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Abstract   Closed sets of finitely-additive probabilities are statistical laws of statistically 

unstable random phenomena. Decision theory, adapted to such random phenomena, is applied 

to the problem of valuation of European options. Embedding of the Arrow-Debreu state 

preference approach to options pricing into decision theoretical framework is achieved by 

means of considering option prices as decision variables. A version of indifference pricing 

relation is proposed that extends classical relations for European contingent claims to 

statistically unstable random behavior of the underlying. A static hedge is proposed that can 

be called either the model specification hedge or the uncertainty hedge or the generalized 

Black-Scholes delta. The obtained structure happens to be a convenient way to address such 

traditional problems of mathematical finance as derivatives valuation in incomplete markets, 

portfolio choice and market microstructure modeling.   
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1. Introduction 

The goal of this paper is two-fold. First of all, we address the issue of reconciliation of the 

Arrow-Debreu state preference approach to derivatives valuation [1] with post-Savagian 

decision theory, concerned with the attitude toward uncertainty and requiring existence of sets 

of finitely-additive probabilities [27], [28], [32], [21], [13], [35]. Embedding of the Arrow-

Debreu securities market model into decision theoretical structure with arbitrary (in particular, 

uncountable) state space is achieved by considering option prices, along with options pay-offs 

and positions, as decision variables and by identifying profits as decision consequences and as 

utilities. Applying a form of indifference argument we obtain pricing relations for bounded 

pay-offs as well as an extension of classical Black-Scholes delta. In particular, the put-call 

parity pricing argument [18] can be seen as a particular case of this more general version of 

indifference valuation, where indifference is considered relatively to a rationally class.
5
 The 

resulting structure happens to be a convenient way to address derivatives valuation in 

incomplete markets as well as an opportunity to introduce in mathematical finance the 

alternative interpretation of the sets of finitely-additive probabilities as statistical laws of 

statistically unstable random phenomena [29], [30], [31]. Let us commence with a few words 

about this interpretation and then return in more details to the first issue. 

Countably-additive probability measures are the common tool for modeling of 

randomness in mathematics, in general, and in mathematical finance, in particular [6], [7], 

[17], [20], [22], [52]. Notwithstanding the well known reasons for this situation and the 

technical benefits it entails, let us focus on the two features that seem to us the drawbacks of 

this approach. 

First, it is known, that sometimes countable-additivity is too restrictive in order to 

characterize the absence of arbitrage opportunity and the weaker property of finite-additivity 

is required instead [5]. At the same time, it is known that the most general definition of the 

absence of arbitrage opportunities does not require countable additivity of probability measure 

and that finite-additivity is already sufficient [55].
6
  

The second feature is related to the fact that those phenomena in the financial industry that 

are commonly considered as random, and that are modeled today by means of countably 

additive probabilities, often happen to be at the same time statistically unstable [38]. Attempts 

to extend the possibilities or to avoid the contradictions of stochastic modeling in finance are 

                                                           
5
 As is often the case with papers addressing indifference valuation, we do not consider here the no-arbitrage 

setting. 
6
 See, for instance, [57] for a concise introduction to finitely-additive measures. 
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numerous [3], [9], [46], [19]. Here it is reasonable to quote A.N. Kolmogorov [36]:”Speaking 

of randomness in the ordinary sense of this word, we mean those phenomena in which we do 

not find regularities allowing us to predict their behavior. Generally speaking, there are no 

reasons to assume that random in this sense phenomena are subject to some probabilistic laws. 

Hence, it is necessary to distinguish between randomness in this broad sense and stochastic 

randomness (which is the subject of probability theory).” One can find similar views in E. 

Borel [10]. Therefore it is natural to classify statistically unstable random phenomena of the 

financial industry as a subclass of random in broad sense phenomena. But do statistically 

unstable, or “nonstochastic”
7
 random phenomena follow any statistical law?  

The positive answer to these questions was given first in [29], and then in [30]. Namely, it 

was proved that any random phenomenon, modeled by means of so called sampling nets, 

follows some statistical law in the form of a closed in *-weak topology family of finitely 

additive probabilities, called statistical regularity, and vice versa, any statistical regularity is a 

statistical regularity of a certain sampling net.
8
 This result will be referred to hereunder as the 

theorem of existence of statistical regularities [31]. In light of Kolmogorov’s statement quoted 

above, it suggests that, to describe random phenomena with some generality, statistical 

regularities are more appropriate tools than single countably–additive probability measures.
9
 

In other words, statistical regularities extend the means of mathematical description of 

randomness, while this description mainly rests today on stochastic processes. Yet, suspicion 

that this current practice underestimates randomness and risks related to financial markets is 

today commonplace.  

Closed sets of finitely-additive measures emerge also as a consequence of axioms of 

rational choice in several theorems of decision theory [27], [28], [32], [21], [13], [35]. Due to 

the theorem of existence of statistical regularities, the closed sets of finitely-additive 

probabilities acquire an interpretation different from the one traditionally attributed to them in 

decision theory (imprecise probabilities, non-unique priors, and robust statistics). In what 

                                                           
7
 The expression appeared in [54] in the context of Kolmogorov’s complexity, meaning “more complex than 

stochastic”. We use it here as a synonym of “statistically unstable”, following [29] and [31]. 
8
 The words statistical regularity should be understood as statistical law or statistical pattern. At the same time, 

net is a synonym of directedness and of generalized sequence 
9
 An illustration of this can be found in financial markets, where a single underlying is characterized by a family 

of probability distributions, represented by the implied volatility surface. Traditionally, this phenomenon is 

appreciated in terms of different subjective probability distributions of market participants concerning the 

random behavior of the underlying.  In the spirit of stochastic modeling, complex stochastic processes (with 

local or stochastic volatility) are designed in order to reproduce this phenomenon. The concept of statistical 

regularity tells that it is normal for a random phenomenon to be characterized by a family of finitely-additive 

probability distributions.  
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follows we shall remain within this new interpretation and our main source will be the first 

two references in the above list.
10

  

In order to create the link between decision theory and mathematical finance, we embed 

the Arrow-Debreu state preference approach to option pricing into the general decision 

theoretical structure. We achieve this, first of all, by means of considering securities prices as 

decision variables. In this way the problem of option pricing becomes the decision making 

problem. In particular, unlike the standard Arrow-Debreu model, where the state space is 

finite, we consider an arbitrary state space (in particular, uncountable). The form of decision 

theory we use, together with the notion of statistical regularities, allows for a separation 

between the shape of the utility function and the risk attitude of decision maker. Risk and 

uncertainty attitude are embedded in the axiomatic description of the decision maker’s 

rationality class. Using profits as (linear) utility functions, we show that the standard put-call 

parity argument, known as well as the static replication argument [18], can be put into a 

formal framework of decision theory and presented as an indifference argument [12], where 

indifference is considered relatively to a rationality class. As a result, we obtain an extension 

of the Black-Scholes formula for European options to the more general case of some 

nonstochastic random evolution of the stock price. Besides, we provide similar extensions for 

the forward and spot stock prices. Indifference prices happen to be identical for uncertainty 

avers and uncertainty prone decision makers. We propose a specific expression for the hedge 

ratio that may be thought of as a generalization of the classical Black-Scholes delta hedge. 

However, it may be thought of as hedging also the risk of misspecifying the formal model, or 

as a hedge against this type of uncertainty.   

The article is organized as follows. In Section 2.1 we recall the terminology and the set-

up of decision systems formalism.  In Section 2.2 we explore structural similarities between 

the agent-independent elements of the Arrow-Debreu model of securities market under 

uncertainty, following in this Avellaneda [4], and the canonical representations of decision 

problems (so called decision schemes). In Section 2.3 we define the indifference price for 

                                                           
10

 Unlike other works in this list, the sets of finitely additive probability measures appearing in the first two 

papers are not necessarily convex. This makes a direct link to statistical regularities. The convexity constraint 

present in  other works, while being of seemingly little importance in decision –making-context (due to the well 

known extremal properties of linear functionals), at the same time unduly narrows the spectrum of random 

phenomena. A detailed discussion of the reasons to this distinction belongs to decision theory and is beyond the 

scope of the present article. Such a discussion can be found, for instance, in [31] and [43], [44], [45]. Here we 

just comment, that the system of axioms to which we refer, apart from being the first work providing decision-

theoretical justification of statistical regularities, is free of any traces of information about the unknown and is 

formulated for arbitrary decision sets.  
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financial instruments with general pay-offs. Then (Section 2.4-2.5) we obtain extensions of 

some classical results of mathematical finance, namely the forward price and the Black-

Scholes formula for European options to the more general case of nonstochastic random 

behavior of the underlying. In Section 2.6 an expression of the static hedge already mentioned 

above is proposed. Appendix is dedicated to the examples of manifestations of uncertainty 

attitude in portfolio selection and bid-ask pricing problems. In the Appendix A we 

demonstrate that in what concerns portfolio choice, uncertainty aversion and uncertainty 

propensity, two distinct psychological features defined axiomatically, manifest themselves as 

the choices of respectively diversified and directional portfolios, even when utility functions 

are linear. In Appendix B we show that uncertainty averse and uncertainty prone decision 

makers are likely to respectively rise or lower their bid-ask spreads in situations of 

uncertainty. This provides the rationale to introduce a speculative component of the bid-ask 

spread and call it the uncertainty price. A discussion around some related topics concludes the 

paper. 

