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Abstract

This paper lays down conceptual groundwork for optimal choice of a decision maker facing a finite-state Markov decision problem
on an infinite horizon. We distinguish two notions of a strategy being favored on the limit of horizons, and examine the properties
of the emerging binary relations. After delimiting two senses of optimality, we define a battery of optimal strategy sets – including
the Ramsey-Weizäcker overtaking criterion – and analyze their relationships and existence properties. We also relate to the work
on pointwise limits of strategies by Fudenberg and Levine (1983).
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1. Introduction and motivation

Some decisions are clearly limited in time: they only involve
decisions and payoffs until a certain temporal point, having no
relevant options and effects for the decision maker beyond that
point. At one extreme, think of choosing the flavor of a scoop
of icecream: the decision is blatantly one-off, and any pay-
offs from choosing vanilla or chocolate are gained immediately.
Other decisions, however, are potentially infinite, in the sense
that utility-changing decisions might have to be made after ar-
bitrary long times. Here, one can think of choosing the palette
of flavors for an ice-cream company: managers might come
and go, today’s kids might grow old and die out, but until the
company is up and running, the flavor palette will need to be re-
considered. Each of these decisions will have both immediate
and long-term effects.

The horizon of a decision problem is the temporal distance
between the time when the decision maker is confronted with
the problem, and the furthest horizon that is payoff-relevant.
This paper starts with an infinite-horizon decision problem.
However, even when the horizon is infinite, a decision-maker
might still act as if it were finite. There are various possible
reasons for the decision maker acting in such a way: maybe he
(wrongly) believes that the decision problem is actually limited.
It could also happen that, due to cognitive limitations, he is un-
able or unwilling to calculate with any utility that he gains in pe-
riods beyond a certain period. In our example, a manager might
care only about the short-run profits of the ice-cream company,
and postpone R&D expenditures.
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Short-sighted attitudes amount to cutting the decision tree so
that it becomes finite. The alternative is to take into consid-
eration the entire decision tree, including effects arbitrarily far
into the future. If more cognitive resources, right beliefs, or
deep commitments – e.g. to an ancient family business – are
available, the full decision problem can be tackled. If we let
the horizon of the decision-maker grow ad infinitum, i.e. we
cut off smaller and smaller parts of the tree, intuition would
suggest that decision strategies that are optimal on the full tree
can always be approximated by strategies that are optimal for
infinitely many such cuts. We show, however, that this is not
always the case, and strategies that are optimal on the complete
horizon can be suboptimal for all finite horizons. A third and
distinct optimality notion emerges by taking the limit of strate-
gies optimal on finite horizons.

In investigating the limit properties of decision strategies, the
present work provides a systematic approach towards formulat-
ing optimality criteria such as the Ramsey-Weizsäcker overtak-
ing criterion of Brock (1970) or the limit-equilibrium of Fuden-
berg and Levine (1983). We will see that the lack of a unified
framework leads to incompatible interpretations of the overtak-
ing criterion. These criteria, and thus our whole undertaking
can be best understood as a robustness analysis for strategies
optimal on the complete horizon with regard to changes in the
discount factor. More specifically, we ask what happens if the
discount factor is perturbed from the left, i.e. the decision maker
becomes infinitesimally more impatient, or the stopping proba-
bility of the game increases.

Our results provide grounds for optimality refinements. As
we will see, it is possible that a strategy that is optimal on the
complete horizon is beaten by another strategy on any finite
horizon. This means that whenever the game ends, the decision
maker would have been strictly better off choosing the other
strategy. This is, in fact, a good reason not to choose it, and
instead go with the strategy that is strictly better for finite hori-
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zons.
The next section outlines our model and notation. In Section

3, we define some relations between strategies, delimiting the
strong and weak senses of limit of finite horizons. Section 4 dis-
tinguishes two senses of optimality, and analyzes the resulting
strategy sets. The limit of strategies approach of Fudenberg and
Levine (1983) is considered in Section 5, while the last section
concludes.

