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We show that already a small amount of probability weighting has
strong implications for the application of prospect theory in the dy-
namic context. A naive agent will never stop a stochastic process that
represents his wealth. This holds for a very large class of processes, and
independently of the reference point and the curvatures of the value and
weighting functions. This dynamic result is a consequence of a static
result that we call skewness preference in the small: At any wealth
level there exists an arbitrarily small gamble (which is sufficiently right-
skewed) that a prospect theory agent wants to take. By choosing a proper
stopping strategy the agent can always implement such a gamble and
thus never stops. We illustrate the implications for dynamic decision
problems such as irreversible investment, casino gambling, and the dis-
position effect.
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1. INTRODUCTION

While expected utility theory (EUT, Bernoulli (1738/1954), von Neumann-Morgenstern

(1944)) is the leading normative theory of decision making under risk, cumulative prospect

theory (CPT, Kahneman and Tversky (1979), Tversky and Kahneman (1992)) is the most

prominent positive theory. EUT is well-studied in both static and dynamic settings, ranging

from game theory over investment problems to institutional economics. In contrast, for CPT

most research so far has focused on the static case. In this paper, we investigate CPT’s

predictions in the dynamic context and point out fundamental properties of CPT. We il-

lustrate immediate consequences for typical dynamic decision problems such as irreversible

investment, casino gambling, or the disposition effect.

Usually, CPT is characterized by four features: First, outcomes are evaluated by a utility

function relative to some reference point which separates all outcomes into gains and losses.
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Second, utility is S-shaped, i.e., convex for losses and concave for gains. Third, probabilities

are distorted by inverse-S-shaped probability weighting functions (one for gains and one for

losses). Therefore, probabilities close to zero or one are overweighted while moderate proba-

bilities are underweighted. Fourth, losses loom larger than gains, which is referred to as loss

aversion.

A small amount of probability weighting is the single driving source this paper’s results.

“Small” is relative to the amount of loss aversion and will be precisely defined. Notably, the

curvatures of the value and weighting functions are immaterial to our results, and so is the

choice of the reference point. If some likelihood insensitivity is considered to be a fundamen-

tal element of prospect theory, then so are the results in this paper.

Our dynamic results can be traced back to a seemingly innocuous result that we call skew-

ness preference in the small. At any wealth level, a CPT agent wants to take a sufficiently

right-skewed binary risk which is arbitrarily small, even if it has negative expectation. We

call such a risk attractive to the CPT agent. Therefore, a CPT agent can always be lured

into gambling by offering an attractive risk. We show that such a risk may be small. How-

ever, depending on the value function, the risk may in fact be quite large. For the original

parametrization of Tversky and Kahneman (1992) and most empirical estimates we show

that there exists an attractive risk of any size.

A theory-free definition of risk aversion (risk seeking) at wealth level x is that any zero-mean

risk is unattractive (attractive) to the agent. Therefore, skewness preference in the small

implies that a CPT agent is not risk averse at any wealth level, and a symmetric result says

that CPT is also risk seeking nowhere. We are not aware of a formal proof of this result, not

even for the original version of CPT by Tversky and Kahneman (1992). In particular, our

result implies that a small amount probability weighting eventually dominates any curvature

effects on risk aversion that concave and convex parts of the value function may have: CPT

does never imply risk aversion over gains and risk seeking over losses.

In a seminal paper, Barberis (2012) has revealed how the probability weighting component

of prospect theory induces a time inconsistency. He provides the general intuition, and il-

lustrates the mechanics for when gambling a 50-50 bet up to five periods. Barberis explains

why naive agents (who are unaware of their time inconsistency) typically plan to follow a

stop-loss strategy when entering the casino, but end up playing a gain-exit strategy. Such

behavior reminds of the disposition effect pointed out by Shefrin and Statman (1985): indi-

vidual investors are more inclined to sell stocks that have gained in value (winners) rather

than stocks that have declined in value (losers). We will show that in more general settings,

i.e., for less specific stochastic processes, prospect theory does not predict such behavior for
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naive agents.

In Xu and Zhou (2011) the optimal strategy of sophisticated agents who have acess to a

commitment device is derived in the context of optimal stopping in continuous time. Due to

the availability of commitment there is no issue of time inconsistency in this context.

In contrast to this our main result is a Theorem stating that a naive CPT agent will never

stop a stochastic process representing his wealth. This holds for our general version of CPT,

and for a large class of stochastic processes including geometric and arithmetic Brownian

motion. In particular, the process may have arbitrary (positive or negative) drift. By plan-

ning to follow a proper stopping strategy (which is stop-loss) the agent can always implement

a binary gamble which is attractive because of skewness preference in the small. Intuitively,

at any point in time the agent thinks “If I loose just a little bit more, I will stop. And if

I gain, I will continue.” But once a loss or a gain has occurred, a new attractive stopping

strategy will come to his mind and thus he will continue to gamble.

Differently from Barberis’ five-period example with 50-50 bets, our agent will also continue

to gamble if he makes a gain. In Barberis (2012), the combination of symmetric gambles and

finite (very short) time horizon implies that the “casino dries out of skewness.” For exam-

ple, in the last period there is only a 50-50 gamble available in the casino so that skewness

preference in the small does not apply. The availability of sufficiently skewed gambles is the

crucial input to our limit result. A continuous, infinite time horizon setup is sufficient for

it. However, we show that the result is robust to finite and/ or discrete time spaces, as long

as the stochastic process allows for a rich set of possible gambling strategies. In complete

markets, for example, our result will hold irrespective of the time space.

In Section 2 we will define our general version of CPT. In Section 3 we present our static

result that CPT implies skewness preference in the small and point out several implications.

Section 4 presents the main result that a naive agent never stops a stochastic process that

represents his wealth. Section 5 discusses the implications for CPT models of casino gam-

bling, optimal time to invest, and the disposition effect. Section 6 discusses the robustness

of our result towards discrete and finite time spaces. Section 7 concludes.

2. PROSPECT THEORY PREFERENCES

We consider an agent with CPT preferences over random variables X ∈ R. A CPT agent

evaluates the risk X as

CPT (X) =
∫

R+

w+(P(U(X) > y))dy −
∫

R−

w−(P(U(X) < y))dy(1)
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with non-decreasing weighting functions w−, w+ : [0, 1] → [0, 1] with w+(0) = w−(0) = 0 and

w+(1) = w−(1) = 1 and a value function U : R → R that satisfy the assumptions explained

in the following.

Assumption 1 (Value function) The value function is absolutely continuous and strictly

increasing. Further, λ = supx∈R

∂−U(x)
∂+U(x)

< ∞ exists, where ∂−U(x) and ∂+U(x) denote the

left and right derivative of U, respectively. W.l.o.g. U(0) = 0.

Under CPT, preferences are defined on changes relative to some reference point, which is

denoted by r ∈ R. Typical choices for r are the status quo or some other benchmark. For

example, when investing in a risky asset, r could be the return of a risk-free investment.

