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INTRODUCTION

We analyze data from first-price auction experiments with independent
private values for consistency with equilibrium bidding models. Three
models are considered: the log-concave model (Cox, Smith, and Walker
1988); the constant relative risk averse model (Cox, Roberson, and Smith
1982; Cox, Smith, and Walker 1982); and the risk neutral model (Vickrey
1961). These models are nested in that the log-concave model contains
the constant relative risk averse model (hereafter, CRRAM) as a special
case, and CRRAM contains the risk neutral model as a special case. We
find that: (a) almost all of the data are consistent with the log-concave
model; (b) data for about one-half of the subjects are consistent with
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CRRAM; and (c) data for only 0-10% of the subjects are consistent with
the risk neutral model. We also use a loss function (Friedman 1992) to
calculate the foregone expected earnings from non-risk-neutral bidding
and find that they are significantly greater than zero for 90% of the sub-
jects. Our empirical analysis uses data from some of the first-price sealed-
bid auction experiments reported in Cox, Smith, and Walker (1988).

IS BIDDING BEHAVIOR CONSISTENT WITH THE
LOG-CONCAVE MODEL?

The log-concave model permits bidders to differ from each other in any
way that can be represented by finite-dimensional characteristic vectors
that are realizations of a (finite-dimensional) random variable with inte-
grable cumulative distribution function defined on a convex set. In the
log-concave model; bidders can be risk averse, risk neutral, or risk-lov-
ing; furthermore, an individual bidder can be risk averse for some gam-
bles and risk neutral or risk-loving for others. The only restriction that
the model places on risk attitudes is that utility functions must be strictly
log-concave. The class of "log-concave functions" is defined as follows.
Let ~ map S c R" into T c R!. The function ~ is (respectively strictly)
log-concave if In ~ is a (respectively strictly) concave function. Note
that if ~ is a differentiable function of a single variable then it is (respec-
tively strictly) log-concave if and only if ~'(x)/~(x) is (respectively
strictly) decreasing on the domain of~.

Log-Concave Bid Function

Let u(y,9} be the utility of monetary income y to bidder j with char-
acteristic vector, 9t Ifbidderj submits the highest bid in amount bj' and
values the auctioned item in amount Vj' then his monetary payoff is Vj-
bt Ifbidderj does not submit the highest bid then his monetary payoff
is O. Assume that u is strictly increasing and strictly log-concave in y
and normalized such that u(o,9} = 0 for all 9t Let GJ{b} be bidder j's
subjective probability that he can win the auction by submitting a bid in
the ~ount bt Assume that GfO) = 0 and that Gj is strictly log-concave

on [o,bj].
Then bidderj's's expected utility of a bid in the amount bj is

Uj{b) = Gj(b) u(Vj -bj.9j)' (1)
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Assuming that Uj is differentiable, one can take logs in equation (1)
and differentiate to show that

Uj'(b)/~{b) = Pj{b) -~(Vj -bj'O) (2)

where Pj(b) = Gj'(b)/Gj(b), ~(Vj -bj' 8) = Ul(Vj -bj' 8)/u(vj -hi' 8),
and Ul(Vj -hi' 8) is the derivative of u(Vj -hi' 8) with respect to its first
argument, Vj -bi" Equation (2) reveals that Vj is strictly log-concave in
bj because Gj is strictly log-concave in bj and U is strictly log-concave in
Vj -bi" Note that Vj{b) > 0 for all bj E (O,v) because Gj(b) > 0 for all bj

> 0, u(0,8) = 0, and U is strictly increasing in Vj -bi" Therefore, the strict
log-concavity of Vj implies that for each Vj there exists a unique bj E
(O,v) that maximizes Vi"

The maximizing bid for any value is such that equation (2) equals
zero; hence for the optimal bid function, b(Vj ,8j)' one has

Pj{b(vp9)) = J.1(Vj -b(vj.9). 9). (3)

Differentiation of equation (3) yields

III (~ -b(~ ' ~ ), ~ )
b}(y,9j) = P;(b(~,~1)+IlI(' -b(vj,9j,9j) (4)

where bl(Vj,8) is the derivative of the bid function, b(vj'~), with respect
to its first argument, vi Since ~l and pi are both negative by strict log-

concavity, equation (4) implies

0 <bt(vj' e) < 1 (5)

Now assume that the 9j,j = 1, ..., n, are independently drawn from the

probability distribution with integrable cdf <I> on the convex set 6. Also
assume that the Vj,j = 1, ..., n, are independently drawn from the uni-
form distribution on [v,. vh]' Let x(b,9) be the v -inverse of the bid func-
tion, b(v,9). Assume that the bidders all have the same rational
expectations such that

[ 1t(b,9)-v ]n- G} (b) = J @dct>(9)

e vh-v@
(6),j = , ..., n
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Then the argument in Cox, Smith, and Walker (1988, pp. 62-65) shows
that b(v,9) is a Bayesian-Nash equilibrium bid function.