2. The problem

Our decision maker faces a finite Markov decision problem.

Definition 1. A finite Markov decision problem is given by:

• the set of time periods {1, 2, . . . };

• a finite set of states Ω, with ω1 ∈ Ω as the initial state;

• a finite and nonempty set of pure actions Aω that the deci-
sion maker can choose from in state ω;

• a payoff function uω : Aω → R that assigns a payoff to
every action in state ω;

• transition probabilites mω : Aω → ∆(Ω), with mω(ω′|aω)
denoting the probability to transit from state ω to state ω′

when action aω is chosen.

In every period, the decision-maker chooses an action from
those available to him. We call a path of states and actions that
the decision maker can go through a “history”.

Definition 2. A history h has the form h =

(ω1, aω1 , . . . , ωt−1, aωt−1 , ωt), with:

• ωi ∈ Ω, for i ∈ {1, . . . , t};

• aωi ∈ Aωi , for i ∈ {1, . . . , t − 1};

• mωi−1 (ωi|aωi−1 ) > 0, for i ∈ {1, . . . , t − 1}.

The length of h or current time at h is denoted by t = t(h). In
a similar vein, the function ω(h) = ωt(h) indicates the current
or end state at history h. We use H to refer to the set of all
histories.

Obviously, the well-being of the decision-maker depends not
only on his current choice, but also his future actions. Thus, the
decision maker needs a decision rule that tells him what to do
at each history. Such a decision rule is called a strategy.

Definition 3. A strategy of the decision maker assigns an ac-
tion to all histories:

s : h 7→ Aω(h).

The set of all strategies is denoted by S .

When the decision maker chooses strategy s, we denote the
probability that history h occurs by Ps(h).

We consider utility functions that are additively separable.
The expected utility induced by a strategy s on horizon T ∈
N ∪ {∞} is:

UT (s) =
∑

h | t(h)≤T

rh(u(s(h)))Ps(h).

where rh : R → R is continuous and strictly increasing.
Moreover, if the maximal absolute payoff in one period is
c = max

ω, aω
|uω(aω)|, we require that

∑∞
t=1 max

h|t(h)=t
rh(c) < ∞, to en-

sure that U∞ is finite for all possible streams of payoffs.
The horizon of this function is interpreted as the period be-

yond which the decision maker ignores payoffs. If the decision
maker considers all future payoffs, however far they might be,
we say that his horizon is infinite.

Two well-known utility functions that satisfy our require-
ments are the exponential discount function, whereby rh(u) =

δt(h)−1u, and the quasi-hyperbolic discount function, with
rh(u) = u if t(h) = 1 and rh(u) = βδt(h)−1u otherwise. For a
comprehensive list of discount functions used in various fields
see Heilmann (2010), Frederick et al. (2002) or Loewenstein
and Read (2003).

3. Relations on a strategy set

We start by defining relations to compare two strategies
within S . First, suppose the decision maker has a finite hori-
zon.

Definition 4. A strategy s is (strictly) favored over another
strategy s′ on horizon T if it induces a (strictly) higher util-
ity on that horizon. More precisely, we write s <T s′ if UT (s) ≥
UT (s′). Similarly, we write s �T s′ whenever UT (s) > UT (s′).

Next, it is possible that the decision maker considers the com-
plete horizon of infinite length of the decision problem.

Definition 5. A strategy s is (strictly) favored over another
strategy s′ on the complete horizon if it induces a (strictly)
higher utility on that horizon. More precisely, we write s <CH s′

if U∞(s) ≥ U∞(s′). Similarly, we write s �CH s′ whenever
U∞(s) > U∞(s′).

Another alternative is to conceive of the infinite horizon as
the limit of finite horizons, as the parameter T that determines
the length of the horizon goes to infinity. Thus, the third op-
tion for an agent when comparing strategies is to look at the
expected utility with T being large enough. There are, how-
ever, at least two ways for looking at this limiting behavior, in
a stronger and in a weaker sense.