 

2. Price as a decision variable under nonstochastic randomness 

2.1. Basic features of the decision systems formalism 

In order to systematically apply decision theoretical approach to problematic of 

mathematical finance, throughout this article we shall use the terminology related to the 

formalism of decision system [31]. Let us try to recall briefly some basics of decision theory, 

in general, and of this formalism, in particular.  

Let there be a triplet  

𝑍 =  Δ,Θ, 𝐿 ,                                                                                      (1) 

where Δ,Θ − are arbitrary sets and 𝐿:Δ × Θ → ℝ is a real bounded function. These elements 

are endowed with the following meaning: Δ − is the set of decisions or acts, Θ − is the set of 

values of the unknown parameter, also called the state of Nature, 𝐿 −has the meaning of a 

utility or a loss function. The set of values of function 𝐿(∙,∙) constitutes the set 𝐶 ⊆ ℝ  of 

consequences. A decision maker, without knowing in advance which 𝜃 ∈ Θ will take place, 

chooses a decision 𝑑 ∈ Δ, that leads her to one of the possible consequences 𝐿(𝜃,𝑑), 𝜃 ∈ Θ. 

For instance, in finance the values of function 𝐿(𝜃,𝑑) may be the profits of the operation d. 

The triplet (1) is called a matrix decision scheme. Though this triplet is clearly the canonical 

representation of decision problems [15], [34], [37], [50], distinguishing it as the matrix 

decision scheme is important in the framework of the formalism of decision systems. 
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A decision maker is characterized by the preference relation  𝛽𝐶 on consequences (for 

instance, higher values of profits are better than lower). In order to make a justifiable 

decision, a decision maker must have a preference relation  𝛽Δ , or a criterion, on the set of 

decisions that would allow her to compare decisions.  Provided the preference relation on 

consequences, 𝛽𝐶 , is fixed, if the mapping, satisfying some natural consistency conditions, of 

the preference relation  𝛽𝐶 on the set of possible preference relations  ΒΔ  on Δ is not single-

valued, then it is said that uncertainty exists in the decision scheme Z (more rigorous 

definitions appear in [31], pp. 30-33)
11

. A system of axioms describing, in particular, decision 

maker’s behavior under conditions of uncertainty, puts some  𝛽Δ  in correspondence to a given 

 𝛽𝐶 . Such a system of axioms is called a projector, or a criterion choice rule,  𝜋 ∶ (𝑍,𝛽𝐶) →

 ΒΔ . Each criterion choice rule 𝜋 describes a certain rationality class, or a class of decision 

makers. The pair consisting in a decision scheme, 𝑍, and in a criterion choice rule, 𝜋, is called 

a decision system 𝑇 = (𝑍,𝜋).
12

 

According to fundamental theorems of decision theory, there exists a one to one 

correspondence between a rationality class and a specific functional form, the decision 

criterion (for example expected utility), representing the preference relation 𝛽Δ . We shall 

denote by 𝛱1the class of decision makers which is characterized by the uncertainty aversion 

axiom, called also the guaranteed result principle generalized for mass events [27, 28, 30]. For 

that class 𝛱1, the preference relation  𝛽Δ  on decisions is characterized by the following 

criterion  

𝐿𝑍
∗  𝑑 =  max

𝑝∈𝑃
   𝐿 𝜃, 𝑑 𝑝 𝑑𝜃 ,                                                         2  

where 𝐿 ∙,∙  has the meaning of some loss function, and   

𝐿𝑍
∗  𝑑 =  min

𝑝∈𝑃
   𝐿 𝜃, 𝑑 𝑝 𝑑𝜃 ,                                                         3  

where 𝐿 ∙,∙  has the meaning of some utility function, and where 𝑃 θ  is a statistical 

regularity, as mentioned in the introduction. This statistical regularity may have objective or 

                                                           
11

 This definition of uncertainty differs from the one traditionally used in decision sciences. It is a stronger 

concept, for it does not only refer to situations where one is not sure about which distribution applies, but to 

situation where it is not even known whether any distribution applies: it may be that a statistical regularity 

applies, but not necessarily a distribution, the latter being a countably-additive measure. It thus is a richer notion 

than the concept of “ambiguity”, falling short of being linked to “Hicksian” uncertainty. The concept referred to 

in this paper might help qualifying “sources” of uncertainty [54], but this is beyond the scope of this paper. It is 

closely related to the existence of so called uncertainty functions [16] and uncertainty measures [31] used in 

information and control theory.  
12

 If there exists some complementary information I about 𝜃 (like “𝜃 is random with statistical regularity P”), 

then the pair S=(𝑍, 𝐼) is called a model of decision situation and the pair 𝑇 = (𝑆,𝜋) is called decision system. 
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subjective origins, describing in both cases some random in a broad sense (or nonstochastic) 

behavior of the unknown parameter 𝜃 ∈ Θ. Given a statistical regularity 𝑃 θ  is constructed, 

the decision maker will order the decision set according to the values taken by the criterion. 

Criteria (2)-(3) are correspondingly a convex and a concave functional on the set of decisions 

Δ.   Furthermore, it was shown that when the uncertainty aversion axiom is replaced by an 

uncertainty propensity axiom, then criteria (2)-(3) change the convexity sign [44], [45].
13

 The 

class of the uncertainty prone decision makers will be denoted as Π2 .14
 It is reasonable to call 

the axiom describing the attitude toward uncertainty within a given rationality class as the 

uncertainty profile, stressing that this is one of the core psychological features of a decision 

maker. Further in this paper, we propose an interpretation of different uncertainty profiles in 

terms of preferences of portfolio choice. Note, however, that some results of this article are 

invariant for classes Π1 and Π2 . 

Finally, for brevity’ sake, we propose the following notations.  

Definition 1. Let 𝑓 𝜃  be a bounded real function, 𝑓: Θ → ℝ, and 𝑃 a statistical regularity on 

Θ. Denote 

 𝑓 𝑃 =
min
𝑝∈𝑷

  𝑓 𝜃 𝑝 𝑑𝜃 +  max
𝑝∈𝑷

  𝑓 𝜃 𝑝 𝑑𝜃 

2
                                      

and call it the statistical mean of the function f with respect to statistical regularity P. Denote 

 𝑓 𝑃 = max
𝑝∈𝑷

  𝑓 𝜃 𝑝 𝑑𝜃 −  min
𝑝∈𝑷

  𝑓 𝜃 𝑝 𝑑𝜃                                   

and call it the statistical variation of the function f with respect to statistical regularity P. 

 

 

2.2. Decision scheme as a model of securities market under uncertainty 

Recall the one-period Arrow-Debreu model of securities market under uncertainty [1]. 

Following Avellaneda [4] (pp 2-3), throughout this paper we shall understand this model in a 

narrow sense, meaning only those elements of this model that do not depend on the agent. Let 

Θ be the set of states of market θ𝑗 , 𝑗 = 1,… ,𝑀 and let 𝐹 be the cash-flow matrix  𝑓𝑖𝑗   of 

𝑖 = 1,… ,𝑁 securities in each state j of the market. Let Δ = ℝ𝑁  be the set of financial 

                                                           
13

 Similar results for convex P were obtained in [13] and extended, though in somewhat different setting, in [35] 
14 When the decision maker is characterized by uncertainty neutrality feature, then convexity of the criterion 

disappears and 𝐿𝑍
∗  𝑑 =  𝐿 𝜃,𝑑 𝑝 𝑑𝜃 , where 𝑝 is a single finitely-additive probability measure on Θ (see 

[43]).The class of uncertainty neutral decision makers will be denoted as Π3. 
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positions 𝑑 =  𝑑1,… ,𝑑𝑁 ∈ Δ and 𝑈 = ℝ𝑁  be the set of prices 𝑢 =  𝑢1,… , 𝑢𝑁 ∈ 𝑈 

corresponding to each of the N securities. There are only two values of time in this model: 𝑡 =

0, when positions 𝑑 are taken and the amount 𝑢𝑑 = 𝑢 × 𝑑 =  𝑢𝑖𝑑𝑖   
𝑁
𝑖=1 payed,  and 𝑡 = 𝑇, 

when the state of market θ𝑗 , 𝑗 = 1,… ,𝑀, unknown at the time moment 𝑡 = 0, is revealed and 

the cash-flow 𝐹𝑗
𝑑 = 𝑑 × 𝐹∙,𝑗 =  𝑢𝑖𝑓𝑖𝑗

𝑁
𝑖=1  collected.  

