) we get {b1S} ∼ {b1S , ϕ}: contradiction. If {ϕ} < {b1S}, then from Step 1

{ϕ} ∼ {ϕ, bS} and from (16) we get {ϕ} � {ϕ, b1S}: contradiction. Hence Iρ(ϕ) = a.

Now we analyse the case where {ϕ} ∼ {y∗}. We have two possibilities T+ 6= ∅ or T+ = ∅. By definition

of y∗ we have {y∗} < {ϕ} for all ϕ ∈ B(u). In other words ϕ(s) 6 y∗ for all s ∈ S, hence {ϕ} ∼ {y∗} if and

only if ϕ(s) = y∗ for all s ∈ S. Therefore {ϕ} ∼ {y∗} if and only if ϕ is a constant act.

If T+ 6= ∅. Since ϕ ∈ Cρ ∩ Cρ̂ the results follow directly from step 1.

If T+ = ∅. Put Qϕ(·) = 〈µ, ·〉, and we have the desired results.

Now we want to show that for any ϕ ∈ Cρ, γρ̂ϕ is the unique probability vector representing the temptation

relation betweenn Cρ and Cρ̂. For this we define a binary relation � on B(u)×B(u) in the following way:

{ϕ} � {ϕ,ψ} ⇔ 〈πρ, ϕ〉 = 〈γρ̂ϕ, ψ〉 and {ϕ} � {ψ}

where ϕ ∈ Cρ and ψ ∈ Cρ̂. Let H ρ̂
α := {ψ ∈ B : 〈γρ̂ϕ, ψ〉 = Iρ(ϕ)} the hyperplan at ϕ. The lemma 10 assure

the unicity of a probability γρ̂ϕ for each ϕ ∈ Cρ, hence the set of acts ψ ∈ Cρ̂ such that {ϕ} � {ϕ,ψ} is

characterized by ψ ∈ V ρ̂α where V ρ̂ϕ = H ρ̂
α ∩ {ψ ∈ Cρ̂ : {ϕ} � {ψ}} is a linear variety. We can remark that �

satisfied A6.

Lemma 12. For any ϕ,ϕ′ ∈ Cρ, γρ̂ϕ(s) = γρ̂ϕ′(s) for all s ∈ S.

Proof. Since � satisfies A6 on B(u)×B(u) we get

{ϕ} � {ϕ,ψ} and {ϕ′} � {ϕ′ψ′} ⇒ {αϕ+ (1− α)ϕ′} � {αϕ+ (1− α)ϕ′, αψ + (1− α)ψ′}.

From lemma 8-11, we know that at αϕ+ (1− α)ϕ′ there exists a unique probability vector γρ̂ϕ such that:

{αϕ+ (1− α)ϕ′} � {αϕ+ (1− α)ϕ′, θ} ⇔ 〈πρ, αϕ+ (1− α)ϕ′〉 = 〈γρ̂αϕ+(1−α)ϕ′ , θ〉

for any θ ∈ Cρ̂ with {αϕ + (1 − α)ϕ′} � {θ}. In other words {αϕ + (1 − α)ϕ′} � {αϕ + (1 − α)ϕ′, θ} if

and only if θ ∈ V ρ̂αϕ+(1−α)ϕ′ . Now we construct a linear variety as in lemma 7: pick |S − 1| acts such that

ψi ∈ V ρ̂ϕ and such that the family Dρ̂
ϕ = {ψ1, . . . , ψS−1} is linearly independent. Taking an any ψS ∈ V ρ̂ϕ we
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get dim(co(Dρ̂
ϕ)) = S − 1. From A6 we have {αϕ+ (1− α)ϕ′} � {αϕ+ (1− α)ϕ′, αψi + (1− α)ψ′} for all

i = 1, . . . , S. Moreover by linearity of 〈γρ̂ϕ, ·〉 we get

〈γρ̂ϕ, ψi〉 = 〈γρ̂ϕ, ψj〉 ⇔ 〈γρ̂ϕ, αψi + (1− α)ψ′〉 = 〈γρ̂ϕ, αψj + (1− α)ψ′〉 = 〈πρ, αϕ+ (1− α)ϕ′〉.