Realizations x of X with x < r are referred to as losses, and realizations x ≥ r are called

gains. Our results hold for any r ∈ R. In other words, the choice of r is immaterial to our

findings. In many specifications of prospect theory, the additional assumption is made that U

is differentiable everywhere, except at the reference point such that λ = ∂−U(r)
∂+U(r)

. It is further

assumed that λ > 1 and that the reflection property

U(x) =







u(x − r), if x ≥ r

−λu (−(x − r)) , if x < r
(2)

holds for some function u. λ > 1 then implies that losses loom larger than gains to the

CPT agent; see Köbberling and Wakker (2005) for an analysis of the loss aversion index
∂−U(r)
∂+U(r)

. We allow for non-differentiable utility because it allows to model preference over

assets with non-differentiable payoffs such as option contracts. The original choice for u by

Tversky and Kahneman (1992) was power utility. Since several caveats have been pointed

out for the power utility parametrization, exponential utility has become another popular

choice (de Georgi and Hens (2006)).1 The final important feature of CPT is that the agent

distorts the decumulative probabilities associated with gains and the cumulative probabilities

associated with losses by means of respective weighting functions w+ and w−.

Assumption 2 (Likelihood-Insensitive Weighting Functions) The weighting functions w+

and w− satisfy

1. lim supp→0
w+(p)

p
> λ .

1Exponential utility satisfies Assumption 1. Power utility does not suffice Assumption 1, because both
partial derivatives are infinite at the reference point and thus the Köbberling-Wakker index of loss aversion
is not well defined. We will treat power utility separately in Subsection 3.4. It will be seen that, for this case,
even stronger results may be obtained than those based solely on Assumption 1.
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2. lim supp→0
1−w−(1−p)

p
> λ .

Note that if w+ and w− are differentiable at 0 and 1, then the conditions in Assumption 2

simplify to w+′
(0) > λ and w−′

(1) > λ. If these derivatives do not exist because they

approach infinity, the limit superior is infinite which is also consistent with Assumption 2.

We do not require the weighting functions to be inverse-S-shaped, i.e., to start out concave

and to turn convex at some point. Our assumption is weaker and much more in the spirit of

Wakker and Tversky (1995), who define a connected likelihood insensitivity region bounded

away from both 0 and 1. Actually, here we only require overweighting of small probabilities

when associated with high outcomes; see Wakker (2010, pp. 222-233) for a comprehensive

discussion of likelihood insensitivity and inverse-S-shape.

Observation 1 Assumption 2 is satisfied by the commonly used weighting functions of

Kahneman and Tversky (1979), Goldstein and Einhorn (1987), Prelec (1998), and the neo-

additive weighting function. Whether the weighting function of Rieger and Wang (2006) suf-

fices Assumption 2 depends on parameter estimates.

Proof. See appendix. �

Rieger and Wang (2006) farsightedly proposed a weighting function with finite derivatives

at 0 and 1, and showed that this ensures non-occurrence of the St. Petersburg paradox under

CPT. However, it remains to be investigated whether other desirable predictions of CPT will

be maintained for such weighting functions. In any case, while existing, finite derivatives at

0 and 1 are a cure to the St. Petersburg paradox, such a version of CPT may still succumb

to our results.2

Moreover, many of our results allow to relax Assumption 2 so that they apply to any weight-

ing function with derivatives at 0 and 1 strictly larger than one, which corresponds to a

minimal departure from EUT’s linear processing of probabilities.

If not noted otherwise, in the following our sole assumptions on the CPT preference functional

(1) are Assumptions 1 and Assumption 2. Our point is that a small amount of probability

weighting alone is sufficient for a fundamental property of CPT in the static case, which in

turn has drastic implications for CPT in a dynamic setting.

Many of our results use binary lotteries L ≡ L(p, b, a) that yield outcome b with probability

p ∈ (0, 1), and a < b otherwise. Thus it is convenient to note that the CPT preference

2Finite derivatives may be consistent with our Assumption 2. We only require that the derivatives at 0
and 1 are larger than λ. Unfortunately, we are not aware of any parameter estimates of the Rieger and Wang
(2006) weighting function.
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functional (1) evaluates binary risks as

CPT (L) =







w+(p)U(b) + (1 − w+(p))U(a), if r ≤ a

w−(1 − p)U(a) + w+(p)U(b), if a < r ≤ b

(1 − w−(1 − p))U(b) + w−(1 − p)U(a) if b < r.

(3)

3. STATIC RESULTS

3.1. Prospect Theory’s Skewness Preference in the Small

This paper starts out with a seemingly innocuous result on prospect theory preferences

and small, skewed risks. We say that a risk is attractive or that an agent wants to take a risk

if the CPT utility of current wealth plus the risk is strictly higher than the CPT utility of

current wealth.

Theorem 1 (Prospect Theory’s Skewness Preference in the Small) For every wealth level

x and every ǫ > 0 there exists an attractive zero-mean binary lottery L ≡ L(p, b, a) with

a, b ∈ (−ǫ, +ǫ), i.e., L may be arbitrarily small.

Proof. We split the proof into three cases x > r, x < r, and x = r. We prove the equivalent

result that for all x ∈ R and every ǫ > 0 there exists a binary lottery L ≡ L(p, b, a) with

mean x and a, b ∈ (x − ǫ, x + ǫ) such that CPT (L) > CPT (x). L having mean x yields

x = (1 − p)a + pb ⇔ p =
x − a

b − a
.

Proof of case 1 (x > r). Choose a > r such that both a and b are gains. Then lottery L gives

the agent a utility of CPT (L) = w+(p)U(b) + (1 − w+(p))U(a). Therefore, the agent prefers

L over x if there exist a < x and b > x such that

0 <
(

1 − w+
(

x − a

b − a

))

U(a) + w+
(

x − a

b − a

)

U(b) − U(x)

= (U(b) − U(a))

(

w+
(

x − a

b − a

)

−
U(x) − U(a)

U(b) − U(a)

)

= p (U(b) − U(a))
︸ ︷︷ ︸

≥0




w+(p)

p
−

U(x)−U(a)
x−a

U(b)−U(a)
b−a



 .(4)
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Consider sequences (an, bn)n∈N, with an = x− p

n
and bn = x+ 1−p

n
. Note that by construction

U(bn) − U(an)

bn − an

=
U(bn) − U(x)

bn − x

bn − x

bn − an

+
U(x) − U(an)

x − an

x − an

bn − an

=
U(bn) − U(x)

bn − x
(1 − p) +

U(x) − U(an)

x − an

p.

Therefore, according to equation (4), the agent prefers lottery L over x if

(5) 0 <
w+ (p)

p
−

U(x)−U(an)
x−an

U(bn)−U(x)
bn−x

(1 − p) + U(x)−U(an)
x−an

p
=: ξn(p).

