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Abstract This paper axiomatizes the utility model with an exponential temporal

discount rate. An l -PCS with left identity is defined as a PCS with left identity for

which the solvability and Archimedean properties are satisfied only related to left-

concatenation. This structure has two partial binary operations–multiplication and

right division–and a new binary operation is defined on it. Then three conditions are

provided to make the l -PCS with left identity into an extensive structure with identity

with respect to the newly defined operation. Finally, the utility model is derived from

an additive representation on the extensive structure, so that distinct m-period and

n-period temporal sequences (m 6= n) can be compared.

Keywords Discount factor, Temporal sequence, Weighted additive model, Extensive

structure

1 Introduction

The notion of a discounting factor over time might be useful for discussing preferences

among temporal sequences of outcomes, such as income streams. Koopmans [7] and

Koopmans, Diamond and Williamson [8], assuming the existence of a utility function

for temporal sequences over a denumerable future period, studied a set of postulations

so as to permit the utility function to represent a preference for advancing the timing

of future satisfaction, which is conceptualized as “impatience.” In other words, their

works formulated such important concepts in terms of utility functions. Furthermore,

Krantz et al. [9] and Fishburn [4] presented sets of axioms to construct a utility model

with discounting factors, restricting temporal sequences to over a finite period. In
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particular, the introduction of “stationarity” by Koopmans [7] reduces the utility model

to a special model wherein utilities are discounted at a constant rate. More precisely,

let An = A× · · · ×A be n copies of a nonempty set A and % a preference relation on

it. Then the following representation is obtained for all (a1, . . . , an), (b1, . . . , bn) ∈ An:

(a1, . . . , an) % (b1, . . . , bn)⇔
n
i=1

λ
i−1
u(ai) > λ

i−1
u(ai),

where u is a real-valued function on A and λ 6 1 is a strictly positive constant. Krantz et
al. assumed an “additive conjoint structure” and Fishburn considered a finite product of

topological spaces to derive this utility model. This gave rise to a problem: comparisons

could be made only between temporal sequences over the common period. Further,

some of their axioms are difficult to empirically test and seem to be little concerned

with decision-making problems for temporal sequences.

Matsushita [11] recently generalized the classical result of Hölder [5] in the context

of groupoids (i.e., systems equipped with a binary operation), and developed an axiom

system to construct a weighted additive model. From groupoid multiplication, let ab

denote the time series of commodities a, b. Then his model is of the following form:

u(ab) = αu(a) + u(b), α > 1.

This is actually a utility model with a stationary time discount factor. Indeed, in left-

branching fashion, let (· · · ((a1a2)a3) · · · )an denote a temporal sequence of commodities
to receive in the next or previous n periods. From the inductive using of the equation

of the weighted additive model, we have u[(· · · ((a1a2)a3) · · · )an] =
n
i=1 α

n−iu(ai).
Given that u is a ratio scale, dividing both sides by αn−1 and setting λ = 1/α(6 1),

we obtain

u[(· · · ((a1a2)a3) · · · )an]/αn−1 =
n
i=1

λ
i−1
u(ai).

Since every temporal sequence can be expressed as a multiplication, distinct m-period

and n-period temporal sequences (m 6= n) can be compared.
The aim of this paper is to convert the axioms into a general version. In short, the

axioms are to be rewritten under the requirement that the multiplication be generalized

to a partial binary operation; in addition, an interpretation is put on several axioms in

the context of decision-making problems of temporal sequences. The rest of this paper

is organized as follows. Section 2 provides the axioms to define a basic structure, called

l -PCS with left identity, and shows some properties that are satisfied on the structure.

Section 3 presents three conditions to make every l -PCS with left identity an extensive

structure with identity related to an introduced operation, and gives the main theorem

for the weighted additive model. Section 4 contains several conclusions. The proofs of

the propositions and theorem along with the lemmas are given in Section 5.