Definition 6. A strategy is (strictly) favored over another strat-
egy s′ on the limit of finite horizons in the strong sense (LHS)
if it induces a (strictly) higher utility for all horizons beyond a
certain horizon T ′. More precisely, we write s <LHS s′ if there
is a T ′ such that s <T s′ for all T ≥ T ′. Similarly, we write
s �LHS s′ whenever there is a T ′ such that s �T s′ for all T ≥ T ′.
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Definition 7. A strategy is (strictly) favored over another strat-
egy s′ on the limit of finite horizons in the weak sense (LHW)
if, for any horizon, we can find a longer horizon such that the
first strategy induces a (strictly) higher utility on it than the sec-
ond one. More precisely, we write s <LHW s′ if for all T ′ there
is a T ≥ T ′ such that s <T s′. Similarly, we write s �LHW s′

whenever for all T ′ there is a T ≥ T ′ such that s �T s′.

Note that the latter definition is equivalent to saying that there
are infinitely many horizons on which the first strategy induces
a (strictly) higher utility.

Theorem 1. The relations of <T, <CH, <LHS, <LHW and their
strict versions satisfy the properties given in Tab. 1.

Table 1: Properties of the relations.

< �
T/CH LHS LHW T/CH LHS LHW

Total + – + – – –
Reflexive + + + – – –
Irreflexive – – – + + +

Symmetric – – – – – –
Asymm. – – – + + –
Antisymm. – – – + + –
Transitive + + – + + –

“+” indicates that the property necessarily holds.
“–” indicates that the property does not hold in general.
R is: total if xRy or yRx for all x, y;
reflexive if xRx for all x;
irreflexive if xRx for no x;
symmetric if xRy implies yRx;
asymmetric if xRy implies not yRx;
antisymmetric if xRy and yRx imply x = y;
transitive if xRy and yRz imply xRz.

Proof.
The relations <T, <CH, �T and �CH.

The properties of <T and �T simply inherit the properties of
the non-strict and strict orders ≥ and > on R, since they are
equivalent to single utility comparisons. Similarly, <CH and
�CH inherit the properties of ≥ and > on R.
The relation <LHS.

To verify that <LHS is not total, see the decision problem in
Fig. 1 with • as the initial state. The two options of the de-
cision maker are going west (strategy s) and going east (s′).
Using exponential discounting with δ = 0.5, we see that

UT (s) =

{
0 if T = 2k + 1

−(0.5)T if T = 2k

and

UT (s′) =

{
0.5T−1 if T = 2k + 1

−(0.5)T−1 if T = 2k.

This means that whenever T = 2k, then s �T s′, so s′ %T s, but
whenever T = 2k + 1, then s′ �T s, so s′ %T s. It follows that
neither s <LHS s′ nor s′ <LHS s, therefore <LHS is not total.

The relation <LHS is reflexive (and not irreflexive), as any
strategy is weakly better than itself on all horizons.

Figure 1: The relation <LHS is not total.
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We turn to symmetry: <LHS is not symmetric, asymmetric or
antisymmetric. Lack of symmetry follows trivially from cases
when one strategy generates strictly higher utility on all finite
horizons. Due to its reflexivity, it is not asymmetric. To see
that it is not antisymmetric either, take two different strategies
s , s′ that induce the same expected utility on all horizons. For
these, we have s <LHS s′ and s′ <LHS s with s , s′. Thus <LHS
is not antisymmetric.

To show that <LHS is transitive, suppose s <LHS s′ and
s′ <LHS s′′. This means that there is a T ′ such that s <T s′

for all T ≥ T ′, and that there is a T ′′ such that s′ <T s′′ for
all T ≥ T ′′. Let T ′′′ = max{T ′,T ′′}. Consequently, s <T s′′

whenever T ≥ T ′′′. It follows that s <LHS s′′.
The relation <LHW.

In contrast with <LHS, the relation <LHW is total. Choosing
any s and s′, for any T , either s <T s′ or s′ <T s. But the set
of possible choices for T is infinite. Therefore, s <T s′ for in-
finitely many T or s′ <T s for infinitely many T (or possibly,
both).