Clearly the family of acts Dρ̂
αϕ+(1−α)ϕ′ = {αψ1 + (1−α)ψ′, . . . , αψS−1 + (1−α)ψ′} is linearly independent,

hence dim(co(Dρ̂
αϕ+(1−α)ϕ′)) = S−1, and from A6 for any ψ ∈ co(Dρ̂

αϕ+(1−α)ϕ′) we have {αϕ+(1−α)ϕ′} �

{αϕ+(1−α)ϕ′, ψ}. If we suppose that γρ̂ϕ(s) 6= γρ̂αϕ+(1−α)ϕ′(s) for a least s ∈ S, then with similarly arguments

of lemma 7 in step 1 we going to a contradiction of lemma 10. Hence for any ϕ ∈ Cρ and any ψ ∈ Cρ̂ such

that {ϕ} � {ψ}:

{ϕ} � {ϕ,ψ} ⇔ 〈γρ̂, ψ〉 > 〈πρ, ϕ〉

Proof of Step 3: We show that {ϕ} � {ϕ,ψ} ⇔ 〈πρ̂, ψ〉 > 〈πρ, ϕ〉. From step 1 we know that {ϕ} � {ϕ,ψ}

if and only if 〈πρ, ψ〉 > 〈πρ, ϕ〉 for ϕ,ψ ∈ Cρ, and, {ϕ′} � {ϕ′, ψ′} if and only if 〈πρ̂, ψ′〉 > 〈πρ̂, ϕ′〉 for any

ϕ′, ψ′ ∈ Cρ̂. On the other hand, from step 2 {ϕ} � {ϕ,ψ′} if and only if 〈γρ̂, ψ〉 > 〈πρ, ϕ〉 for any ϕ ∈ Cρ and

any ψ ∈ Cρ̂. Pick y an any constant act, then by definition y ∈ Cρ∩Cρ̂, since by step 1 there exists a unique

probability representing the temptation relation on Cρ̂ we have necessarily γρ̂ = πρ̂. Moreover by step 2 the

unicity of probability representing the temptation relation between Cρ and Cρ̂ implies γρ̂ϕ = γρ̂y = πρ̂, hence

for any ϕ ∈ Cρ and any ψ ∈ Cρ̂
{ϕ} � {ϕ,ψ} ⇔ 〈πρ̂, ψ〉 > 〈πρ, ϕ〉.

Proof of Step 4: Take 1E where E ⊂ S. If 1E ∈ Cρ ∩ Cρ̂ then by Step 3 we get πρ(E) = πρ̂(E). If not

define υ : 2S → [0, 1] a follows:

υ(E) = πρ(E)

for any ρ such that 1E ∈ Cρ. We remark that υ is monotone, indeed let E ⊆ F there exists some ρ̂ such

that 1E , 1F ∈ Cρ̂. Thus υ(E) = πρ̂(E) 6 πρ̂(F ) = υ(F ). By definition υ(∅) = 0 and υ(S) = 1. Hence

υ is a capacity. Suppose that F = E ∪ {ŝ} for some ŝ /∈ E. Then for any ρ̂ with 1E , 1F ∈ Cρ̂, we have

υ(F )− υ(E) = πρ̂(ŝ). Thus for any ϕ ∈ B0(u) and any ρ such that ϕ ∈ Cρ,

〈πρ, ϕ〉 = ϕ(sρ(1))υ(Eρ1 ) +

|S|∑
k=2

ϕ(sρ(k))

[
υ(Eρk)− υ(Eρk−1)

]
where Eρk := {sρ(1), . . . , sρ(k)}. This expresion is the Choquet-Expected value of ϕ with the capacity υ.