2 Basic concepts

Throughout this paper, R+ denotes the set of all non-negative real numbers. Further,
let % be a binary relation on a nonempty set A that is interpreted as a preference

relation. As usual, Â denotes the asymmetric part, ∼ the symmetric part, and -, ≺
denote reversed relations. The binary relation % on A is a weak order if and only if it
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is connected and transitive. Let · be a “partial” binary operation on A. The operation
means a function from a subset B of A× A into A. The expression a · b is said to be
defined if and only if (a, b) ∈ B. An element e ∈ A denotes no change in the status

quo with temporal sequences. That is, it is considered that receiving e prior to a is no

different from receiving a at present; however, ae implies advancing the receipt of a by

one period, so that ae is not always ∼ a.
Henceforth, in the following conditions, the indicated operations · are always as-

sumed to be defined.

A1. Weak order: % is a weak order on C.

A2. Local definability: if a · b is defined, a % c, and b % d, then c · d is defined.
A3. Monotonicity: a % b⇔ a · x % b · x⇔ x · a % x · b for all a, b, x ∈ A.
A4. Left identity: e is a left identity element, i.e., e · a ∼ a for all a ∈ A.

The system hA, %, ·i is a concatenation structure if and only if A1—A3 are satisfied.
If, in addition, A4 holds, then hA, %, ·, ei is said to be a concatenation structure with
left identity. Further fundamental conditions for concatenation structures are listed

below.

A5. R-positivity: whenever a ∈ A, then x · a % x for all x ∈ A.
A6. Restricted left solvability: a Â b implies that x · b ∼ a for some x ∈ A.

Axiom A5 is defined as the “right sided” concept, whereas A6 is defined as the “left

sided” concept. That is, r -positivity is the positivity condition that is satisfied only

for the right-concatenation by a. Restricted left solvability is a generalized restricted

solvability in the sense that only the existence of a left solution is permissible. Since x

is uniquely determined up to ∼ by A3, we write x = a/b. This defines a partial binary
operation / on A, which is called a right division. Indeed, / is a function from the

subset {(a, b) ∈ A × A |a % b, (x, b) ∈ B for some x ∈ A} into A. It may be rational
to refer to A6 as right divisibility. If a concatenation structure contains a left identity

element e, then by A3 a is l -positive (i.e., a · x % x for all x ∈ A) if and only if

a % e, whereas a strictly positive element a Â e is not always r -positive (see Example
1 below). However, the following is satisfied.

Proposition 1 Let hA, %, ·, ei be a concatenation structure with left identity. If A is
r-positive, then a % e for all a ∈ A.

Proposition 2 Let hA, %, ·, ei be a concatenation structure with left identity. If A6
holds, then for all a, b, x ∈ A,

(i) (a · b)/b ∼ a ∼ (a/b) · b.
(ii) Monotonicity of right division [3, Lemma 3.1]: a % b⇔ a/x % b/x, x/a - x/b.

Example 1 We define a binary operation ⊕ on the set R+ by

a⊕ b = αa+ b for some α > 0.

The set R+ with this operation and the usual order > is a concatenation structure

with a left identity element 0. Since

α < 1⇒ a⊕ 0 < a for all a ∈ R+,
α > 1⇒ a⊕ 0 > a for all a ∈ R+,
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it turns out that R+ is r -positive for α > 1, but not for α < 1. Moreover, in both cases
of α > 1 and < 1, it is seen that whenever a > b, then x = (a− b)/α is a left solution
to x⊕ b = a, but a right solution x > 0 does not always exist to b⊕ x = a.

A relaxed version [6] of the Archimedean property is provided. In this regard, we

will inductively define the n-th “left” multiple of an element a by a0 = e, a1 = a and

a
n
= a · an−1 if the right-hand is defined

a
n
is undefined otherwise.

A concatenation structure is said to be left Archimedean if every bounded sequence

{an} constructed as above is finite:

A7. Left Archimedean: every bounded sequence {an} consisting of the left multiples
of a is finite.

It is worthwhile to recall a generalized concept of an extensive structure: a PCS [10,

Definition 19.3] is a concatenation structure hA, %, ·i that is positive (i.e., x · a % x, a
for all (x, a) ∈ B), and for which A61 and A7 are satisfied for both left- and right-
concatenations.

Definition 1 An l-PCS with left identity is a concatenation structure hA, %, ·, ei with
left identity for which Axioms A5, A6, and A7 are satisfied.