First, suppose that w+(p)−w+(0)
p−0

= w+(p)
p

→ ∞ for p → 0. Because the subtracted part in

equation (5) is bounded for every n, equation(5) is fulfilled for sufficiently small p. Moreover,

since (an) ր x and (bn) ց x we have an, bn ∈ (x − ǫ, x + ǫ) for n sufficiently large. Second,

suppose limp→0
w(p)

p
= w′(0) < ∞ exists. Since (an) ր x and (bn) ց x, for all p ∈ (0, 1),

lim
n→∞

ξn(p) =
w+ (p)

p
−

∂−U(x)

∂+U(x)(1 − p) + ∂−U(x)p
=: ξ(p) exists.(6)

By Assumption 2,

0 < w+′

(0) −
∂−U(x)

∂+U(x)
= lim

p→0
ξ(p).(7)

Since ξ(p) is continuous (Assumption 1) there exists p̃ ∈ (0, 1) such that also ξ(p̃) > 0, i.e.,

limn→∞ ξn(p̃) > 0. Therefore, equation (5), and also an, bn ∈ (x − ǫ, x + ǫ), is fulfilled for

n = n(p̃, ǫ) sufficiently large, i.e., L(p̃, bn(p̃,ǫ)(p̃), an(p̃,ǫ)(p̃)) is preferred over x for sure. The

proofs for x < r and x = r are given in the appendix. �

Corollary 1 (Unfair Attractive Gambles) For every wealth level x ∈ R there exists an

attractive, arbitrarily small binary lottery with negative mean.

Proof. The claim follows from continuity of the CPT preference functional (Assumption 1).

�

It is straightforward to formulate a local version of Theorem 1.

Corollary 2 (Local Result) At some given wealth level x there exists an attractive, ar-

bitrarily small zero-mean binary lottery even if Assumption 2 is relaxed by replacing λ :=
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supx∈R

∂−U(x)
∂+U(x)

with ∂−U(x)
∂+U(x)

. If U is differentiable at x, then Assumption 2 may be further

relaxed by replacing λ with 1.

Proof. The claim is evident from the proof of Theorem 1, and since ∂−U(x)
∂+U(x)

= 1 if U is

differentiable at x. �

The intuition of the proof of Theorem 1 is that CPT implies skewness preference. Ebert

(2011) illustrates that, for binary lotteries, skewness—according to both the tails and mo-

ments definitions—is exhaustively captured in the probability parameter. Therefore, we can

interpret the proof of Theorem 1 as the construction of a sufficiently right-skewed fair lottery.

By letting p go to zero, the binary lottery becomes more and more right-skewed. At some

point the lottery is so much skewed that a CPT agent wants to take it.

Skewness preference has been of major interest in the recent economics and finance litera-

ture. Numerous empirical and experimental papers find support for skewness preference (e.g.,

Kraus and Litzenberger (1976) and Boyer et al. (2010) for asset returns, Golec and Tamarkin

(1998) for horse-race bets, and Ebert and Wiesen (2011) in a laboratory experiment). More-

over, various economic behaviors and financial phenomena can be explained by skewness

preference, e.g., casino gambling (Barberis (2012)), underdiversification in stock portfolios

(Barberis and Huang (2008)), or positive expected first-day returns accompanied by negative

medium-run expected returns for initial public offerings (Green and Hwang (forthcoming)).

The famous coexistence of lottery and insurance demand under CPT stems from skewness

preference. In many of these situations, prospect theory may do such a good job in explaining

behavior because, through its probability weighting component, it implies skewness prefer-

ence. Other papers have argued like this. To best of our knowledge, however, Theorem 1 is

the first rigorous result that relates CPT to skewness preference.

3.2. Prospect Theory Agents are Risk-Averse and Risk-Seeking Nowhere

A decision-theoretic implication of Theorem 1, which is of independent interest, is on how

risk aversion manifests in CPT. A theory-free definition of risk aversion (risk-seeking) at

wealth level x is that any zero-mean risk is unattractive (attractive) to the agent. Numerous

qualitative statements on how the curvature of the value function affects risk aversion in CPT

can be found in the literature, but formal results are hard to find. A notable exception is the

paper of Schmidt and Zank (2008) who characterize the curvatures of value and weighting

function under which CPT exhibits strong risk aversion globally. Kahneman and Tversky

(1979, p. 285) themselves noted that “[Our previous analysis] restricts risk seeking in the

domain of gains and risk aversion in the domain of losses to small probabilities [...]” Here
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is a stronger result derived from weaker assumptions, i.e., from some probability weighting

only.

Corollary 3 At any wealth level a CPT agent is not risk-averse.

Proof. The statement is a direct consequence of Corollary 2: At any wealth level, there

exists an attractive risk. �

As in the Corollary 2, Assumptions 1 and 2 may be relaxed to obtain a tighter result locally.

It is straightforward to formulate analogous versions of Theorem 1 and its corollaries on

the unattractiveness of left-skewed gambles and risk-seeking under CPT. To this means, we

have to assume that probabilities associated with bad outcomes are overweighted. These

assumptions3 are complementary to our Assumptions 1 and 2 and likewise fulfilled by the

specifications in Observation 1. Then we have that, everywhere, there exists an arbitrarily

small, left-skewed binary risk which is unattractive, and that a CPT agent is everywhere

not risk-seeking. We find it striking that just some probability weighting “dominates” the

impact of the curvature of the value function. In particular, our result illustrates that the

intuition that the S-shaped value function of prospect theory implies risk aversion for gains

and risk-seeking for losses is misleading.

3.3. Large Risks

Next, note that we may construct an attractive risk which is arbitrarily small. However,

it must not be misunderstood that the attractive risk has to be small. Striking results on

large attractive gambles have been presented by Rieger and Wang (2006) who investigate

the occurrence of the St. Petersburg Paradox under CPT, and by Azevedo and Gottlieb

(forthcoming) who show that risk-neutral firms can extract unbounded profits from CPT

consumers. These authors construct attractive gambles that involve arbitrarily large payoffs,

and thus it is intuitive that their results also require assumptions on the value function.

Azevedo and Gottlieb (forthcoming) point out that for the power value function and for any

attractive binary gamble L the multiple cL (c > 1) is also attractive. In combination with

our result this then implies that there exist attractive gambles of any size. This we will make

precise in the next section.

3Specifically, λ̃ = infx∈R

∂
−

U(x)
∂+U(x) < ∞ must exist and 1. lim supp→0

w−(p)
p

> λ and 2.

lim supp→0
1−w+(1−p)

p
> λ . Evidently, these properties are also necessary for the famous inverse-S-shape,

and consistent with the likelihood-insensitivity definition of Wakker and Tversky (1995). Under these as-
sumptions one can construct an unattractive, left-skewed binary risk. The proof is similar to that of of
Theorem 1, with the main difference that one must let p → 1 rather than p → 0 to generate left-skew.
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3.4. The Case of a S-Shaped Power Value Function

In this section we consider a power value function which suffices the reflection property,

equation (2).