This model can be thought of in terms of one-step decision problem. Indeed, let the 

decision scheme 𝑍 =  Δ,Θ, 𝐿  is given, where 

Δ ≡ 𝐷 ∞ =  𝐷𝑛

∞

𝑛=1

,    𝐷𝑛 = 𝐷 × 𝐷 × …× 𝐷           
𝑛

,   𝐷 = 𝐹 × 𝑈 × 𝑄,                         (4) 

where Θ is an arbitrary set interpreted as the set of states of the market,  𝐹 −is a set of 

bounded real functions on Θ, 𝐹 =  𝑓:Θ → ℝ , that we interpret as pay-offs of financial 

instruments contingent on the state of the market 𝜃 ∈ Θ;  𝑈 −is the set of their prices, that we 

consider coinciding with the set of real numbers, 𝑈 =  𝑢,𝑢 ∈ ℝ ; 𝑄 −is the set of positions, 

that we as well consider coinciding with the set of real numbers, 𝑄 =  𝑞, 𝑞 ∈ ℝ , so that 

𝑞 > 0 corresponds to a long position, etc. Thus a choice of decision 𝑑 ∈ Δ means the choice 

of securities, their prices and their amounts or positions. This decision is made at the time 

moment 𝑡 = 0. At the future time moment 𝑡 = 𝑇, the state of market, or the value of the 

unknown parameter, 𝜃 ∈ Θ is observed. The set Θ has in our case the following structure:  

Θ = Θ1 × Θ2 × …  × Θ𝑁 ,                                                               (5) 

where Θ𝑖  is the set of values of the underlying i , 𝑖 = 1,2,… ,𝑁. If the underlying i is a stock, 

then the set Θ𝑖 = [0,∞) is the set of prices of this stock at time 𝑡 = 𝑇. If the underlying i is a 

risky fixed income instrument, then Θ𝑖 =  0,1 .  

The consequence 𝐿 𝑑,𝜃 , observed at the time moment 𝑡 = 𝑇, of the decision 𝑑 ∈ Δ, 

when the state of the market or the value of the unknown parameter is 𝜃 ∈ Θ, will be 

𝐿 𝑑,𝜃 =  𝑞𝑖 −𝑢𝑖 + 𝑓𝑖 𝜃  

𝑁𝑑

𝑖=!

                                                       (6)   

where 𝑑 =  𝑑1,𝑑2,… ,𝑑𝑁𝑑
 ∈ 𝐷𝑁𝑑 = 𝐷 × 𝐷 × …× 𝐷           

𝑁𝑑

∈ 𝐷 ∞ ≡ Δ and where 𝐷 is given by 

(4).   

Traditionally, when in the Arrow-Debreu model the number M of the states of market 

is greater than the rank of the cash-flow matrix 𝐹, the market is usually called incomplete (see 

details in [4]). Hence, decision scheme Z defined by (4) - (6) is by construction a model of an 

incomplete market.  
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Consider some examples. Let the decision at the time moment 𝑡 = 0 be a long position 

in the stock i. Then 𝑑 ∈ 𝐷, 𝑑 =  𝑓, 𝑢, 𝑞 ,𝑓 𝜃 = 𝜃𝑖 ∈ Θ𝑖 = [0,∞),𝑢 −is the bid price of the 

stock, 𝑞 −is the quantity of the stocks purchased and 𝐿 𝑑,𝜃 = 𝑞 −𝑢 + 𝜃𝑖 , 𝜃 =

 𝜃1,… ,𝜃𝑖 ,… ,𝜃𝑁 ∈ Θ = Θ1 × …× Θi × …  × Θ𝑁 . In what follows we shall consider that all 

purchase of securities are financed via a bank loan with interest rate r, thus leading to a 

repayment of 𝑒𝑟𝑇  and all proceeds from sales of securities are placed as bank deposits at the 

same interest rate, thus yielding proceeds of 𝑒𝑟𝑇 . That is if the purchase of q units of security 

𝑓 𝜃  at the price u is financed by the bank loan of qu money units, then 𝑑 ∈ 𝐷2 = 𝐷1 ×

𝐷1,𝑑 =  𝑑1,𝑑2 ,𝑑1 =  𝑓,𝑢, 𝑞 ,𝑑2 =  𝑒𝑟𝑇 , 1,−𝑞𝑢  and the consequences are  

𝐿 𝑑,𝜃 =  𝑞𝑖 −𝑢𝑖 + 𝑓𝑖 𝜃  

2

𝑖=!

= 

𝑞 −𝑢 + 𝑓 𝜃  − 𝑞𝑢 −1 + 𝑒𝑟𝑇 = 𝑞 −𝑢𝑒𝑟𝑇 + 𝑓 𝜃  .                                 (7) 

The resulting expression (7) means that the decision maker owes the bank the sum 𝑞𝑢𝑒𝑟𝑇and 

receives the pay-off 𝑞𝑓 𝜃  from the seller. In case of sale of the security 𝑓 𝜃  and deposit of 

proceeds, the consequences are  

𝐿 𝑑,𝜃 =  𝑞𝑖 −𝑢𝑖 + 𝑓𝑖 𝜃  

2

𝑖=!

= 

𝑞 𝑢 − 𝑓 𝜃  + 𝑞𝑢 −1 + 𝑒𝑟𝑇 = 𝑞 𝑢𝑒𝑟𝑇 − 𝑓 𝜃  .                                 (7′) 

The resulting expression (7’) means that the decision maker receives from the bank the sum 

𝑞𝑢𝑒𝑟𝑇and owes the pay-off 𝑞𝑓 𝜃  to the buyer. Remark that in this construction the riskless 

interest rate is a matter of choice as well.  

 Further, some other terminological parallels can be established. If the situation 

requiring the choice of decision 𝑑 ∈ Δ is such that the pay-offs, i.e. the elements of the set F, 

are fixed, then the problem of choice of the decision 𝑑 ∈ Δ is equivalent to the choice of 

securities prices and may be called correspondingly asset valuation or pricing decision 

problem. If, on the contrary, the prices of securities are fixed, but securities themselves are 

not, then the problem of choice of decision 𝑑 ∈ Δ is equivalent to the choice of portfolio of 

securities and may be called correspondingly portfolio choice or investor’s decision problem. 

If neither prices, nor securities are fixed, then one is tempted to call the problem of choice of 

decision 𝑑 ∈ Δ a market decision problem. In what follows in this paper we shall be 

concerned with pricing decision problems. Remark that decision 𝑑 ∈ Δ may be as well called 

a transaction. 
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In this way decision scheme Z (4-6) becomes an extension of the Arrow-Debreu model of 

the securities market under uncertainty to arbitrary (in particular, uncountable) state space. 

 

2.3. Indifference price and nonstochastic randomness  

According to (4-6), the value 𝐿 𝜃, 𝑑  is the actual profit and loss of the transaction 𝑑 ∈ 𝐷 

when the state of market is 𝜃 ∈ Θ.  In this paper we consider linear utility functions of profits, 

hence coinciding with profits themselves. We admit at first that the decision maker belongs 

either to the class 𝛱1 of uncertainty averse decision makers or to the class 𝛱2 of uncertainty 

prone decision makers and uses the form (3) of the criterion 𝐿𝑍
∗  𝑑  that has the meaning, 

correspondingly, of minimal and maximal expected profits related to the decision, or 

transaction 𝑑 ∈ Δ.  

If for two decisions 𝑑1,𝑑2 ∈ Δ,  

𝐿𝑍
∗  𝑑1 = 𝐿𝑍

∗  𝑑2                                                                      (8) 

then decision maker is indifferent between decisions 𝑑1 and 𝑑2. It is worth noticing that 

considering the value of the criterion 𝐿𝑍
∗  𝑑  as the value in the traditional economic sense

15
, 

we achieve a clear separation of the value and the price, which is one of the elements of 

decision 𝑑. In particular, for a portfolio of instruments, the prices are additive, while the 

values are not.  

 Let the decision maker evaluate the possibilities of purchase and sale of the security with 

pay-off 𝑓 𝜃 . Then, taking into account (7-7’), the purchase is effectively described by the 

decision  𝑑𝑏 =  𝑓, 𝑢, 𝑞  and the sale – by decision 𝑑𝑠 =  𝑓,𝑢,−𝑞 , and the consequences are, 

correspondingly, 𝐿 𝑑𝑏 ,𝜃 = 𝑞 −𝑢𝑒𝑟𝑇 + 𝑓 𝜃   and 𝐿 𝑑𝑠 ,𝜃 = 𝑞 +𝑢𝑒𝑟𝑇 − 𝑓 𝜃  . Let this 

decision maker belongs to the class 𝛱1. Inserting these expressions in (3) and (8) we obtain 

 min
𝑝∈𝑷

 𝐿 𝜃,𝑑𝑏 𝑝 𝑑𝜃 = min
𝑝∈𝑷

 𝐿 𝜃,𝑑𝑠 𝑝 𝑑𝜃 ,                                          9   

or 

− 𝑢 𝑒𝑟𝑇 + min
𝑝∈𝑷

  𝑓 𝜃 𝑝 𝑑𝜃 = 𝑢 𝑒𝑟𝑇 − max
𝑝∈𝑷

   𝑓 𝜃 𝑝 𝑑𝜃 ,                              10  

or, solving for u, 

𝑢 =  𝑒−𝑟𝑇    
min
𝑝∈𝑷

  𝑓 𝜃 𝑝 𝑑𝜃 +  max
𝑝∈𝑷

  𝑓 𝜃 𝑝 𝑑𝜃 

2
= 𝑒−𝑟𝑇 𝑓 𝑃 .                             11  

                                                           
15

More specifically, 𝐿𝑍
∗  𝑑  is the subjective value for the given individual when prices p may be regarded as 