Remark 1 From Proposition 1 it can be seen that an l -PCS with left identity consists at

most of positive elements; as such, by the statement immediately before the proposition

it is also l -positive. That is, an l -PCS with left identity is a PCS with left identity for

which the restricted solvability and Archimedean properties are satisfied only related

to left-concatenation.

We now introduce the following conditions given that the indicated operations ·
are defined:

— Weak associativity: (a · b) · c ∼ a · (b · c).
— Weak commutativity: a · b ∼ b · a.

From Definition 19.3 [10], a weakly associative PCS is an extensive structure (see [9] for

the formal definition). Hence we see that every l -PCS with left identity is an extensive

structure with identity as long as weak associativity and weak commutativity hold.

Here weak commutativity is essential, because it can turn Axioms A5—A7 into right

and left sided concepts.

Remark 2 [9, Theorem 3.3] If hA, %, ·i is an extensive structure, then there exists a
real-valued function u on it having the following properties:

— a % b ⇔ u(a) ≥ u(b);
— u(a · b) = u(a) + u(b) whenever a · b is defined.

Moreover, this representation is unique up to multiplication by a positive constant.

An additive representation on A is a real-valued function satisfying the order-

preserving and additivity properties.

1 Restricted solvability is as follows: a Â b implies that a % x · b Â b for some x ∈ A.
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3 Time discounting utility

Henceforth, assume that an l -PCS hA, %, ·, ei with left identity has no smallest strictly
positive element. Concatenations expressed implicitly by juxtaposition are meant to

bind more strongly than the right divisions so as to reduce the number of brackets

in equalities. For example, (a · b)/b reduces to ab/b. For any a ∈ A, we denote the
mappings of a subset of A into A defined by the rules Ra(x) = xa and La(x) = ax by

Ra and La, respectively.

Define a partial binary operation ◦ on A by
a ◦ b = (a/e)b. (1)

We make a comment on the domain of ◦. Assume that a ∈ A. Then by Proposition
1, a % e, so by A6, a/e exists in A. Since e is to belong to A, by A5, ae % a, so by

Proposition 2, a % a/e. Hence we obtain from A2 that if (a, b) ∈ B, then (a/e, b) ∈ B;
this implies that B is at least contained in the domain of ◦.

The following conditions2 are needed to construct our time discounting utility.

Whenever the indicated operations · are defined, then for all a, b, c ∈ A,
((a/e)b/e)c ∼ (a/e)((b/e)c); (2)

(a/e)b ∼ (b/e)a; (3)

((a/e)b)e ∼ (ae/e)(be). (4)

Identities (2) and (3) specify the weak associativity and commutativity of ◦, respec-
tively, i.e., (a ◦ b) ◦ c ∼ a ◦ (b ◦ c) and a ◦ b ∼ b ◦ a. Identity (4) implies that the
right multiplication by e is a homomorphism of a subset of A into A related to ◦, i.e.,
Re(a ◦ b) ∼ Re(a) ◦Re(b).

It will be useful to place an interpretation on these identities in the context of

decision-making problems. Let (ab)c or a(bc) denote the outcome of receiving a, b, and

c in periods 1, 2, and 3, respectively. Given that ae/e ∼ a, it will be rational to interpret
a/e to mean that the receipt of a is postponed by one period. Then both sides of (2)

show that a person receives a, b, and c in period 3. Indeed, the left-hand side shows

that first the receipt of a shifts to period 2, and then the receipt of a and b to period 3;

the right-hand side means that the person first receives b and c in period 3, and then

receives a in period 3, which is postponed by two periods, noting that a/e ∼ (ae/e)/e.
Similarly, both sides of (3) imply that the receipt of a and b is in period 2. Hence

(2) and (3) assert that as long as commodities are received in the same period, the

concatenation operation is weakly associative and commutative. Further, (4) gives that

advancing the receipt of a and b in period 2 by one period is equivalent to receiving a

and b in period 1. This interpretation will be suitable to decision-making problems of

this kind.