Next, <LHW is reflexive for the same reason as <LHS, and thus
not irreflexive.

The symmetry properties of <LHW are also the same as those
of <LHS, again for the same reasons.

Fig. 2 shows a decision problem where <LHW is not transi-
tive. Suppose again that • is the starting state and discounting
is exponential with δ = 0.5. The decision maker has three op-
tions: going southwest (strategy s), south (s′) or southeast (s′′).
The payoffs for these strategies on different horizons are sum-
marized in Tab. 2. We see that whenever T = 3k, then s <T s′,
so s <LHW s′. Moreover, whenever T = 3k + 2, then s′ <T s′′,
so s′ <LHW s′′. But UT (s) < 0 = UT (s′′) for all T , so there is no
T such that s <T s′′. It follows that s %LHW s′′, therefore <LHW
is not transitive.

Table 2: Utility comparison for Fig. 2.

UT (s) UT (s′) UT (s′′)
T = 3k + 1 −0.5T−1 0 0
T = 3k + 2 −0.5T−1 0.5T−2 0
T = 3k −0.5T−1 −0.5T−2 0
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Figure 2: The relations <LHW and �LHW are not transitive.
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The relation �LHS.
By comparing any strategy s to itself, or two distint strategies

that generate the same payoffs on all finite horizons, we can see
that �LHS is not total.

Contrary to its non-strict version, �LHS is irreflexive, since no
strategy can strictly beat itself on any horizon. Therefore, it is
also not reflexive.

The case when one strategy yields higher payoff than the
other for all horizons shows that �LHS is not symmetric. It is,
however, both asymmetric and antisymmetric: if s �LHS s′, then
there exists T ′ such that s �T s′ for all T ≥ T ′. But then it is not
possible that also a T ′′ exists for which s′ �T s for all T ≥ T ′′,
since this would imply s �T s′ and s′ �T s for T ≥ max{T ′,T ′′},
which is impossible.

To show that �LHS is transitive, we can use the argument for
the transitivity of its non-strict counterpart, replacing non-strict
inequalities with strict ones everywhere.
The relation �LHW.

For similar reasons as �LHS, the relation �LHW is not total.
This relation is irreflexive (and not reflexive), and we can

again use the same argument as for �LHW.
The analogy also carries over for non-symmetricity. How-

ever, �LHW is not asymmetric or antisymmetric: the example in
Fig. 1 shows that it is possible that s �T s′ for infinitely many
T and also s′ �T s for infinitely many T .

It is easy to see that the example on Fig. 2 also shows the
non-transitivity of �LHW, since all of the strategies in Tab. 2 are
strictly best on the respective horizons.

4. Optimal strategies

The decision maker is looking for an optimal strategy. How-
ever, he might – for any reason – decide to restrict his choice to
a nonempty subset G of the full strategy space S . For example
the decision maker might focus on stationary strategies.

Given a relation R on S , a strategy in G can be said to be op-
timal in two senses. First, a strategy can be regarded as optimal
if no further improvements can be made on it, i.e. if there is no
strategy in G that is favored to it. One can think of a former def-
inition for being a world champion in chess, which used to be
not being beaten in a championship final – in case of a draw, the
incumbent would keep his title. Formally, a strategy s∗ ∈ G is
optimal according to relation R in the “not-beaten” (NB) sense,
if there is no other strategy s ∈ G such that sRs∗.

Alternatively, a strategy in G can be said to be optimal if it is
favored to all other strategies in G. Here, one can think of horse

races, where in case of a tie bookmakers consider all the horses
in the dead heat as “winners”. Formally, a strategy s∗ ∈ G is
optimal according to relation R in the “beat-all” (BA) sense if
s∗Rs for all other strategies s ∈ G.