being market equilibrium ones. Prices are objectively observable, values are subjective and may not be directly 

observed. 
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Thus, provided the riskless interest rate is r and the statistical regularity on Θ is 𝑃 𝜃 , the 

price (11), that has the form of the discounted statistical mean of the pay-off 𝑓 𝜃  with 

respect to statistical regularity 𝑃 𝜃 , is the one that makes our uncertainty averse decision 

maker indifferent between the purchase and the sale of the security 𝑓 𝜃 . 16 The price (11) 

may be considered as another version of the indifference price [12]. It is easy to verify that 

expression (11) is invariant for the classes of uncertainty aversion, 𝛱1, and uncertainty 

proneness, 𝛱2. In our case, however, a decision maker is indifferent between the role of the 

buyer and the role of the seller. Traditionally, indifference is required between an investment 

of a certain amount of money in a risky security and a riskless asset.  In our framework, 

however, the same question would not lead to the above invariance of the price. Indeed, the 

possible decisions are 𝑑𝑏 =  𝑓,𝑢, 1 ,𝑑𝑟 =  𝑒𝑟𝑇 , 1,𝑢  and the consequences are, 

correspondingly, 𝐿 𝑑𝑏 ,𝜃 = 1 ∙ (−𝑢 + 𝑓 𝜃 ) and 𝐿 𝑑𝑟 ,𝜃 = 𝑢 ∙  −1 + 𝑒𝑟𝑇 . For the class 

𝛱1 one obtains  

 𝑢 = 𝑒−𝑟𝑇min
𝑝∈𝑷

  𝑓 𝜃 𝑝 𝑑𝜃 ,                                              (12) 

while for the class 𝛱2 one obtains  

𝑢 = 𝑒−𝑟𝑇max
𝑝∈𝑷

  𝑓 𝜃 𝑝 𝑑𝜃 .                                               (13) 

These relations imply that, facing such an alternative, any uncertainty prone decision maker is 

ready to pay more for the risky asset than any uncertainty averse decision maker.  

Now, as is usually the case with asset valuation, the central question is what statistical 

regularity 𝑃 𝜃  does the decision maker use? In principle, this regularity can be a closed 

family of finitely-additive measures that the decision maker believes to describe the random 

evolution of the parameter 𝜃.  

Traditionally, in mathematical finance, the answer to this question is provided in terms of 

the absence of arbitrage opportunities and the fundamental theorem of asset pricing [6], [17]. 

Technically, it is assumed that if market prices are arbitrage-free, then the pricing measure is 

inferred by means of calibration procedures and extended to all existing pay-offs. The 

                                                           
16 In the case when nothing is known about 𝜃 save the set of its values, or when P is the set of all finitely-

additive probability measures on Θ, including all Dirac delta distributions, (11) becomes 

𝑢 = 𝑒−𝑟𝑇  
min
𝜃∈𝜣

 𝑓 𝜃 + max
𝜃∈𝜣

𝑓 𝜃 

2
.   In case the statistical regularity has stochastic character, that is when the set P 

contains a single stochastic - that is countably-additive - probability measure 𝑝, (11) becomes 

𝑢 =  𝑒−𝑟𝑇   𝑓 𝜃 𝑝 𝑑𝜃 . 
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indifference pricing methodology usually takes the form of expected utility maximization in 

order to specify the pricing measure [12]. However, additional statistical procedures may be 

resorted to (as entropy minimization in [49]). A synthesis of the two approaches, based on a 

dual optimization problem, is an active research topic [8]. 

Indifference (8) can be used as a requirement as well. When pay-offs are deterministic or 

risk-free, indifference, if used as a requirement, is analogical to the requirement of the 

absence of arbitrage opportunities. Similarly to the arbitrage-free hypothesis, one can evoke 

the indifference hypothesis and interpret market prices in this way. This analogy makes the 

case of the so called static replication, better known as put-call parity condition, and is known 

to produce results identical to those obtained in the framework of dynamic replication [18]. 

We claim that static replication arguments can be formally put into the framework of 

indifference that is proposed in this article. In the next two sections we show that requiring 

indifference yields conditions on the “fair” statistical regularity 𝑃 𝜃  in a sense which will be 

defined below, first in case of a simple stock and forward contract and then in the case of 

European options. 

 

2.4. Spot and forward stock prices as decision variables. 

Without any loss of generality, we shall consider the case, when   Θ = Θ1 =  

= [0,∞)  is the set of prices of a single stock at time 𝑡 = 𝑇. Consider the following decision 

problem. Let the spot stock price 𝜃0  be a decision in the situation where a decision maker 

chooses between long and short stock positions held at time 𝑡 = 𝑇 and financed with a bank 

account. Namely, let the decision corresponding to the long position, 𝑑𝑙 ∈ 𝐷 consist in the 

bank loan of 𝜃0 monetary units, purchase of 1 unit of stock at the price 𝜃0, sale of the stock at 

the price 𝜃. Then, 𝑑𝑙 =  𝑑1,𝑑2 ,𝑑1 =  𝜃,𝜃0 , 1 , 𝑑2 =  𝑒𝑟𝑇 , 1, 𝜃0 , and according to (7),  the 

profit of this operation is  

𝐿 𝑑𝑙 , 𝜃 = −𝜃0𝑒
𝑟𝑇 + 𝜃.                                                        (14) 

Correspondingly, the short-sale of the stock is described by decision 𝑑𝑠 =  𝑑1,𝑑2 ,𝑑1 =

 𝜃,𝜃0 ,−1 , 𝑑2 =  𝑒𝑟𝑇 , 1,−𝜃0 , and according to (7’), the profit of this operation is  

𝐿 𝑑𝑙 , 𝜃 = +𝜃0𝑒
𝑟𝑇 − 𝜃.                                                        (14’) 

Indifference relation (8) yields, 

min
𝑝∈𝑷

 (𝜃 − 𝜃0𝑒
𝑟𝑇)𝑝 𝑑𝜃 = min

𝑝∈𝑷
 (𝜃0𝑒

𝑟𝑇 − 𝜃)𝑝 𝑑𝜃                            15  

or  

𝜃0 =   𝑒−𝑟𝑇  𝜃 𝑃 .                                                             16  
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One can thus conclude that the choice of the spot price 𝜃0 becomes a condition on 

statistical regularity P that makes this statistical regularity “fair”. 

Now consider as decision the forward price 𝜃F for the stock supposing that its spot price is 

𝜃0. This means that long forward contract position is described as decision 

𝑑𝐹
𝑙 =  𝑑1,𝑑2 ,𝑑1 =  𝜃𝐹 ,𝜃0 , 1 ,  𝑑2 =  𝑒𝑟𝑇 , 1,𝜃0 , and, according to (7), the profit of this 

operation is  

𝐿 𝑑𝑙 , 𝜃 = −𝜃0𝑒
𝑟𝑇 + 𝜃𝐹 .                                                        (17) 

The short forward contract is described by decision 𝑑𝐹
𝑠 =  𝑑1,𝑑2 ,𝑑1 =  𝜃𝐹 ,𝜃0 ,−1 ,  

𝑑2 =  𝑒𝑟𝑇 , 1,−𝜃0 , and according to (7’), the profit of this operation is  

𝐿 𝑑𝑙 , 𝜃 = +𝜃0𝑒
𝑟𝑇 − 𝜃𝐹 .                                                        (17’) 

That profits (17) and (17’) do not depend on 𝜃 reflect the fact that the pay-off 𝑓 𝜃 = 𝜃𝐹  

is uniquely defined, or certain. Indifference condition (8) in this case yields 

 min
𝑝∈𝑷

 𝐿 𝜃,𝑑𝐹
𝑙  𝑝 𝑑𝜃 = min

𝑝∈𝑷
 𝐿 𝜃,𝑑𝐹

𝑠  𝑝 𝑑𝜃 .                                     18   

or 

 𝜃𝐹 = 𝜃0𝑒
𝑟𝑇 ,                                                                      19  

which is the classical forward price for a stock the spot price of which is 𝜃0 (see [26]). 

Relation (19) reflects the fact that when pay-offs are uniquely defined, indifference condition 

coincides with the no arbitrage condition.   

On the other hand, consider non-deliverable forwards, NDF. In this case, long NDF means 

the pay-off 𝑓 𝜃 = 𝜃𝐹 − 𝜃 at 𝑡 = 𝑇 and price 𝑢 = 0 at 𝑡 = 0. Hence the decision describing 

this transaction is 𝑑𝑁𝐹𝐷
𝑙 = 𝑑1 ∈ 𝐷1 ,𝑑1 =  𝜃𝐹 − 𝜃, 0,1  and, according to (7), the profit of this 

operation is  

𝐿 𝑑𝑁𝐹𝐷
𝑙 ,𝜃 = −𝜃 + 𝜃𝐹 .                                                        (20) 

  Decision describing the corresponding short transaction is 𝑑𝑁𝐹𝐷
𝑠 = 𝑑1 ∈ 𝐷1,𝑑1 =

 −𝜃𝐹 + 𝜃, 0,1  and, according to (7’), the profit of this operation is  

𝐿 𝑑𝑁𝐹𝐷
𝑙 ,𝜃 = +𝜃 − 𝜃𝐹 .                                                        (20’) 

The indifference condition (8) yields 

𝜃𝐹 =     𝜃 𝑃 .                                                                        21  

At the same time, from (19) we have 

𝜃0 = 𝑒−𝑟𝑇     𝜃 𝑃 .                                                                   22   

We have just obtained a relation similar to (16). In other words, the problem of choice of the 

forward contract value is equivalent to the problem of choice of the spot price. Provided the 
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prices 𝜃0 and 𝜃𝐹  are usually given by the market, equations (21) and (22) become conditions 

on the “fair” statistical regularity P on Θ.  