Assumption 3 (S-Shaped Power Value Function) The value function is given by

U(x) =







(x − r)α, if x ≥ r

−λ̂ (−(x − r))α , if x < r
(8)

with α ∈ (0, 1) and λ̂ > 1.

For this very choice, the Köbberling-Wakker index of loss aversion ∂−U(r)
∂+U(r)

is not well-defined

(in particular, it is not equal to λ̂) because the power function has infinite derivative at 0.

Therefore, Assumption 1 is not fulfilled, and thus Theorem 1 does not apply. However, we

can state a similar result under a slightly different assumption on the weighting functions.

Assumption 4 The weighting functions w+ and w− satisfy

1. lim supp→0
w+(p)

pα > λ̂.

2. lim supp→0
1−w−(1−p)

p
> 1.

Note that condition 1 in Assumption 4 is stronger than condition 1 of Assumption 2.

However, it is weaker than the assumption in Azevedo and Gottlieb’s Proposition 1 when

applied to power utility, which requires that the limit is infinite. This is the case for the

weighting functions of Tversky and Kahneman (1992) and Goldstein and Einhorn (1987)

under parameter restrictions that are typically fulfilled according to most empirical studies;

see Azevedo and Gottlieb (forthcoming) for an elaboration. For the weighting function of

Rieger and Wang (2006) our condition is not fulfilled.4 For the weighting function of Prelec

(1998) Azevedo and Gottlieb’s assumption is always true.

Theorem 2 (Skewness Preference in the Small for the S-Shaped Power Value Function)

Assume Assumptions 3 and 4 instead of Assumptions 1 and 2. For every wealth level x

and every ǫ > 0 there exists an attractive, zero-mean binary lottery L ≡ L(p, b, a) with

a, b ∈ (−ǫ, ǫ), i.e., L may be arbitrarily small.

4Note that there is a typo in Azevedo’s and Gottlieb’s paper, which says that their (stronger) condition
(1) is fulfilled. Actually, it is their condition (2) which is met unless the power utility parameter is equal to
one. In the latter case, none of their conditions is fulfilled, but our Assumption 1 is.
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Proof. Since U is differentiable everywhere except at r, the result for x 6= r follows from

Corollary 2. The case x = r is proven in the appendix. �

Power utility is differentiable everywhere except at the reference point. Therefore, note that

Corollary 2, which assumes just minimal probability weighting, also applies to power utility

whenever we are not at the reference point. Therefore, we need Assumption 4 exclusively to

cover gambling at the reference point. Finally, let us combine Theorem 2 with the result of

Azevedo and Gottlieb (forthcoming).

Corollary 4 (Skewness Preference in the Small and in the Large for the S-Shaped Power

Value Function) Assume Assumptions 3 and 4 instead of Assumptions 1 and 2. Then there

exists an attractive, zero-mean binary lottery of arbitrary size.

Proof. According to Theorem 2 there exists an attractive, arbitrarily small binary risk.

According to Azevedo and Gottlieb (forthcoming) it can be scaled up to any size. �

4. ON PROSPECT THEORY IN THE DYNAMIC CONTEXT

In this section we investigate the consequences of skewness preference in the small in the

dynamic context. Assume that Assumptions 1 and 2 are fulfilled. Alternatively, assume the

power utility case, i.e., Assumptions 3 and 4. We now define a stochastic process (Xt)t∈R+

that could reflect the cumulated returns of an investment project, or the price development

of an asset traded in the stock market. It could likewise model an agent’s wealth when

gambling in a casino. Let (Wt)t∈R+
be a Brownian motion and (Xt)t∈R+

a Markov diffusion

that satisfies

dXt = µ(Xt)dt + σ(Xt)dWt

where we assume µ : R → R and σ : R → (0, ∞) such that there exists a unique solution

with continuous paths.5 Note that the most frequently considered processes, arithmetic and

geometric Brownian motion, are covered by this definition. We denote by S the set of all

stopping times such that the agent bases his stopping decision only on his past observations.

Formally, all τ ∈ S are adapted to the natural filtration (Ft)t∈R+
of the process (Xt)t∈R+

. At

every point in time the naive prospect theory agent faces the problem of finding a stopping

time τ ∈ S that maximizes his prospect value CPT (Xτ , Ft) given his information Ft at time

5µ : R → R and σ : R → (0, ∞) are locally Lipschitz continuous Borel functions with linear growth, i.e.,
there exists a K > 0 such that |µ(x)|2 + |σ(x)|2 ≤ K(1 + |x|2) .
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t where

CPT (Xτ , Ft) =
∫

R+

w+(P(u(Xτ − r) > t | Ft))dt

−
∫

R−

w−(P(u(Xτ − r) < t | Ft))dt .

The agent stops at time t if and only if his prospect value CPT (Xτ , Ft) of any stopping

time τ ∈ S is less than or equal to what he gets if he stops immediately, which would be

CPT (Xt).

The probability weighting of prospect theory induces a time inconsistency. This has been

pointed out by Barberis (2012), who very well illustrates the mechanics along the lines of

a casino gambling example. While the agent plans to follow a certain strategy τ at the be-

ginning, she might decide for another one once her wealth has changed. A naive agent does

not anticipate that later she might deviate from her initial plan. Therefore, at every point

in time, the agent looks for a strategy τ that brings her higher CPT utility than stopping

immediately. If such a strategy exists, she continues to gamble—irrespective of her initial

plan. In the following, we always consider such a naive agent.

Because no analytical solution is available, Barberis (2012) investigates planned and actual

behavior by computing the CPT values of all possible gambling strategies that can be gen-

erated by a finite 50-50 binomial tree, for more than 8000 parameter combinations of the

CPT parametrization of Tversky and Kahneman (1992). The exercise could then be repeated

for other CPT parametrizations and for other stochastic processes. We now first present a

general solution for the case of an infinite time horizon which is independent of the CPT

specification, of the curvatures of the value and weighting functions, and of the reference

point (which my change over time). It holds for the general class of stochastic processes

specified above, in particular for processes with zero, positive, and negative drift. In Section

6 we discuss discrete and finite time.

Theorem 3 The naive agent never stops.

The intuition of the proof (given below) is to construct a stop-loss strategy, i.e., one where

the agent plans to stop if the process falls a little bit (arrives at a) and plans to continue

until it has risen significantly (up to b). This results in a right-skewed binary risk which the

agent prefers to stopping immediately due to Theorem 1 or, in the case of a power value

function, due to Theorem 2.