For a total and transitive relation, a simple duality emerges: a
strategy is not beaten by the strict order if and only if is favored
to every other strategy according to the weak order, and a strat-
egy is not beaten by the weak order if and only if it is favored to
every other strategy according to the strict order. Therefore, we
have the following definitions for optimal strategies for finite
horizons and the complete horizon.

Definition 8. The set of strategies in G that are optimal on hori-
zon T is given by:

GT = {s ∈ Gs| @s′ ∈ Gs, s′ �T s} = {s ∈ G| ∀s′ ∈ G, s <T s′}.

The set of strategies in G that are uniquely optimal on horizon
T is given by:

GT = {s ∈ G| @s′ ∈ Gs, s′ <T s} = {s ∈ G| ∀s′ ∈ Gs, s �T s′},

with Gs = G \ {s} here and henceforth.

Definition 9. The set of strategies in G that are optimal on the
complete horizon is given by:

GCH = {s ∈ G| @s′ ∈ Gs, s′ �CH s} = {s ∈ G| ∀s′ ∈ Gs, s <CH s′}.

The set of strategies in G that are uniquely optimal on the com-
plete horizon is given by:

GCH = {s ∈ G| @s′ ∈ Gs, s′ <CH s} = {s ∈ G| ∀s′ ∈ Gs, s �CH s′}.

As its name suggests, a uniquely optimal strategy set contains
at most one element.

This simple duality of the two senses of optimality fails how-
ever in the case of the limit of finite horizon relations, since
these are either not total (<LHS) or not transitive (<LHW). Thus,
we have a total of eight possible definitions for the concept of
“optimal strategy on the limit of finite horizon”:

Definition 10. The sets of strategies s in G that are “not-
beaten-optimal” or “beat-all-optimal” on the limit of finite hori-
zons in the strong or weak sense, according to the respective
strict or non-strict relations, are defined as in Tab. 3:

Table 3: Definitions of optimal strategy sets.

LHS LHW
NB, < {@s′ ∈ Gs, s′ <LHS s} {@s′ ∈ Gs, s′ <LHW s}
NB, � {@s′ ∈ Gs, s′ �LHS s} {@s′ ∈ Gs, s′ �LHW s}
BA, < {∀s′ ∈ Gs, s <LHS s′} {∀s′ ∈ Gs, s <LHW s′}
BA, � {∀s′ ∈ Gs, s �LHS s′} {∀s′ ∈ Gs, s �LHW s′}

For example, we denote {s ∈ G|@s′, s′ <LHS s} by GNB<
LHS . The

other sets are denoted in a consistent manner.
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Theorem 2. For any Markov decision problem and G ⊆ S , the
different notions of optimality induce the following relations on
the resulting sets of optimal strategies:

GNB<
LHW = GBA�

LHS

⊆
GNB�

LHW = GBA<
LHS ⊆

⊆
GNB<

LHS = GBA�
LHW

⊆
GNB�

LHS = GBA<
LHW ⊆ GCH.

Proof.
GNB<

LHW = GBA�
LHS , GNB�

LHW = GBA<
LHS , GNB<

LHS = GBA�
LHW , GNB�

LHS = GBA<
LHW.

Strategy s is in GNB<
LHW if and only if there is no s′ ∈ Gs such

that s′ <T s for infinitely many T . This is true if and only
if UT (s′) ≥ UT (s) for only finitely many T , which is again
equivalent to there being a T ′(s′) such that UT (s) > UT (s′) for
all T ≥ T ′(s). The latter condition is the definition of GBA�

LHS , so
indeed GNB<

LHW = GBA�
LHS . Similarly, the definitions of all the other

pairs of sets are logically equivalent.

GBA�
LHS ⊆ GBA<

LHS , GBA�
LHW ⊆ GBA<

LHW.
These cases are trivial, since s �T s′ ⇒ s <T s′.

GBA�
LHS ⊆ GBA�

LHW.
Choose any s ∈ GBA�

LHS . Thus, for all s′ ∈ G, there is a T ′ such
that UT (s) > UT (s′) for all T ≥ T ′. Obviously then, for all s′

there are infinitely many T ′ for which UT (s) ≥ UT (s′), so we
have s ∈ GBA�

LHW.