 

2.5. European options, forward contracts, put-call parity, conditions on P. 

The pay-off of a European call option is 𝑓 𝜃 = (𝜃 − 𝜃∗)+, where 𝜃 – is the underlying stock 

price at maturity date T, and 𝜃∗ - is the strike. Hence, from (11) we have 

𝑢𝑐 =  𝑒−𝑟𝑇     (𝜃 − 𝜃∗)+ 𝑃 .                                              23  

The pay-off of the corresponding European put is 𝑓 𝜃 = (𝜃∗ − 𝜃)+. Hence  

𝑢𝑝 =  𝑒−𝑟𝑇     (𝜃 − 𝜃∗)− 𝑃 .                                              24  

For the corresponding forward contract on the underlying stock  𝑓(𝜃) = 𝜃 − 𝜃∗ . Hence  

𝑢𝑓 =  𝑒−𝑟𝑇     𝜃 − 𝜃∗ 𝑃 =  𝑒−𝑟𝑇    ( 𝜃 𝑃 − 𝜃∗).                                      25  

Substituting (16), or (22), in (25) one obtains   

 𝑢𝑓 =    𝑒−𝑟𝑇    𝜃0𝑒
𝑟𝑇  − 𝜃∗ = 𝑒−𝑟𝑇  (𝜃𝐹  − 𝜃∗) = 𝜃0 − 𝜃∗𝑒−𝑟𝑇 ,                                  26  

where 𝜃0  – is the spot price, 𝜃𝐹 −is the forward price of the underlying, and 𝜃∗ - the strike. 

This quantity is usually called the value of the forward contract [26], but in practical terms it 

is the market price of the forward contract.  

Now it is easy to retrieve the classical put-call parity relation. Consider the following 

decision scheme. On one hand, a decision maker can buy the call at the price uc (23), 

obtaining the bank loan of uc monetary units with interest rate r, requiring a repayment of 

𝑢𝑐𝑒
𝑟𝑇 , and simultaneously sell the put for the price up (24), placing the proceeds as a bank 

deposit. This long call-short put transaction is effectively described by decision 𝑑𝑐𝑝
𝑙𝑠 =

 𝑑1,𝑑2,𝑑3,𝑑4 ∈ 𝐷4 ∈ ∆,𝑑1 =  (𝜃 − 𝜃∗)+,𝑢𝑐 , 1 ,𝑑2 =  𝑒𝑟𝑇 , 1,−𝑢𝑐 ,𝑑3 =  (𝜃∗ −

𝜃)+,𝑢𝑝 ,−1 ,𝑑4 =  𝑒𝑟𝑇 , 1, 𝑢𝑝  and accor-ding to (6),  the profit of this operation is  

𝐿 𝑑𝑐𝑝
𝑙𝑠 ,𝜃 = (−𝑢𝑐 + 𝑢𝑝)𝑒𝑟𝑇 +  𝜃 − 𝜃∗ + −  𝜃∗ − 𝜃 + =  

=  −𝑢𝑐 + 𝑢𝑝 𝑒
𝑟𝑇 +  𝜃 − 𝜃∗ .                                                27  

On the other hand, the decision maker can take a forward position with the forward price 

equal to the strike, 𝜃𝐹 = 𝜃∗, and with the same pay-off as the long call-short put transaction, 

that is  𝜃 − 𝜃∗ . The indifference value of this transaction is (26). The decision corresponding 

to this transaction is 𝑑𝐹 =  𝑑1,𝑑2 ∈ 𝐷2 ∈ ∆,𝑑1 =  𝜃 − 𝜃∗,𝑢𝑓 , 1 ,𝑑2 =  𝑒𝑟𝑇 , 1,−𝑢𝑓  and 

according to (7), the profit of this operation is  

𝐿 𝑑𝐹 , 𝜃 = −𝑢𝑓𝑒
𝑟𝑇 +  𝜃 − 𝜃∗ .                                                     28  
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Since pay-offs of decisions 𝑑𝑐𝑝
𝑙𝑠  and 𝑑𝐹  are the same 𝑓 𝜃 = 𝜃 − 𝜃∗, it is reasonable to ask 

whether there could exist some combination of prices that would make the decision maker 

indifferent between these decisions.  Indifference condition (8) yields then:  

min
𝑝∈𝑷

 𝐿 𝑑𝑐𝑝
𝑙𝑠 ,𝜃 𝑝 𝑑𝜃 = min

𝑝∈𝑷
 𝐿 𝑑𝐹 ,𝜃 𝑝 𝑑𝜃 ,                                     29  

or, taking into account (26) and (27), 

 𝑢𝑐 − 𝑢𝑝 = 𝑢𝑓 = 𝑒−𝑟𝑇  (𝜃𝐹  − 𝜃∗) = 𝜃0 − 𝜃∗𝑒−𝑟𝑇 ,                                          30  

which is the well known classical put-call parity relation (see, for instance, [26]).  

Substituting (23, 24) in (30) one obtains additional conditions on the statistical 

regularity 𝑃 𝜃  

    (𝜃 − 𝜃∗)+ 𝑃 −  (𝜃 − 𝜃∗)− 𝑃 = 𝜃0𝑒
𝑟𝑇 − 𝜃∗ = 𝜃𝐹  − 𝜃∗.                             31       

Provided the spot price 𝜃0 , or the forward price 𝜃𝐹 , is known, this condition on the statistical 

regularity 𝑃(𝜃) is the nonstochastic analogue of the put-call parity condition on the pricing 

measure of the usual stochastic case. Indeed, in the stochastic case, when 𝑃 =  𝑝  and 𝑝 is 

countably-additive, we would have from (31) 

 𝜃𝑝 𝑑𝜃 =  𝜃0𝑒
𝑟𝑇  ,                                                                            32  

a condition that locks in the expectation of the stock price and yields the Black-Scholes 

pricing formula for log-normal  𝑝 𝜃  with the volatility parameter σ [18].  

So, provided the current stock price is 𝜃0 and the riskless interest rate is r, relations (21), 

(22), (23), (24) and (31) characterize the forward price of the underlying, the European 

options prices and the “fair” statistical regularity 𝑃 𝜃 . 

 

2.6. The uncertainty hedge 

In the general case of some statistical regularity P, provided the price is the indifference 

price (11), the minimal expected profits of the uncovered position with pay-off 𝑓 𝜃  are equal 

for the buyer and the seller, and are negative. Indeed, substituting (11) back into (9) one has  

𝐿𝑍
∗  𝑑1 = 𝐿𝑍

∗  𝑑2 = min
𝑝∈𝑷

 𝐿𝑏 𝜃,𝑑1 𝑝 𝑑𝜃 =   min
𝑝∈𝑷

 𝑓 𝜃 𝑝 𝑑𝜃 −  𝑢 𝑒𝑟𝑇 =  

=  min
𝑝∈𝑷

 𝑓 𝜃 𝑝 𝑑𝜃 −   
1

2
 𝑓 𝑃 = −

1

2
 𝑓 𝑃   ≤ 0.                              33  

It is easy to see that the maximal expected pay-off of the uncovered option position is in this 

case positive and equals to 
1

2
 𝑓 𝑃   ≥ 0. However, when the statistical regularity P is 

stochastic, the minimal and the maximal expected pay-offs of the uncovered option position 
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are zero. Relation (33) shows that the use of stochastic probability measures may be the 

reason why market models and hence risk analysts systematically underestimate the risks of 

financial transactions.  

It is important to note that it is not yet clear whether in the case of statistical regularities of 

the general form the dynamic replication framework is theoretically possible. First of all, we 

simply do not know yet how to describe the time evolution of statistical regularities. Second, 

from the valuation view point, the delta hedge construction is not necessary in order to 

determine the price of the call option: the price is given by (22), (23) and (31). Third, from a 

risk management perspective, the knowledge of the delta is important, but even having 

obtained the above pricing relations, the derivation of the option price sensitivity to the 

change of the underlying price is not trivial.  