By (3), we may define the n-th addition of a in the left sided manner: na =

a ◦ (n− 1)a if the right-hand side is defined for n = 2, 3, . . . and 1 · a = a. From (1) it

is seen that na = Ln−1
a/e

(a) for n > 1 where L0a/e = Le.

Lemma 1 Let A be an l-PCS with left identity. If (2) and (3) are satisfied, then

B(A) = hA, %, ◦, ei is an extensive structure with identity.
2 According to [11], these are properties for “central” r-naturally fully ordered groupoids

with left identity to satisfy.
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Theorem 1 Let A be an l-PCS with left identity for which (2) to (4) are satisfied.

Then there exist a real number α > 1 and a real-valued function u on A such that

(i) a % b⇔ u(a) > u(b);
(ii) u(ab) = αu(a) + u(b) whenever (a, b) ∈ B;
(iii) u(e) = 0.

Moreover, another real number α0 > 1 and function u0 satisfy (i), (ii), and (iii) if and
only if α0 = α and u0 = γu for some real number γ > 0.

Remark 3 Let (a1a2)a3 and b1b2 ∈ A be three-period and two-period temporal se-

quences, respectively. For example, assume that (a1a2)a3 % b1b2. From (i), (ii) of the

theorem we obtain

(a1a2)a3 % b1b2 ⇔ α
2
u(a1) + αu(a1) + u(a1) > αu(b1) + u(b2).

The hypothesis of the following corollaries is that A is an l -PCS with left identity.

Corollary 1 If A = R+ and if % and ◦ equal the usual order > and addition +,

respectively, then ab = αa+ b (α > 1) for all a, b ∈ R+.
Corollary 2 If e is a two-sided identity, then A is an extensive structure with identity.

4 Conclusion

This paper axiomatized the utility model with an exponential temporal discount rate.

The concept of an l -PCS with left identity was introduced. This structure has two

partial binary operations, multiplication and right division, and its left identity e has

an important meaning: division of a commodity by e implies postponing its receipt by

one period. Using the division by e, a new binary operation was defined. Then three

conditions (which seem to be rational in the context of decision-making problems for

temporal sequences) were provided so as to make the l -PCS with left identity an exten-

sive structure with identity with respect to the newly defined operation. Finally, the

utility model was derived from an additive representation on the extensive structure.

This enables us to compare m-period and n-period temporal sequences where m 6= n.
A topic for future research is the axiomatization of a “generalized” weighted additive

model, u(ab) = α(b)u(a) + u(b).

4.1 Proposition 1

Proof. By A5 we have aa % a for all a ∈ A, i.e., aa % ea by A1 and A4. Hence by A3
we obtain a % e for all a ∈ A. ¤

4.2 Proposition 2

Proof. (i) By definition, (a/b)b ∼ a. Note that by A3, x ∼ a is a unique solution to

xb ∼ ab. Hence we obtain ab/b ∼ a.
(ii) Since a ∼ (a/x)x and b ∼ (b/x)x by (i), we have by A3 a % b ⇔ a/x % b/x.

Further, repeated use of A3 gives a % b⇔ (x/a)a % (x/a)b⇔ x % (x/a)b⇔ (x/b)b %
(x/a)b⇔ x/b % x/a. ¤
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4.3 Lemma 1

Proof. Axiom A1 is obvious for B(A). As was stated immediately after (4), B(A) is

weakly associative and commutative. Hence from the statement before Remark 2 we

may prove that A2—A7 hold for B(A). Recall here that by virtue of commutativity, the

validity of each axiom may be shown in either the left or right sided manner.

A2 for B(A). Recall that if a % e, then a/e ∈ A (see the statement after (1)). By
(ii) of Proposition 2, we have a % c⇔ a/e % c/e. If b % d, then by A2, (a/e, b) ∈ B ⇒
(c/e, d) ∈ B.

A3 for B(A). By A3 and (ii) of Proposition 2, we have

a % b⇔ (a/e)c % (b/e)c and a % b⇔ (c/e)a % (c/e)b.