Proof of Theorem 3. Suppose the agent arrives at wealth x at time t, i.e., Xt = x. The

12



agent can stop and get a utility of CPT (x), or she may continue to gamble. She continues to

gamble if there exists a gambling strategy τ ∈ S, i.e., a stopping time such that CPT (x) <

CPT (Xτ ). We consider strategies τa,b with two absorbing endpoints a < x < b which stop if

the process (Xt)t∈R+
leaves the interval (a, b), i.e.,

τa,b = inf{s ≥ t : Xs /∈ (a, b)} .

Denote with p = P(Xτa,b
= b) the probability that with strategy τa,b the agent will stop at

b. Note that strategy τa,b results in a binary lottery for the agent. We first prove that the

agent never stops if Xt is a martingale. For every stopping time τa,b consider the sequence

of bounded stopping times min{τa,b, n} for n ∈ N. By Doobs optional stopping theorem

(Revuz and Yor, p. 70), E(Xmin{τa,b,n}) = Xt = x. By the theorem of dominated convergence

it follows that

E

(

Xτa,b

)

= E

(

lim
n→∞

Xmin{τa,b,n}

)

= lim
n→∞

E

(

Xmin{τa,b,n}

)

= x .

Hence, Xτa,b
implements the binary lottery L(p, a, b) with expectation x. From Theorem 1

(Theorem 2) it follows that there exist a, b ∈ I such that the agent prefers the binary lottery

induced by the strategy τa,b over the certain outcome x.

In the last step we prove that the naive agent never stops even if (Xt)t∈R+
is not a martingale.

Define the strictly increasing scale function S : R → R by

S(x) =
∫ x

0
exp

(

−
∫ y

0

2µ(z)

σ2(z)
dz

)

dy .

Define a new process X̂t = S(Xt) and a new value function Û(x) = (U ◦ S−1)(x). Note that

the loss aversion index of the value function Û equals the loss aversion index of U because

∂−Û(x)

∂+Û(x)
=

∂−Û(x)S ′(x)

∂+Û(x)S ′(x)
=

∂−U(x)

∂+U(x)
.

A CPT agent with the value function Û facing the process (X̂t)t∈R+
evaluates all stopping

times exactly as a CPT agent with value function U who faces (Xt)t∈R+
. The process X̂t =

S(Xt) satisfies (Revuz and Yor (1999, p. 303 ff))

P

(

X̂τa,b
= S(b)

)

= P

(

Xτa,b
= b

)

=
S(x) − S(a)

S(b) − S(a)
,

13



and hence it follows from the argument for martingales that the agent never stops. �

5. APPLICATIONS

5.1. Casino Gambling

Our first example is the continuous, infinite time horizon analogue to the discrete, finite

time setting of Barberis (2012). Let (Xt)t∈R+
be a Brownian motion with negative drift

µ(x) = µ < 0 and constant variance σ(x) = σ > 0, i.e.,

dXt = µdt + σdWt .

Due to the negative drift the agent loses money in expectation if he does not stop. Further

assume that the process absorbs at zero since then the agent goes bankrupt. From Theorem

3 it follows that the naive agent gambles until the bitter end, i.e., he will not stop gambling

unless he is forced to due to bankruptcy. From standard results in probability theory we

know that this will happen almost surely, i.e., P(Xτ = 0) = 1. We will compare this result

to that of Barberis (2012) in Section 6.

5.2. Exercising an American Option

Let (Xt)t∈R+
be a geometric Brownian motion with drift µ ∈ R and variance σ > 0, i.e.,

dXt = Xt(µdt + σdWt)

The agent holds an American option that pays

π(Xt) = max{e−αt(Xt − K), 0}

if exercised at time t where α > 0 denotes the risk-free rate. Here K ∈ R+ represents the

costs of investment. The American option could be interpreted as an investment opportunity,

i.e., a real option (compare Dixit and Pindyck (1994)). We assume µ < α to ensure that the

value of the expected value maximizer is finite. The payoff π(Xt) is incorporated into the

model by simply replacing the agent’s value function U(·) by Û(Xt) = U(π(Xt)). Here we

benefit from not having assumed differentiability of the value function. The agent is allowed

to exercise his option at every point in time t ≥ 0. From Theorem 3 it follows that the agent

will never exercise his option, i.e., τ = ∞. As limt→∞ e−αt(Xt − K)
P
−→ 0 the naive prospect

theory agent gets a payoff of zero even though he could get a strictly positive payoff by

exercising the option immediately whenever X0 > K.
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5.3. Prospect Theory Fails to Explain The Disposition Effect

The disposition effect (Shefrin and Statman (1985)) refers to individual investors being

more inclined to sell stocks that have gained in value (winners) rather than stocks that have

declined in value (losers). Numerous papers have addressed this phenomenon, and some of

the most immediate explanations such as transaction costs, tax concerns, or portfolio rebal-

ancing have been formidably ruled out by Odean (1998).

Several papers have investigated whether prospect theory can explain the disposition effect.

However, all of them seem to have done so without the consideration of probability weight-

ing (Barberis (2012, footnote 26)). Formal models (without probability weighting) have been

put forward just recently by Kyle et al. (2006), Barberis and Xiong (2009), and Henderson

(forthcoming). The results are mixed. Some find that prospect theory can predict the dispo-

sition effect, and others that it cannot, at least not under all relevant circumstances. Barberis

(2012) notes that the binomial tree in his paper, which models a casino, may likewise repre-

sent the evolution of a stock price over time. Then, naive investors may exhibit a disposition

effect, even though they plan to do the opposite of the disposition effect. Our result can be

related to the disposition effect in the same spirit.

We have shown that, in general, under probability weighting a naive CPT agent will sell nei-

ther losers nor winners at any time. As a consequence, a continuous time model of prospect

theory with probability distortion does not predict a disposition effect for naive investors.

This is especially striking as Henderson (forthcoming) shows that, in an analogous model

without probability distortion, prospect theory can explain the disposition effect.

Note that the continuous time price processes such as geometric Brownian motion that are

covered by our setup fit particularly well for financial market models. In any case, in the

next section we show that our result also applies to a wide range of continuous or discrete,

finite or infinite time horizon processes.

6. ROBUSTNESS TO DISCRETE AND FINITE TIME SPECIFICATIONS

While it may seem that our results are related to the continuous time setup, they are

not. Continuous time ensures that at every point in time the strategy set of the agent is

sufficiently rich. To illustrate this point consider a binomial random walk (Xt)t∈N with jump

size one and equal probability for up- and down movements. At every point in time t the

agent can choose the stakesize st ∈ [0, 1] (as a fraction of his wealth yt) to bet. The evolution

of his wealth is then given by

yt+1 = yt + styt(Xt+1 − Xt)
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with initial wealth y0 > 0. The following strategy (of choosing st) results in any given fair

binary lottery L(p, b, a). Choose st maximal such that yt+1 ∈ [a, b], i.e.,

st = max{s̃ ∈ [0, 1] : (1 + s̃)yt ≥ a and (1 + s̃)yt ≤ b}

= min{1 −
a

yt

,
b

yt

− 1} .