Nevertheless we can define a static hedge. Indeed let us compose a portfolio of a 

European option and of a position in the underlying and require that its minimal expected pay-

off were not negative. Represent this decision as 𝑑 =  𝑑1,𝑑2 ∈ 𝐷 × 𝐷 = 𝐷2 ∈ ∆,𝑑1 =

 𝑓 .  , 1,𝑢∗ ,𝑑2 =  𝑔 .  ,𝛿,𝜃0 ,  where 𝑓 𝜃  is as above, 𝑔 𝜃 = 𝜃 in order to represent a 

position on the underlying itself, 𝑢∗ is chosen as in (11), 𝜃0 is chosen as (22) and 𝛿 ∈ 𝑄. Then, 

according to (6), 

 𝐿 𝜃,𝑑 =    𝑞𝑖 −𝑢𝑖𝑒
𝑟𝑇 + 𝑓𝑖 𝜃  = −𝑢∗𝑒𝑟𝑇 + 𝑓 𝜃 +2

𝑖=1 𝛿 −𝜃0𝑒
𝑟𝑇 + 𝜃 .                34   

Then the value of the criterion is 

𝐿𝑍
∗  𝑑 = min

𝑝∈𝑷
 𝐿  𝜃,𝑑 𝑝 𝑑𝜃 =

=   min
𝑝∈𝑷

   𝑓 𝜃 𝑝 𝑑𝜃 −  𝑢∗ 𝑒𝑟𝑇 + 𝛿  −𝜃0𝑒
𝑟𝑇 +  𝜃𝑝 𝑑𝜃   ≥  

  ≥   min
𝑝∈𝑷

  𝑓 𝜃 𝑝 𝑑𝜃 −  𝑢∗ 𝑒𝑟𝑇 + 𝛿 min
𝑝∈𝑷

 −𝜃0𝑒
𝑟𝑇 +  𝜃𝑝 𝑑𝜃  = 

=  − 𝑢∗ 𝑒𝑟𝑇 + min
𝑝∈𝑷

 𝑓 𝜃 𝑝 𝑑𝜃 +𝛿  −𝜃0𝑒
𝑟𝑇 +  min

𝑝∈𝑷
 𝜃𝑝 𝑑𝜃  = 

=
min
𝑝∈𝑷

  𝑓 𝜃 𝑝 𝑑𝜃 − max
𝑝∈𝑷

   𝑓 𝜃 𝑝 𝑑𝜃 

2
+  𝛿

min
𝑝∈𝑷

 𝜃𝑝 𝑑𝜃 −  max
𝑝∈𝑷

  𝜃𝑝 𝑑𝜃 

2
. 

Requiring the last sum to be equal to zero, one yields: 

 

𝛿 = −
max
𝑝∈𝑷

  𝑓 𝜃 𝑝 𝑑𝜃 − min
𝑝∈𝑷

   𝑓 𝜃 𝑝 𝑑𝜃 

max
𝑝∈𝑷

 𝜃𝑝 𝑑𝜃 −  min
𝑝∈𝑷

  𝜃𝑝 𝑑𝜃 
= −

 𝑓 𝑃
 𝜃 𝑃

.                        35  
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This quantity of the underlying makes the minimal expected pay-off of the transaction  

𝑑 =  𝑑1,𝑑2 ∈ 𝐷1 × 𝐷1 ∈ ∆ non-negative, as min
𝑝∈𝑷

 𝐿  𝜃,𝑑 𝑝 𝑑𝜃 ≥ 0. It is easy to see 

that the same 𝛿  makes the maximal expected pay-off of the transaction 𝑑 =  𝑑1,𝑑2 ∈ ∆ 

non-positive, i.e. max
𝑝∈𝑷

 𝐿  𝜃,𝑑 𝑝 𝑑𝜃 ≤ 0. From these two conditions it follows that  

 𝐿  𝜃, 𝑑 𝑝 𝑑𝜃 = 0, ∀𝑝 ∈ 𝑷.                                                (36)  

This means that the analogue of the delta hedge in this generalized – not necessarily stochastic 

- setting may guarantee control only over the expectation of the transaction pay-off. This is 

yet another argument in order to question the dynamic replication framework as it is done in 

[18].  

Though expression (35) could appear at first glance as a “model risk hedge”, in the 

light of the broader description of randomness by means of statistical regularities, however, 

the “model risk” in this sense seems to be a misnomer. Therefore, we prefer to call (35) a 

generalized delta or an uncertainty hedge. 

 

3. Discussion 

It seems that considering the pricing problem as a problem of choice, or a decision 

problem, is a natural framework for the static replication argument [18], and, apart from 

allowing for a consistent introduction of the concept of nonstochastic randomness in 

mathematical finance, is an effective way to reconcile Arrow-Debreu state preference 

approach to option pricing and decision theory. This more general framework has enabled us 

to obtain extensions of classical relations of forward stock price (21), of European options 

prices (24-25), of conditions on fair statistical regularity (22, 31) as well as an expression for 

a generalized delta (35). The generalized delta illustrates the idea that in cases of 

nonstochastic randomness, one can hedge the pay-off of an option position only in 

expectation. On the other hand, this hedge can be considered as a hedge against what is 

known as the model specification risk However, in the light of the description of randomness 

by means of statistical regularities, “model risk” seems to be a misnomer. As argued above, 

the hedge ratio thus defined should rather be regarded as an uncertainty hedge.  

The pricing formulas are invariant with respect to changes from the uncertainty aversion 

class 𝛱1 to the uncertainty proneness class 𝛱2. Which means that, in the same decision 

situation 𝑆 =  𝑍,𝑃 , the same price makes uncertainty averse and uncertainty prone decision 

makers indifferent between the roles of buyer and of seller of safety. Therefore one is tempted 
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to call this indifference price uncertainty neutral price. It seems that for any statistical 

regularity 𝑃(𝜃) and any pay-off 𝑓(𝜃) one can define a unique finitely-additive probability 

measure 𝑝𝑓out of relation 

min
𝑝∈𝑷

  𝑓 𝜃 𝑝 𝑑𝜃 +  max
𝑝∈𝑷

  𝑓 𝜃 𝑝 𝑑𝜃 

2
=   𝑓 𝜃 𝑝𝑓 𝑑𝜃 .                            (41) 

where 𝑝𝑓  may be called the uncertainty neutral finitely-additive probability measure. This 

new measure 𝑝𝑓  may or may not belong to the original statistical regularity 𝑃 𝜃 . 

Among the features that distinguish the treatment of the asset valuation problem proposed 

in this article, we would like to draw attention to a few items: First, to the treatment of the 

pricing problem as a decision making issue, or choice problem; second, to the use of linear 

utility functions (or simply profit and loss functions in our case). These particularities are 

appealing from a practical viewpoint. First of all, no one knows better than a market maker or 

a trader that prices he indicates are his decisions. The observed transaction price is the result 

of his choice, preceded by a negotiation process. This is so for an OTC market, where the 

negotiation time is long, as well as for any organized market, where the negotiation time is, 

however, very short. The impact of such a pricing decision on the profit and loss for an 

important swap transaction could be drastic. All market price movements, especially rallies 

and sale-offs, are results of combined decisions: buy or sell, at which price, and which 

quantity. Our framework makes this intuitively clear point precise and seems to offer new 

possibilities of market microstructure modeling (Appendix B). In particular, we show that 

market participants’ uncertainty profiles are crucial for the bid-ask spreads pricing strategies.  

It turns out that one can interpret the half value of the difference between the largest and the 

smallest bid-ask spreads in the limit order book as the uncertainty price, the speculative 

component of the bid-ask spreads.  Second, linear utility functions of wealth, or of wealth 

variations, or simply profit and losses, are consequences of market participants’ decisions and 

constitute what is really of interest to them. This supports the idea to model preferences on 

consequences by the natural order of real numbers.  

At the same time, behavioral particularities of the participants, their aversion, proneness, 

or neutrality toward uncertainty are described in terms of axioms of preferences on actions 

(decisions). These preferences on decisions are characterized by convex, concave or linear 

functionals, requiring existence of the above-mentioned statistical regularities. It is well 

known that in asset valuation problems one deals, due to the no arbitrage argument, with 

linear functionals called pricing operators [48]. In the context of portfolio choice, 
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requirement of diversification benefits leads to convex functionals similar to (2), called 

coherent risk measures [2]. Traditionally, these two frameworks impose the additional 

technical requirement that probability measures representing these functional be countably-

additive. This requirement drastically misrepresents the reality of randomness, even if it 

allows using stochastic processes in models which disputably (mis) represent markets.  

Decision theory, studying consistent representations of preferences on the set of possible 

decisions has the potential to combine the two contexts (asset valuation, portfolio selection) 

without requiring countable-additivity. Decision theory as such supports the idea that all 

economic decisions, including pricing decisions, are driven by preferences of economic 

agents. However, the relatively low momentum with which some contemporary versions of 

decision theory find their way into mathematical finance (comparatively to the expected 

utility theory [12], [41]), might be linked to their requirements regarding the existence of sets 

of additive or of non-additive measures, hence in their relation to statistics in general, and to 

statistical decision theory [15], in particular. The interest in bridging the gap between 

decision-theoretical set functions and statistics of frequencies has been of interest for quite a 

while [24], [39], [40], [56]. According to Ivanenko and Labkovsky [29], the closed families of 

finitely-additive probabilities, which appeared as the consequence of the version of axiomatic 

decision theory developed in [27] and [28], describe statistically unstable or nonstochastically 

random mass phenomena. This theoretical result, known as the theorem of existence of 

statistical regularities, offers an alternative to the traditional point of view, according to which 

a random phenomenon evolves following a single given probability distribution of which one 

can state only that it belongs to a certain set of distributions. This traditional interpretation of 

sets of probability measures is specific to robust statistics [25] as well as to neo-Bayesian 

decision-theoretical settings, where such sets are called multiple priors [21]. The theorem of 

existence of statistical regularities is an essential contribution to an alternative view, departing 

from this traditional interpretation, and provides, in our opinion, the frequentist justification of 

probability axioms. Paraphrasing A.N. Kolmogorov’s remark, we have no reasons to assume 

that a real life random phenomenon is characterized by a single probability measure. We 

consider Mandelbrot’s contributions as going in the same direction. 