Hence by Step 3 we have for ϕ ∈ Cρ and ψ ∈ Cρ̂, {ϕ} � {ϕ,ψ} ⇔ 〈πρ̂, ψ〉 > 〈πρ, ϕ〉, thus ψ tempts ϕ if and
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only if:

ψ(sρ̂(1))υ(Eρ̂1 ) +

|S|∑
k=2

ψ(ρ̂(k))

[
υ(Eρ̂k)− υ(Eρ̂k−1)

]
> ϕ(sρ(1))υ(Eρ1 ) +

|S|∑
k=2

ϕ(sρ(k))

[
υ(Eρk)− υ(Eρk−1)

]
.

By lemma 3 we know that {ϕ} � {ϕ,ψ} ⇔ {f} � {f, g} for f, g ∈ F such that u(f)(s) = ϕ(s) and

u(g)(s) = ψ(s) for all s ∈ S, thus

{f} � {f, g} ⇔ I(g) =

∫
S

u(g)dυ > I(f) =

∫
S

u(f)dυ,

as desired, moreover I(·) is continuous. This concludes the proof of theorem 1.

Appendix 3: Proof of Proposition 1-3

Proof of proposition 1:

Let ρ and ρ̂ such that sρ(1) = sρ̂(1) and sρ(S) = sρ̂(S). Suppose that f ∈ Cρ and g ∈ Cρ̂. From Theorem 1:

I(f) = u(f(sρ(1)))υ(sρ(1)) +

|S−2|∑
k=2

u(f(sρ(k)))

[
υ(Eρk)− υ(Eρk−1)

]
+ u(f(sρ(S)))υ(sρ(S))

I(g) = u(g(sρ̂(1)))υ(sρ̂(1)) +

|S−2|∑
k=2

u(g(sρ̂(k)))

[
υ(Eρ̂k)− υ(Eρ̂k−1)

]
+ u(g(sρ̂(S)))υ(sρ̂(S))

Let h = (x, s1; y, {s2, . . . , sn−1};x, sn). Clearly h ∈ Cρ ∩ Cρ̂. Thus from A5’ we get

I(αf + (1− α)h) = I(αg + (1− α)h)

Hence since by definition πρ(sk) = υ(Eρk)− υ(Eρk−1)

Proof of proposition 2:

(i)⇒ (ii): From Theorem 1 � on F×F is equivalent to {f} � {g} and I(f) = I(g). Clearly if the temptation

relation satisfied A5” then � satisfied A5”. Therefore from Theorem 1 we get I(f) = I(g) = I(h) and

I(αg + (1− α)h) > I(f) = I(g) = I(h). In particular since I(g) = I(h) we have

I(g + h) = I(2(
1

2
g +

1

2
h)) = 2I(

1

2
g +

1

2
h) > I(g) + I(h) (19)

Let E,F two subsets of S, and assume w.l.o.g that υ(E) > υ(F ). Then there exists θ > 1 such that

υ(E) = θυ(F ). Therefore I(1E) = υ(F ) = θυ(F ) = I(θ1F ). From (19) we have I(1E+θ1F ) > I(1E)+I(θ1F ).

However we remark that 1E + θ1F = 1E∩F + (θ − 1)1F + 1E∪F . Moreover 1E∩F , (θ − 1)1F and 1E∪F are

comonotonic, so we obtain

I(1E∩F + (θ − 1)1F + 1E∪F ) = I(1E + θ1F ) > I(1E) + I(θ1F )

I(1E∩F ) + I((θ − 1)1F ) + I(1E∪F ) > I(1E) + I(θ1F )

υ(E ∩ F ) + (θ − 1)υ(F ) + υ(E ∪ F ) > υ(E) + θυ(F )

υ(E ∩ F ) + υ(E ∪ F ) > υ(E) + υ(F )
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So υ is a convex capacity. The proof of (ii)⇒ (i) is obvious.

Proof of proposition 3:

The proof is similar to proof of proposition 2.

Appendix 4: Proof of Theorem 2

Lemma 13. For all f, g, h ∈ F with {f} � {f, g} � {g} then CEU(h) 6 CEU(g)⇒ {f, h} < {f, g}

Proof. The first case where {h} < {g}, by Theorem 1 we have EU(f) > EU(g) and CEU(g) > CEU(f).