GBA<
LHS ⊆ GBA<

LHW.
This case is analogous to the previous one, by replacing �

with <.

GBA<
LHW ⊆ GCH.
Fix s ∈ GBA<

LHW and s′ ∈ G. Since s <LHW s′ for infinitely
many T , U∞(s) = limT→∞ UT (s) ≥ limT→∞ UT (s′) = U∞(s′).
Therefore, s ∈ GCH.

We know that for any closed and compact G ⊆ S strategies
optimal on the complete horizon exist , i.e. GCH is nonempty for
closed, compact G.

The set GNB�
LHS = GBA<

LHW contains those strategies that are
weakly favored to any other strategy on infinitely many hori-
zons. For this reason, we call them “repeatedly” optimal strate-
gies, and denote the resulting set of strategies by GR. We con-
jecture that for any Markov decision problem and closed, com-
pact G ⊆ S , the set of repeatedly optimal strategies is be non-
empty. Fig. 4 shows an example where transfinite induction, a
natural attempt of proving the nonemptyness of GR, fails.

Members of the set GNB�
LHW = GBA<

LHS are those strategies for
which, for every other strategy s′, there is a certain horizon –
depending on s′ – after which s is weakly favored to s′ for all
furhter horizons. For this reason, we call them “uniformly” op-
timal strategies, and denote the resulting set of optimal strate-
gies by GU. Uniformly optimal strategies are not guaranteed
to exist. For the decision problems in Figs. 1 and 2, there are
only two and three possible strategies, those defined in Thm.
1. Since s, s′ < S U for the first problem, and s, s′, s′′ < S U for

the second problem, there are no uniformly optimal strategies
in these decision problems for G = S .

It can easily be seen that GNB<
LHS = GBA�

LHW might be empty: one
can think of a decision problem where two strategies induce the
same payoffs over all horizons.

The definition of GNB<
LHW = GBA�

LHS corresponds to the Ramsey-
Weizsäcker overtaking criterion (Brock (1970)). We denote the
set of strategies optimal according to the overtaking criterion
by GOT. From our previous results, it is obvious that a decision
problem might have no optimal strategy according to the over-
taking criterion. Moreover, if GOT is nonempty, then it contains
exactly one element.

Originally, the role of the overtaking criterion is to com-
pare infinite utility streams where the stakeholders – the ones
“gaining” the utility – are distinct in each period, as in a non-
overlapping generations model. However, the lact of conceptual
clarity led to misinterpretations of the criterion. For example,
Rubinstein (1979)’s definition makes the overtaking criterion
equivalent to optimality on the complete horizon in our frame-
work, due to the presence of discounting.

5. Pointwise limits

Since we can only conjecture the existence of repeatedly op-
timal strategies, the question arises whether we can generate
repeatedly optimal strategies as the limit of optimal strategies
on finite horizons? A natural way to attempt this is through the
pointwise limit of a sequence of strategies.

Definition 11. Suppose s = (sT)T∈N is an infinite sequence of
strategies. We say that strategy s ∈ S is a pointwise limit of
s if there is an index set I ⊆ N of infinite cardinality so that
for every history h there is a horizon T (h) such that for every
T ′ ≥ T (h) in I, s(h) = sT ′ (h).

It is easy to provide an algorithm for “constructing” point-
wise limits of sequences of strategies. First, order all histo-
ries in a way that shorter histories always precede longer ones.
Then, go throught the histories step by step: at each history,
choose any action that is taken by infinitely many strategies, and
eliminate the remaining strategies. After each step of choice
and elimination, the number of remaining strategies will be in-
finite. Thus the algorithm will never halt, and at least one point-
wise limit will exist for any infinite sequence of strategies.

The pointwise limit approach is also taken by Fudenberg and
Levine (1983), who show the following theorem.