Last, but not least, it seems reasonable to suggest that further exploration of statistical 

regularities of nonstochastic randomness may happen to depart at the same time from current 

underestimations of risk in financial transactions. 
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Appendix A.  On the definition of uncertainty profile 

  Uncertainty profile is an important factor in portfolio choice. Indeed, uncertainty averse 

investors would systematically prefer a neutral or fully diversified investment portfolio to a 

directional or concentrated one, while uncertainty prone investors would prefer the opposite. 

The difference between the two types of behavior has its roots in psychology. The uncertainty 

aversion feature requires from the decision maker, in situations where he has no information 

about what will happen in the future, to always choose a “middle of the road” solution, if it is 

available. This principle is known as the guaranteed result principle generalized for mass 

events [30] and represents one of the forms of uncertainty aversion. To the contrary, the 

uncertainty proneness feature pushes the decision maker to choose each time solutions as if he 

knew the path of the future with certainty. In traditional expected utility theory, these effects 

are modeled by means of the convexity sign of the utility function. In [41] it was shown that 

the concavity of the utility function is the reason for preference of diversified portfolios. 

While in the present version of decision theory, these effects are modeled directly by means 

of axiomatic description of psychological features of a decision maker toward an uncertain 

future. 

We reproduce hereunder the axiomatic definition of the class П1 of uncertainty aversion 

and its characterization theorem [27], [28], [30]. One obtains the characterization of the class 

П2 of uncertainty proneness by means of changing the inequality sign in condition C3 [44], 

[45].  

Definition A1 Let ℤ be the class of all ordered triples of the form 𝑍 =  Θ,𝑈, 𝐿 , where 

Θ,𝑈 are arbitrary nonempty sets and 𝐿: Θ ×  𝑈 → ℝ is a real bounded function. The triple 𝑍 is 

called a decision scheme. We denote by ℤ(Θ) the subclass of all decision schemes of the form 

𝑍 =  Θ, . , .  , where the set Θ is fixed. 
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Definition A2 We define a criterion choice rule to be any mapping π, defined on ℤ(Θ) 

and associating to every scheme 𝑍 = (Θ,𝑈, 𝐿) ∈ ℤ(𝛩) some real function 𝐿𝑍
∗ (∙), a criterion, 

determined on 𝑈. We denote the class of all criterion choice rules by Π(Θ) and include in the 

subclass Π1 Θ ⊂ Π(Θ) all criterion choice rules that satisfy the following three conditions:  

C1. If 𝑍𝑖 =  𝛩,𝑈𝑖 , 𝐿𝑖 ∈ ℤ 𝛩 , 𝑖 = 1,2,𝑈1 ⊂ 𝑈2 , and 𝐿1 𝜃,𝑢 = 𝐿2 𝜃,𝑢  ∀𝑢 ∈ 𝑈1,∀𝜃 ∈

𝛩, then 𝐿𝑍1

∗  𝑢 = 𝐿𝑍2

∗ (𝑢)  ∀𝑢 ∈ 𝑈1.  

C2. If 𝑍 =  𝛩,𝑈, 𝐿 ∈ ℤ 𝛩 , 𝑢1,𝑢2  ∈ 𝑈, then if 𝐿 𝜃,𝑢1 ≤ 𝐿 𝜃, 𝑢2 ,∀𝜃 ∈ 𝛩, then 

𝐿𝑍
∗  𝑢1 ≤ 𝐿𝑍

∗ (𝑢2), and if  𝑎, 𝑏 ∈ ℝ,𝑎 ≥ 0 and 𝐿 𝜃, 𝑢1 = 𝑎𝐿 𝜃,𝑢2 + 𝑏, ∀𝜃 ∈ 𝛩, then 

𝐿𝑍
∗  𝑢1 = 𝑎𝐿𝑍

∗  𝑢2 + 𝑏. 

C3. (The principle of guaranteed result) If 𝑍 =  𝛩,𝑈, 𝐿 ∈ ℤ 𝛩 , 𝑢1 ,𝑢2,𝑢3  ∈ 𝑈 and 

𝐿 𝜃,𝑢1 + 𝐿 𝜃,𝑢2 = 2𝐿 𝜃,𝑢3  ∀𝜃 ∈ 𝛩, then 2𝐿𝑍
∗ (𝑢3) ≤ 𝐿𝑍

∗  𝑢1 + 𝐿𝑍
∗ (𝑢2). 

The next Theorem (which is a simplified version of Theorem 1 from [27, 28] or Theorem 

2 from [30] or Theorem 5.2 from [31]) establishes the link between the properties of 𝐿𝑍
∗  ∙  

and its structure.  

Theorem Criterion 𝐿𝑍
∗ (∙) possesses the properties C1-C3 if and only if it has the following 

form 

  1                                             𝐿𝑍
∗  𝑢 =  max

𝑝∈𝑷
   𝐿 𝜃,𝑢 𝑝 𝑑𝜃 , 

where P is a statistical regularity on 𝛩. 

Note that in the above definition and theorem, the sets 𝑈,𝛩 are arbitrary nonempty sets 

and the loss function 𝐿:𝑈 × 𝛩 → ℝ is bounded. If instead of the loss function L one considers 

profit and loss function 𝐿 = −𝐿,  as we do in this article, then condition C3 of the above 

Definition becomes 

C3’. If 𝑍 =  𝛩,𝑈, 𝐿  ∈ ℤ 𝛩 , 𝑢1 ,𝑢2,𝑢3  ∈ 𝑈 and 𝐿  𝜃,𝑢1 + 𝐿  𝜃,𝑢2 = 2𝐿  𝜃,𝑢3  ∀𝜃 ∈

𝛩, then 2𝐿𝑍
∗ (𝑢3) ≥ 𝐿𝑍

∗  𝑢1 + 𝐿𝑍
∗ (𝑢2). 

The criterion (1) of maximal expected losses then becomes the criterion of minimal 

expected utility  

 1′′                                          𝐿𝑍
∗  𝑢 =  min

𝑝∈𝑷
   𝐿  𝜃,𝑢 𝑝 𝑑𝜃 .   

We outline below the demonstration that if a decision maker uses criterion (1’), then 

Condition 3 can be interpreted as the diversification argument (see Ivanenko (2010), page 

111). 

Let as before the decision scheme 𝑍 = (Θ,𝐷, 𝐿 . , .  ) be given by (4-7). Let  

  2                 𝑑1 =  +1; 𝑓1 .  ;𝑢1 ,     𝐿 𝜃,𝑑1 = −𝑢1𝑒
𝑟𝑇 + 𝑓1 𝜃 ,   
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 3                 𝑑2 =  +1; 𝑓2 .  ;𝑢2 ,       𝐿 𝜃,𝑑2 = −𝑢2𝑒
𝑟𝑇 + 𝑓2 𝜃 ,        

 4                  𝑑3 =  +1;
𝑓1 .  + 𝑓2 .  

2
;
𝑢1 + 𝑢2

2
 ,

𝐿 𝜃,𝑑3 = −
𝑢1 + 𝑢2

2
𝑒𝑟𝑇 +

𝑓1 𝜃 + 𝑓2 𝜃 

2
.   

Then it is obvious that 

  5                                  𝐿 𝜃,𝑑1 + 𝐿 𝜃,𝑑2 = 2𝐿 𝜃,𝑑3 ,∀𝜃 ∈ Θ.                                                               

Provided  

  6                                  𝐿𝑍
∗  𝑑 =  min

𝑝∈𝑷
   𝐿 𝜃,𝑑 𝑝 𝑑𝜃 ,                                                                                  

show that  

  7                                   𝐿𝑍
∗  𝑑1 + 𝐿𝑍

∗  𝑑2 ≤ 2𝐿𝑍
∗  𝑑3 .                                                                                       

Indeed, 

 10                𝐿𝑍
∗  𝑑1 = min

𝑝∈𝑷
   𝐿 𝜃, 𝑑1 𝑝 𝑑𝜃 = −𝑢1𝑒

𝑟𝑇 +  min
𝑝∈𝑷

   𝑓1 𝜃 𝑝 𝑑𝜃 ,                   

  11             𝐿𝑍
∗  𝑑2 = min

𝑝∈𝑷
   𝐿 𝜃,𝑑2 𝑝 𝑑𝜃 = −𝑢2𝑒

𝑟𝑇 +  min
𝑝∈𝑷

   𝑓2 𝜃 𝑝 𝑑𝜃 , 

 12                𝐿𝑍
∗  𝑑3 =  min

𝑝∈𝑷
   𝐿 𝜃,𝑑3 𝑝 𝑑𝜃 =                       

= −
𝑢1 + 𝑢2

2
𝑒𝑟𝑇 +  min

𝑝∈𝑷
   

𝑓1 𝜃 + 𝑓2 𝜃 

2
𝑝 𝑑𝜃 .          