Take h′ in the comonotonic cone of h (denoted C(h)). We have two case: there exists h′ comonotonic to h

such that {h′} � {h′, h}, or there don’t exists h′ in comonotonic cone of h who is tempted by h.

Case 1: There exists h′ ∈ C(h) such that {h′} � {h′, h}.

By Theorem 1 CEU(h′) < CEU(h) and EU(h′) > EU(h). By hypothesis we get EU(h′αh) > EU(g) and

CEU(g) > CEU(h′αh) and by Theorem 1 {h′αh} � {h′αh, g}. Therefore by Temptation-Aversion axiom

{f, h′αh} < {f, g} for all α ∈ (0, 1), by continuity as α→ 0, {f, h} < {f, g}14.

Case 2: There don’t exists h′ ∈ C(h) such that {h′} � {h′, h}.

This implies that CEU(h) = EU(h) on C(h). Suppose that {h} � {g} and take h′ such that {h} �

{h′} � {g}, hence we get CEU(h′) < CEU(g), moreover EU(h′αh) > EU(g) and CEU(g) > CEU(h′αh),

therefore Theorem 1 {h′αh} � {h′αh, g} and Temptation-Aversion implies {f, h′αh} < {f, g}, as α→ 0 we

get {f, h} < {f, g}. Now suppose that {h} ∼ {g}, Take h′ comontonic to h and such that {h} � {h′}, then

CEU(h) > CEU(h′), thus CEU(hαh′) < CEU(g) and EU(g) > EU(hαh′) and theorem 1 implies that

{g} ∼ {g, hαh′} � {hαh′}, by temptation aversion we get {f, hαh′} < {f, g}. Take α → 1 and we obtain

{f, h} < {f, g}.

Next suppose that {g} � {h}, if {g} � {g, h} we have by Theorem 1 CEU(h) > CEU(g) which contradict

the assumption, hence Set-Betweenness implies {g} ∼ {g, h} � {h}. By Temptation-Aversion {f, h} <

{f, g}.

Define the correspondance L : I (F) F by L(l) := {g : I(g) 6 l}. By continuity of I, L(l) is nonempty

and compact set for each l. Define the self-control cost function by

c(f, g) = max

[
0, max
g∈L(l)

{
W ({u(f)})−W ({u(f), u(g)})

}]

14See claim 2 in Appendix 1

24



Lemma 14. The conditions (i)− (vi) hold:

(i)For any f, l, if {f} � {f, g} � {g} for some g with CEU(g) = l, then c(f, l) = u(f)−W ({f, g})

(ii) For any f, l, if {f} � {f, g} for some g ∈ L(l), then c(f, l) > 0

(iii) For any f, l, if l 6 CEU(f), then c(f, l) = 0

(iv) If u(f) > u(g) and l = max{f,g} CEU , then CEU(f) < CEU(g)⇔ c(f, g) > 0

(v) For any f , c(f, ·) is weakly increasing

(vi) The function c is continuous

Proof. See Lemma 3 of Noor and Takeoka (2010)

Lemma 15. For all f, g ∈ F ,

W ({f, g}) = max
h∈{f,g}

{
u(h)− c

(
h,max
{f,g}

CEU

)}
. (20)

Proof. See Lemma 4 of Noor and Takeoka (2010)

Lemma 16. For all finite menus A ∈M (F),

W (A) = max
h∈A

{
u(h)− c

(
h,max

A
CEU

)}
. (21)

Proof. See Lemma 5 of Noor and Takeoka (2010)

Lemma 17. For all A ∈M (F), W can be written as the desired form.

Proof. By lemma 0 of GP (2001), there exists a sequence of subset An of A such that each An is finite and

An → A in the Hausdorff metric. By lemma 8,

W (An) = max
h∈An

{
u(h)− c

(
h,max

An
CEU

)}
. (22)

Since by (vi) of lemma 5 c is continuous, the maximum theorem implies that the right-hand side of (18)

converge to

max
h∈A

{
u(h)− c

(
h,max

A
CEU

)}
. (23)

On the other hand, by (ii) of lemma 1, W (An)→W (A). This conclude the proof of Theorem 2.
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