A4 for B(A). Since e/e ∼ e, it follows from A3 and A4 that e ◦ a ∼ a.
A5 for B(A). If x % e, then by (ii) of Proposition 2, x/e % e. By A3 we have

(x/e)a % (x/e)e, or (x/e)a % x.
A6 for B(A). By A6, let x ∈ A be such that a ∼ xb whenever a % b. Since

(x, b) ∈ B and b % e, A2 guarantees that (x, e) ∈ B. Hence we can set s = xe to

obtain a ∼ (s/e)b.
A7 for B(A). Assume to the contrary of the Archimedean property that there ex-

ists a bounded infinite sequence {na}, a ∈ A. Since ae % a by A5, we have by Proposi-
tion 2 a % a/e. Since the map Ln−1

a/e
is order preserving, it follows that na = Ln−1

a/e
(a) %

Ln−1
a/e

(a/e). This implies the existence of a bounded infinite sequence {(a/e)n}, which
contradicts the left Archimedean property for A. ¤

4.4 Theorem 1

We provide a concept for weakly ordered sets. Let B and C be nonempty sets that are

weakly ordered with respect to the same relation %. Then B and C are equivalent to

each other if for every y ∈ B there exists a z ∈ C such that y ∼ z, and vice versa.

Proof. Since B(A) is an extensive structure with identity by Lemma 1, it is seen from

Remark 2 that there exists an additive representation u on B(A). Then since u(e) =

u(a ◦ e) = u(a) + u(e), we obtain u(e) = 0. In view of A2, the hypothesis (a, b) ∈ B
implies that (a, e) ∈ B. Since ab = ae◦ b, u(ab) = u(ae)+u(b). To complete the proof,
it suffices to show that u(ae) = αu(a) for some α > 1. For this the following lemma is
provided.

Lemma 2 Let Ae = {ae |a ∈ A, (a, e) ∈ B }. Then Ae and A are equivalent to each

other, and hence B(Ae) = hAe, %, ◦, ei is an extensive structure with identity.
Proof. Since it is obvious that ae ∈ Ae is contained in A, we show only that for every
x ∈ A there exists an ae ∈ Ae such that x ∼ ae. Let x % e be an arbitrary element of
A. Then since x/e ∈ A, a = x/e is a solution to x ∼ ae. It is clear from Lemma 2 that

B(Ae) is an extensive structure with identity. ¤

Combining this lemma with Remark 2, we can obtain that u is also an order-

preserving additive function on B(Ae). In view of (4),

u((a ◦ b)e) = u(ae ◦ be) = u(ae) + u(be).
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Define ue(a) = u(ae) for all a ∈ A with (a, e) ∈ B. Then the equation shows that ue
is an additive representation on B(A). Hence by the uniqueness assertion of Remark

2 there is a strictly positive real number α such that ue(a) = αu(a). Moreover, since

a - ae for all a ∈ A by A5, u(a) 6 u(ae) = αu(a). Thus α > 1. Finally, we prove the
uniqueness assertion. Assume that α0 and u0 satisfy (i), (ii), and (iii). Then since u0

is an additive representation on B(A), by the uniqueness assertion we have u0 = γu

for some γ > 0. However, since ue(a) = u(ae) and u
0
e(a) = u

0(ae), u0e = γue must be

valid, and hence α0u0 = γαu. Eliminating u from the equations u0 = γu, α0u0 = γαu

and noting that the resulting equation holds for all a ∈ A with (a, e) ∈ B, we have
α0 − α = 0, or α0 = α, as required. ¤

4.5 Corollary 1

Proof. It suffices to show that the function u in the proof of Theorem 1 is continuous.

Indeed, if so, then since u is additive and continuous on R+, it is well known [1] that
u(a) = sa for some s ∈ R. Setting s = 1, we obtain ab = αa+ b. To prove continuity,

assume that a > b. By A6 a = xb for some x ∈ A. Since A has no smallest strictly

positive element, we have a > x0b > b for x0 < x, and hence u(a) > u(x0b) > u(b). This
implies that u has no gap in its range. Hence we conclude from Debreu’s [2] open gap

lemma that u is continuous. ¤

4.6 Corollary 2

Proof. Since a/e ∼ a, identities (2) and (3) reduce to (ab)c ∼ a(bc) and ab ∼ ba, re-

spectively. By the statement immediately before Remark 2, A is an extensive structure

with identity. ¤
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