Since  

 13                min
𝑝∈𝑷

 𝑓1 𝜃 𝑝 𝑑𝜃 +  min
𝑝∈𝑷

 𝑓2 𝜃 𝑝 𝑑𝜃 ≤min
𝑝∈𝑷

   (𝑓1 𝜃 + 𝑓2 𝜃 )𝑝 𝑑𝜃 .   

we obtain (7).  

This confirms that to be uncertainty averse means to prefer in situations of uncertainty 

diversified, or neutral portfolios to directional or concentrated ones. At the same time, 

uncertainty proneness is modeled by means of a reversion of the inequality, or of the 

preference sign of actions, in the corresponding conditions C3 and C3’, while keeping the 

same preference on consequences. This change results in the corresponding change of the 

extremum type in expression 1 and 1’ (see details in [44], [45]). It can be shown in a 

similar manner that uncertainty prone investors prefer directional portfolios to diversified 

ones.  

Appendix B.  On the nature of bid-ask spreads 

The nature of bid-ask spreads in limit order books is a recurrent and important theme 

in market microstructure research [11], [33], [47]. Traditionally, bid-ask spreads are 
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considered as compensations for providing liquidity. It is assumed in standard financial 

analysis that bid-ask spreads can result from factors as order processing, adverse information, 

and inventory holding costs [14], [23]. However, there are still discrepancies between 

different schools of thought concerning this issue. In particular, it was observed that for a 

developed limit order book the market participants can be divided at least in two groups, 

patient and impatient investors, and that patterns of their behaviors and potential market 

impacts are different [58]. 

The formalism described in 2.1-2.3 is also a convenient tool to model market 

microstructure phenomena. We suggest that uncertainty aversion or proneness can be 

important drivers of bid-ask spread dynamics and factors defining the shape of the limit order 

book. Uncertainty price can be defined as a speculative component of the bid-ask spread. In 

the context of the limit order book research, uncertainty averse and uncertainty prone decision 

makers can be identified, correspondingly, with patient and impatient investors.  

Let, as before, decision scheme Z (1), the elements of which are specified by (4-6), 

represents the one-period Arrow-Debreu model of securities market under uncertainty. Let 

there be two decision makers, i=1,2, and let them hold their respective views about the 

random evolution of  𝜃  in the form of statistical regularities  𝑃1 𝜃  and 𝑃2 𝜃  respectively. 

The decision makers i=1,2 can be buyers, B, or sellers, S. Decisions of the buyer and the seller 

are, respectively, 𝑑𝐵
𝑖 =  𝑓 𝜃 , 1,𝑢𝐵

𝑖   and 𝑑𝑆
𝑖 =  𝑓 𝜃 ,−1, 𝑢𝑆

𝑖  ,i=1,2. Their actual profits will 

be, respectively,  𝐿 𝑑𝐵
𝑖 ,𝜃 = −𝑢𝐵

𝑖  𝑒𝑟𝑇 + 𝑓 𝜃  and 𝐿 𝑑𝑆
𝑖 , 𝜃 = +𝑢𝑆

𝑖  𝑒𝑟𝑇 − 𝑓 𝜃 . Let there be 

two rationality classes: uncertainty aversion, Π1, and uncertainty propensity, Π2. Decision 

makers can belong to one of these rationality classes. For each of the rationality classes, the 

values of the criteria of the buyer and the seller on these decisions are, correspondingly, 

𝐿1
∗  𝑑𝐵

𝑖  = min
𝑝∈𝑷𝒊

  −𝑢𝐵
𝑖  𝑒𝑟𝑇 + 𝑓 𝜃  𝑝 𝑑𝜃 =   − 𝑢𝐵

𝑖  𝑒𝑟𝑇 + min
𝑝∈𝑷𝒊

 𝑓 𝜃 𝑝 𝑑𝜃         (b1) 

𝐿1
∗  𝑑𝑆

𝑖  = min
𝑝∈𝑷𝒊

  +𝑢𝑆
𝑖  𝑒𝑟𝑇 − 𝑓 𝜃  𝑝 𝑑𝜃 =   +𝑢𝑆

𝑖  𝑒𝑟𝑇 − max
𝑝∈𝑷𝒊

 𝑓 𝜃 𝑝 𝑑𝜃 .          (b2) 

𝐿2
∗  𝑑𝐵

𝑖  = max
𝑝∈𝑷𝒊

 (−𝑢𝐵
𝑖  𝑒𝑟𝑇 + 𝑓 𝜃 )𝑝 𝑑𝜃 =   − 𝑢𝐵

𝑖  𝑒𝑟𝑇 + max
𝑝∈𝑷𝒊

 𝑓 𝜃 𝑝 𝑑𝜃            (b3) 

𝐿2
∗  𝑑𝑆

𝑖  = max
𝑝∈𝑷𝒊

  +𝑢𝑆
𝑖  𝑒𝑟𝑇 − 𝑓 𝜃  𝑝 𝑑𝜃 =   +𝑢𝑆

𝑖  𝑒𝑟𝑇 − min
𝑝∈𝑷𝒊

 𝑓 𝜃 𝑝 𝑑𝜃 .           (b4) 

It is reasonable to admit that decision makers would only make those decisions that render 

positive the values of their respective criteria (minimal or maximal profits). Accordingly, 

require that (b1)-(b4) be positive. Then, the uncertainty averse decision maker would require 

their bid and ask prices to satisfy, respectively,   
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 𝑢𝐵
𝑖 < 𝑒−𝑟𝑇min

𝑝∈𝑷𝒊
 𝑓 𝜃 𝑝 𝑑𝜃 ,  𝑢𝑆

𝑖 > 𝑒−𝑟𝑇max
𝑝∈𝑷𝒊

 𝑓 𝜃 𝑝 𝑑𝜃 .                    (b5) 

while the uncertainty prone decision maker would require their bid and ask prices to satisfy, 

respectively,  

 𝑢𝐵
𝑖 < 𝑒−𝑟𝑇max

𝑝∈𝑷𝒊
 𝑓 𝜃 𝑝 𝑑𝜃 ,  𝑢𝑆

𝑖 > 𝑒−𝑟𝑇min
𝑝∈𝑷𝒊

 𝑓 𝜃 𝑝 𝑑𝜃 .                    (b6) 

Thus the pricing strategy of the uncertainty averse decision maker is more restrictive than the 

one of the uncertainty prone decision makers. This suggests that bid-ask spreads exist due to 

uncertainty averse decision makers. Indeed, the indifference price (11) is satisfactory for 

uncertainty prone decision makers in terms of constraints (b6), but it is not so for uncertainty 

averse decision makers. In a well developed limit order book, the inside spread comprises a 

portion of the highest bid-ask spread. Therefore, it is natural to interpret the smallest bid-ask 

spread as the one devoid of any uncertainty aversion, consisting of only the usually asserted 

components of this spread (transaction and inventory costs). In sharp contrast to it, the biggest 

spread should be seen as consisting in all these standard components plus the specific 

uncertainty price that the uncertainty averse decision maker requires the uncertainty prone 

decision maker to take into account in their transactions. Hence it is reasonable to consider the 

following relation as the candidate for the uncertainty price  

𝛾 =
1

2
(𝑆𝑚𝑎𝑥 − 𝑆𝑚𝑖𝑛 ) =

1

2
 𝑓 𝑃,                                                         (b7) 

where  𝑓 𝑃, is the statistical variation of the pay-off 𝑓 𝜃  from Definition 1. One can assume 

that statistics of such uncertainty prices may reveal properties of the statistical regularities 

𝑃 𝜃 . 

Using (45)-(46) one can indeed obtain diverse conditions on regularities 𝑃1 and 𝑃2 that 

make transactions between buyers and sellers impossible.  For instance, if the agent i=1 is the 

buyer and the agent i=2 is the seller and they both belong to the uncertainty aversion class, 

Π1, then  𝑢𝐵
1 < 𝑒−𝑟𝑇min

𝑝∈𝑷𝟏
 𝑓 𝜃 𝑝 𝑑𝜃  and  𝑢𝑆

2 > 𝑒−𝑟𝑇max
𝑝∈𝑷𝟐

 𝑓 𝜃 𝑝 𝑑𝜃 . If min
𝑝∈𝑷𝟏

 𝑓 𝜃 𝑝 𝑑𝜃  

<  max
𝑝∈𝑷𝟐

 𝑓 𝜃 𝑝 𝑑𝜃 , no transaction is possible. One can easily obtain other combinations, 

but the study of the effects of diverging beliefs is not within the scope of the article.  

Thus, according to (b5-b6), the uncertainty averse agent will have the tendency to have 

high ask prices and low bid prices, while the uncertainty prone agent, to the contrary will have 

the tendency to  lower the ask price and to rise the bid price. The first strategy resembles some 

“buy cheap sell expensive” strategy, while the second evokes some “buy not so cheap and sell 

not so expensive” strategy. It is obvious that the first strategy renders transactions more 
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difficult than the second one. This effect leads one to equate uncertainty aversion with 

“patient” investors and uncertainty proneness with “impatient” ones. This interpretation 

suggests considering the market as a meeting place not only of buyers and sellers, but of 

uncertainty averse and uncertainty prone decision makers as well.  
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