Due to the martingale property it follows from Doob’s optional sampling theorem that the

probabilities of hitting b and a that are induced by this strategy are fair, i.e., are p and 1−p,

respectively. If L(p, b, a) is attractive according to either Theorem 1 or 2, then the agent will

gamble with this strategy in mind. Since an attractive lottery exists at any wealth level (i.e.,

at any time t) the agent never stops.

The crucial point of this example is that the time space may be discrete if we ensure that the

strategy space is sufficiently rich. Specifically, a global result like Theorem 1 requires that,

at any time t, for any state Xt, there is at least one stopping strategy available that results

in an attractive gamble. This explains why the gambling behavior documented in Barberis

(2012) is different. Barberis considers behavior when gambling a 50-50 bet up to five periods.

This combination of symmetric gambles and finite (very short) time horizon ensures that the

“casino dries out of skewness.” That is, at some exogenous point in time, the casino does not

allow for gambling strategies any more that result in attractive gambles. The set of possible

gambling strategies becomes smaller, or coarser, over time.

With this in mind it is immediate that we can also have never stopping with a finite time

space. To this means, the casino must be able to offer a sufficiently skewed gamble (which

is attractive according to either Theorem 1 or 2) in a single period, i.e., in the final period.

This is just a less subtle way (compared to allowing for an infinite time horizon) to enrich

the strategy space. To illustrate this point we give a numerical example in Subsection A.4

in the appendix. There we assume the original finite, discrete time setting introduced by

Barberis (2012), and simply change the probability of an up-movement in the binomial tree

from 1/2 to 1/37. We show that an agent with CPT preferences of Tversky and Kahneman

(1992) and the parameter estimates from that paper never stops gambling for any finite or

infinite horizon.

If a casino cannot offer one-shot gambles with sufficient skewness, then several periods of

gambling might be necessary to construct an attractive gamble. The number of periods will

depend both on the maximal skewness of available one-shot gambles, and on the particular

CPT specification and parameter choices. Then, we will have an endgame effect as in Barberis

(2012). The analysis of this effect is extremely insightful to understand the interaction of
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probability weighting, time-inconsistency, and naiveté.

However, our result shows that such effects will vanish if a casino can offer a rich set of

gambling strategies. Likewise, endgame effects will vanish in financial markets that offer a

variety of products. In complete markets, in particular, we have that a naive CPT agent

never stops investing into a risky asset.

These thoughts point to a fundamental challenge for the application of prospect theory in

finite time horizon models of gambling or investment. In such models it will be hard to

disentangle whether the conclusions stem from the particular process assumed, from the

particular prospect theory preference specification—or from other features of the model one

might actually be interested in. In particular, the number of periods is important because

they influence the richness of gambling strategies. In other words, a tough question is to

what extent results are due to an endgame effect, which, according to the results of this

paper, will vanish when enriching the strategy space.

7. CONCLUSION

We set up a very general version of cumulative prospect theory (CPT) and point out

fundamental implications for that theory that stem from probability weighting alone. The

reference point and the curvatures of the weighting and value functions are immaterial to our

results. We first prove that probability weighting implies skewness preference in the small.

At any wealth level, a CPT agent wants to take a sufficiently right-skewed binary risk that

is arbitrarily small, even if it has negative expectation. To best of our knowledge, this is

first rigorous result that relates CPT to skewness preference. A corollary is that CPT agents

are not risk-averse, even if, for example, the value function is concave everywhere. While we

prove the existence of small attractive risks, under additional assumptions on the value func-

tion we show that attractive risks may, in fact, be quite large. For the power value function

of Tversky and Kahneman (1992) we show that for typical parameter estimates there exist

attractive risks of arbitrary size.

These static results have consequences for CPT in the dynamic context. We investigate

the predictions of probability weighting for a naive agent who is unaware of his time-

inconsistency, which is induced by probability weighting. Such a naive agent will never stop

a stochastic process that represents his wealth. The implications of this result are very ex-

treme. Naive agents will gamble in a casino until the bitter end, i.e., they will go bankrupt

almost surely. They will never exercise an American option, even if it is profitable to do so

right from the beginning. CPT does not predict the disposition effect for naive agents. These

results are formulated for a continuous, infinite time horizon.
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Then we illustrate that the results extend to discrete time, as long as the space of stopping

strategies that can be generated from the process is sufficiently rich. Likewise, we may also

allow for finite time. If the time space is such that the set of stopping strategies is coarse

in the sense that it does not allow to adopt stopping strategies that result in small, skewed

gambles, then our result will not apply. However, casinos and even more financial markets

allow for a very rich set of gambling and investment strategies. In complete markets, in par-

ticular, our never stopping result always applies.

In finite time there will be an endgame effect, which will be particularly pronounced for

coarse, discrete processes. Then the set of available stopping strategies decreases with every

time step. This may lead to interesting observations on the planned and actual behavior

of naive agents as has been illustrated by Barberis (2012). Generally, however, it is hard

to disentangle whether the conclusions stem from an endgame effect, i.e., are particular to

the process assumed—or whether the conclusions stem from other features of the model,

features one might actually be interested in. This may be a drawback for the application of

CPT in finite time horizon models of naive behavior. Infinite time, on the other hand, yields

very extreme predictions always. Therefore, the results of this paper are fundamental to any

paper that investigates prospect theory’s predictions for naive agents in dynamic decision

models.

APPENDIX A

A.1. Proof of Observation 1.

Here we show that all commonly used weighting functions exhibit likelihood insensitivity according to our

Assumption 2. Most results are not new, but we think that the following collection is convenient, and we are

not aware of any citable source.

The weighting function of Kahneman and Tversky (1979) given by

w+(p) =
pδ

(pδ + (1 − p)δ)
1
δ

is differentiable on (0, 1), and the derivative is given by

w′(p) = δpδ−1
(
pδ + (1 − p)δ

)− 1
δ

[

1 +
pδ(1 − p)δ−1

pδ + (1 − p)δ

]

.

For δ ≥ 0.28 the function is strictly increasing. For δ > 1 the function is S-shaped while for δ = 1 we

have w(p) = p. The interesting parameter range thus is δ ∈ (0, 1) for which w is increasing and likelihood

insensitive. For δ ∈ (0, 1) it is easy to see that

lim
pց0

w′(p) = lim
pր1

w′(p) = +∞.
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The weighting function of Prelec (1998) is given by

w(p) = (exp(−(− ln(p))a))b(9)

with both a and b strictly positive. According to Wakker (2010), p. 207, “Ongoing empirical research suggests

that a = 0.65 and b = 1.05 [...] are good parameter choices for gains.” These choice implies a strong likelihood

insensitivity. A special case of the function axiomatized by Prelec is for b = 1 :

w(p) = exp(−(− ln(p))a).