Theorem 3. Suppose s is a sequence of strategies optimal
on all finite horizons: s = (sT) with sT ∈ GT for each
T ∈ {1, 2, . . . }, and let s ∈ S be a pointwise limit of s. Then
s is optimal on the complete horizon: s ∈ GCH. We denote the
set of all such strategies with GFL.

Since they use a game-theoretic approach, and their formal-
ism is somewhat different, we attach a short proof.

Proof. Suppose the contrary. Then, there must be an s ∈ GFL
and s′ ∈ G such that U∞(s′) = U∞(s) + δ for some δ > 0. From
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the finiteness condition
∑∞

t=1 r̄(t) < ∞ we get limt→∞ r̄(t) = 0.
Therefore, there exists a T ′ such that UT (s′) > UT (s) for all
T > T ′.

We know that for some infinite index set I, strategy s is the
pointwise limit of (gi), with gi ∈ Gi for each i ∈ I. This im-
plies that there is some horizon T ′′ ∈ I and a strategy gT ′′

optimal on T ′′ > T ′ such that s(h) = gT ′′ (h) for all h with
t(h) < T ′′. Consequently, s is also optimal on T ′′, but this con-
tradicts UT (s′) > UT (s) for all T > T ′.

A strategy generated through pointwise limits is not neces-
sarily repeatedly optimal. To see this, consider the decision
problem in Fig. 3. Suppose that • is the starting state and
discounting is exponential with δ = 0.5. Let gt be the following
strategy for t > 1: go southeast, stay there until t, go east in that
period, then stay there.

Figure 3: Strategy generated through pointwise limits is dominated for every
horizon
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First we show that gt is the unique optimal strategy on
horizon t. On this horizon, it induces the payoff sequence
(0, . . . , 0, 8) and hence a utility of 8 · 0.5t−1. There are only
three types of alternative strategies to it: taking less time or
more time to get the payoff of 8, or going southwest. Since
the payoff of 8 is taken at the last possible moment, any strat-
egy that takes more time will induce a utility of 0 on horizon
t. On the other hand, any strategy that takes less time will end
up with a utility smaller or equal to 0, because of the repeated
payoff of −16 on every round after taking the payoff of 8. Last,
going southwest induces a utility of 0.5t−1. Thus gt is uniquely
optimal on horizon t.

Since gt is uniquely optimal on horizon t, it can easily be ver-
ified that GFL is a singleton set, only consisting of the strategy s
of going southeast, then staying at that point forever. This strat-
egy earns 0 on all horizons. However, we have seen that going
southwest earns 0.5t−1 on all finite horizons, therefore s′ �LHS s,
and s is not repeatedly optimal.

Figure 4: Blablabla
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6. Discussion

The previous sections have shown that the different optimal-
ity notions are related as illustrated in Fig. 5. It should be
noted that our examples concern non-generic decision prob-
lems. However, we do not regard this as a serious drawback,
as many interesting decision problems are non-generic, as in-
deed many existing (equilibrium) refinements. In the generic
case, all of these sets collapse into a single one.

Figure 5: The different optimality notions.

A dashed boundary indicates that the set might be empty.
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The existence of repeatedly optimal strategies remains an in-
triguing open question, although we conjecture that for closed
subsets of the strategy space, repeatedly optimal strategies will
necessarily exist for any discount function. If the existence
of repeatedly optimal strategies can be shown, we have good
reasons to use it as a refinement of optimal strategies on the
complete horizon. Namely, the choice of a repeatedly optimal
strategy will guarantee that for infinitely many periods, the de-
cision maker has reason not to feel any regret over his strategy
choice. If a uniformly optimal strategy can be found, there is
even more reason to rejoice: compared with every other strat-
egy, any regret for choosing the uniformly optimal strategy will
fully dissipate after just finitely many periods.

While our model is presented in a decision-theoretic frame-
work, the game-theoretic extensions are straightforward. Re-
suts concerning the relationships of various strategy sets will
carry over, but the existence properties of various strategy sets
will have to be readdressed for games.
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