We show that w is likelihood insensitive if a < 1. Similar arguments imply an S-shape of w if a > 1. For

a = 1 the function has power form and is thus either convex (b > 1), linear, (b = 1), or concave b < 1, and

also not sufficing Assumption 2. The derivative of the general version, given by equation (9), is given by

w′(p) =
ab

p
(− ln(p))

a−1
· w(p).

It is straightforward that limpր1 w′(p) = +∞ for a < 1. To compute limpց0 w′(p), substitute x = − log(p),

and observe that

w′(p) =
ab

p
(− log(p))a−1(exp(−(− log(p))a))b =

ab

exp(−x)
xa−1 exp(−b · xa)

= a · b · xa−1 exp(x − b · xa)

= a · b · xa−1 exp(x(1 − b · xa−1)).

Note that p → 0 as x → ∞. The expression limx→∞ x(1− b
x1−a ) goes to infinity if and only if a < 1. Moreover,

exp(x(1 − b · xa−1))

x1−a

goes to infinity as x1−a is only of polynomial growth while exp(x(1 − b · xa−1)) is of exponential growth.

The weighting function of Goldstein and Einhorn (1987) is defined by

w(p) =
bpa

bpa + (1 − p)a

for a > 0 and b > 0. According to Wakker (2010), p. 208, “The choices a = 0.69 and b = 0.77 fit commonly

found data well.” These parameter choices imply a mild inverse-S-shape. The interesting parameter range for

both a and b is (0, 2). a = 1 and b = .77 imply linearity. For b = 0.77 fixed, a > 1 implies S-shape, and for

a < 1 the function is inverse-S-shaped, with likelihood insensitivity decreasing (i.e., stronger inverse-S-shape)

for a ց 0.
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The derivative is

w′(p) =
abpa−1 (bpa + (1 − p)a) − bpa

(
bapa−1 + a(1 − p)a−1(−1)

)

(bpa + (1 − p)a)
2

=
abpa−1

[
bpa + (1 − p)a − bpa + p(1 − p)a−1

]

(bpa + (1 − p)a)
2

=
abpa−1

[
(1 − p)a−1 ((1 − p) + p)

]

(bpa + (1 − p)a)
2

=
abpa−1(1 − p)a−1

(bpa + (1 − p)a)
2 .

The following holds for arbitrary b > 0. For 0 < a < 1 we have

lim
pց0

w′(p) = lim
pր1

= +∞,

which indicates a likelihood insensitive weighting function. For b > 0 and a = 1,

lim
pց0

w′(p) = b and lim
pր1

= 1.

For b > 0, a > 1,

lim
pց0

w′(p) = lim
pր1

= 0,

which is consistent with an S-shaped weighting function. The neo-additive weighting function is defined for

a, b positive, a + b ≤ 1, w(0) = 0 and w(1) = 1, and for p ∈ (0, 1) :

w(p) = b + ap.

That is, this function is (in general) discontinuous in 0 and 1 and linear on the interior of its domain.

Therefore, it is likelihood insensitive according to our Assumption 2 except for b = 0 and a = 1.

Finally, let us consider the weighting function proposed by Rieger and Wang (2006) which can be calibrated

such that Assumption 2 is not fulfilled. For a, b ∈ (0, 1) it is given by

w(p) =
3 − 3b

a2 − a + 1

(
p3 − (a + 1)p2 + ap

)
+ p

with derivatives at 0 and 1

w′(0) =
3 − 3b

a2 − a + 1
a + 1 and w′(1) =

3 − 3b

a2 − a + 1
(1 − a) + 1.

Moreover, it is easy to show that

∂

∂a
w′(0) > 0,

∂

∂a
w′(1) < 0,

∂

∂b
w′(0) < 0 and

∂

∂b
w′(1) < 0
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which implies that

sup
a,b∈(0,1)

w′(0) = lim
b→0

lim
a→1

w′(0) = 4 and sup
a,b∈(0,1)

w′(1) = lim
b→0

lim
a→0

w′(1) = 4.

It then easily follows that w′(0) and w′(1) may take any value in (0, 4). The smaller b, the more pronounced

is the inverse-S shape of w and also the steeper are the functions at 0, 1. By construction, w(a) = a, and

the derivative at 0 (1) is increasing (decreasing) in a. Thus a allows to account for different overweighting of

good- and bad-outcome probabilities. Generally, the higher b the more likely our Assumption 2 is fulfilled.

Unfortunately, we are not aware of any empirical estimates of the Rieger-Wang weighting functions. Moreover,

Azevedo and Gottlieb (forthcoming) show that their unbounded profits paradox emerges for this function in

combination with both power and exponential utility.

A.2. Full Proof of Theorem 1

Proof of case 2 (x < r.) Choose b < r such that both a and b are losses. In that case, lottery L = L(p, b, a)

secures the agent a utility of

CPT (L) = (1 − w−(1 − p))U(b) + w−(1 − p)U(a)

with 1 − p = b−x
b−a

. Therefore, the agent continues to gamble if there exist a < x and b > x such that

0 <

(

1 − w−

(
b − x

b − a

))

U(b) + w−

(
b − x

b − a

)

U(a) − U(x)

= U(b) − U(a) + U(a) − U(x) − w−

(
b − x

b − a

)

(U(b) − U(a))

= (U(b) − U(a))

(

1 − w−

(
b − x

b − a

)

+
U(a) − U(x)

U(b) − U(a)

)

= (1 − p) (U(b) − U(a))
︸ ︷︷ ︸

≥0

(

w−(1) − w−(1 − p)

1 − p
−

U(x)−U(a)
x−a

U(b)−U(a)
b−a

)

(10)

which is the analogue to equation (4). Therefore, similar to the proof of case 1, according to equation (10),

the agent prefers lottery L(p, bn, an) over x if

0 <
w−(1) − w− (1 − p)

p
−

U(x)−U(an)
x−an

U(bn)−U(x)
bn−x

(1 − p) + U(x)−U(an)
x−an

p
=: ξn(p),(11)

which is the analogue to equation (5). The proof continues similar to that of case 1.

Proof of case 3 (x = r.) Consider x = r such that a is a loss and b is a gain. In that case, lottery L(p, b, a)

secures the agent a utility of

CPT (L) = w−(1 − p)U(a) + w+(p)U(b) .
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Note that, since x = r by definition U(x) = U(r) = 0. Therefore, the chooses L over x if there exist a < x

and b > x such that

0 < w−(1 − p)U(a) + w+(p)U(b) − U(x)

= w+(p) (U(b) − U(a)) + (U(a) − U(x))
(
w−(1 − p) + w+(p)

)

= (U(b) − U(a))

(

w+(p) −
U(x) − U(a)

U(b) − U(a)

(
w−(1 − p) + w+(p)

)
)

= p (U(b) − U(a))
︸ ︷︷ ︸

≥0

(

w+(p)

p
−

U(x)−U(a)
x−a

U(b)−U(a)
b−a

(
w−(1 − p) + w+(p)

)

)

.(12)

First suppose w+(p)
p

→ ∞ for p → 0 then the condition follows from the fact that w−(1 − p) + w+(p) ≤ 2

two by definition. Suppose w+′
(0) exists then

lim
pց0

w−(1 − p) + w+(p) ≤ 1 + lim
pց0

w+(p) = 1 .

Consequently, the sufficient limit condition for gambling is like in case 1, equation (7).

A.3. Full Proof of Theorem 2

Suppose that an and bn are is in the proof of Theorem 1. For the power-S-shaped value function it is easily

seen that
U(x) − U(an)

x − an

=
0 + λ

(
p
n

)

(
p
n

)α = λn1−αpα−1

and
U(bn) − U(an)

bn − an

=

(
1−p

n

)α
+ λ

(
p
n

)α

1−p
n

+ p
n

= n1−α ((1 − p)α + λpα) .

Hence,

U(x)−U(a)
x−a

U(b)−U(a)
b−a

= λ
pα−1

((1 − p)α + λpα)
.

Therefore, according to equation (12), L is attractive if

⇐⇒ 0 < p(U(b) − U(a))

(
w+(p)

p
− λ

pα−1

((1 − p)α + λpα)

(
w−(1 − p) + w+(p)

)
)

=

(
w+(p)

pα
− λ

1

((1 − p)α + λpα)

(
w−(1 − p) + w+(p)

)
)

.

Since λ > 1, similarly to the proof of Theorem 1, case 3, it follows that

lim
p→0

w+(p)

pα
> λ
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is a sufficient condition for gambling. �

A.4. Example for Never Stopping in Discrete and Finite Time

Consider the five-period binomial decision tree of Barberis (2012). Assume a casino that offers a fair

version of French Roulette. We assume a fair casino to be close to the model of Barberis (2012). Then

the basic gamble considered by Barberis is the fair analogue to a bet on Red or Black, which occur with

equal probability. Now suppose the agent can also bet on a single number, which occurs with probability
1

37 . Consider an agent who only considers to bet 10 units of money on a single number. He is not even

able to form a gambling strategy over several periods. This implies a rather coarse strategy space, a feature

which is actually working against our never stopping result. However, the basic gamble is skewed whereas

the basic gamble Barberis (2012) is symmetric. Let (Xt)t∈R+
be the binomial random walk that represents

Figure 1.— Gambling Utility for a Symmetric and a Skewed gamble
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This figure shows the excess utility an agent gains from gambling (over not gambling) for different wealth

levels. The left panel shows the utility from gambling a fair 50-50 bet, while the right panel shows the utility

from gambling a fair 1 to 37 bet. The agent is a CPT maximizer with the parametrization of Tversky and

Kahneman (1992) with parameters given by α = 0.88, δ = 0.65, and λ = 2.25. The agent’s reference point

is 0.

his wealth. It increases by 360 with probability 1
37 and decreases by 10 with probability 36

37 , starting at some

level X0 ∈ R, i.e.,

P(Xt+1 = Xt + 360) =
1

37
and

P(Xt+1 = Xt − 10) =
36

37
.
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The agent is forced to stop in the final period T, which is exogenous, or if the random walk reaches zero.

Suppose the agent has CPT preferences given by the original parametrization of Tversky and Kahneman

(1992) with parameters as estimated by the authors. Figure 1 plots the excess utility from gambling for the

two basic gambles described above. For the 50-50 gamble (left panel), gambling is attractive over the area

of losses, and unattractive at the reference point and thereafter. This fits with the common intuition of risk

seeking over losses and risk aversion over gains, which is induced by the S-shaped value function.

Note that the probability weighting component has not much grip when evaluating 50-50 gambles. However,

the right panel shows that gambling the skewed basic gamble is attractive everywhere. The lowest utility

from gambling is at the reference point, but this utility is still positive (the exact value is +0.56). Therefore,

at any node of the binomial tree, the agent will want to gamble. That is, the agent never stops even though

we have finite time with an arbitrary number of gambling periods and a rather limited strategy space. Only

one basic gamble is available, but this gamble is sufficiently skewed to be attractive to this very CPT agent.

A stop-loss plan would grant even higher utility to the agent, but the one-shot gamble is attractive in itself

already.
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Köbberling, V. and P. Wakker (2005): “An Index of Loss Aversion,” Journal of Economic Theory, 122,

119–131.

Kraus, A. and R. Litzenberger (1976): “Skewness Preference and the Valuation of Risky Assets,”

Journal of Finance, 31, 1085–1100.

Kyle, A., H. Ou-Yang, and W. Xiong (2006): “Prospect Theory and Liquidation Decisions,” Journal

of Economic Theory, 129, 273–288.

Odean, T. (1998): “Are Investors Reluctant to Realize Their Losses?” Journal of Finance, 53, 1775–1799.

Prelec, D. (1998): “The Probability Weighting Function,” Econometrica, 66, 497–527.

Revuz, D. and M. Yor (1999): Continuous Martingales and Brownian Motion, Springer.

Rieger, M. O. and M. Wang (2006): “Prospect Theory and the St. Petersburg Paradox.” Economic

Theory, 28, 665–679.

Schmidt, U. and H. Zank (2008): “Risk Aversion in Cumulative Prospect Theory,” Management Science,

54, 208–216.

Shefrin, H. and M. Statman (1985): “The Disposition to Sell Winners Too Early and Ride Losers Too

Long: Theory and Evidence,” Journal of Finance, 40, 777–790.

Tversky, A. and D. Kahneman (1992): “Advances in Prospect Theory: Cumulative Representation of

Uncertainty,” Journal of Risk and Uncertainty, 5, 297–323.

von Neumann, J. and O. Morgenstern (1944): Theory of Games and Economic Behavior, Princeton

University Press.

Wakker, P. (2010): Prospect Theory for Risk and Ambiguity, Cambridge University Press.

Wakker, P. and A. Tversky (1995): “Risk Attitudes and Decision Weights,” Econometrica, 63, 1255–

1280.

Xu, Z. and X. Zhou (2011): “Optimal Stopping under Probability Distortion,” Working Paper.

25


	Introduction
	Prospect Theory Preferences
	Static Results
	Prospect Theory's Skewness Preference in the Small
	Prospect Theory Agents are Risk-Averse and Risk-Seeking Nowhere
	Large Risks
	The Case of a S-Shaped Power Value Function

	On Prospect Theory in the Dynamic Context
	Applications
	Casino Gambling
	Exercising an American Option
	Prospect Theory Fails to Explain The Disposition Effect

	Robustness to Discrete and Finite Time Specifications
	Conclusion
	Appendix A
	Proof of Observation 1.
	Full Proof of Theorem 1
	Full Proof of Theorem 2
	Example for Never Stopping in Discrete and Finite Time