Empirical Tests

We tested the data for properties that correspond to containment of
individual bid function slopes in the (0,1) interval, as in statement (5).
We conducted two types of tests for positive monotonicity of individ-
ual bids with respect to values, one based on rank correlation and the
other based on fitted cubic equations. First consider the Spearman
rank correlation between bids and values, Cb,v .In order to test the
data for consistency with positive monotonicity, we tested the null
hypothesis

HJ: Cb,v>O. (7)

We could not reject the null hypothesis in statement (7) for any subject
at conventional levels of significance (p values ~ 0.1). In addition, we
can always reject the hypothesis that excludes positive correlation; that
is, the hypothesis

Hl: Cb,v50 (R)

can be rejected for every subject at conventional levels of significance.
Our second type of test for positive monotonicity involves fitting a

cubic equation to the data and then evaluating its slope at each observa-
tion. We used OLS to estimate the parameters of

(9)

using the observed bids, bit' and values, Vit' for each of the 40 sub-
j.:~ts.l The estimated cubics are g~~d fits to the data: 29 out of the. 40
1!2 exceed 0.99; 36 out of the 40 R exceed 0.95; and 40 out of the 40
R exceed 0.90. The estimated parameter variance/covariance matri-
ces obtained from OLS estimation of the cubic bid functions were
used to calculate the standard errors for the estimated slopes of these
bid functions. From these standard errors, a standard normal approxi-
mation was .used to test various restrictions on the slopes of the bid
functions.
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In order to test the data for consistency with positive monotonicity, we
tested the null hypothesis

We could not reject the null hypothesis in statement (10) at 10% signif-
icance in 999 of the 1,000 tests. (The number of tests, 1,000, equals the
number of subjects, 40, times the number of observations per subject,
25.) We also tested the data for consistency with nonpositive monoto-
nicity; that is, we tested the null hypothesis

H;

The null hypothesis in statement (11) could be rejected, at 10% signifi-
cance, in 957 of the 1,000 tests. It could be rejected for every Vit for 27
out of the 40 subjects.

Our test that bid function slopes are less than one is also based on the
estimated parameters of equation (9). To test the data for consistency
with the less-than-one slope restriction, we tested the null hypothesis

H30

At the 10% level, the null hypothesis in equation (12) could be
rejected in only 26 of the 1,000 tests. It could not be rejected for any
vir for 33 out of the 40 subjects. We also tested the data for consistency
with the no-less-than-one slope hypothesis; that is, we tested the null

hypothesis

The null hypothesis in equation (13) could be rejected, at 10% signifi-
cance, in 649 of the 1,000 tests.

We have tested the data for consistency with three properties of the
log-concave model with our tests of the hypotheses, Hh, i; 1,2,3. We
have also tested the data for consistency with the class of models that
exclude these three properties of the log-concave model with our tests of
the hypotheses, H!, i = 1,2,3. Results from the Hh tests reveal that the
data are highly, although not perfectly, consistent with the log-concave
model. Results from the H! tests reveal that the data are highly incon-
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sistent with the class of models that excludes the three properties of the
log-concave model.

IS BIDDING BEHAVIOR CONSISTENT WITH THE
CONSTANT RELATIVE RISK AVERSE MODEL?

The constant relative risk averse model (CRRAM) is the special case of
the log-concave model in which bidders have log-linear utility of
income functions. Thus, for CRRAM the individual characteristic vec-
tors, OJ, are the scalars, rj, and the convex set, e, is the interval, (o,rh].
Further, the utility of income functions, u(y, OJ), are the power functi9ns,
Ii, for which the I -rj are the individuals' coefficients of constant rel-
ative risk aversion.

CRRAM Bid Function

The CRRAM equilibrium bid function has a linear segment and a
nonlinear segment. The linear segment is

n-l *
h,' = v'+ l (v. -v.),forv. E [V.,V.],'n-+r." , ",

where: hi is the amount of bidder i's bid; n is the number of bidders; 1-
Ti is bidder i's coefficient of constant relative risk aversion; vi is the pri-
vate value of the auctioned item to bidder i; vQ is the lower bound on the
support, [vQ, vh]' of the uniform distribution from which the vi are inde-
pendently drawn; and vi is the "knot" which joins the linear and non-
linear parts of bidder i's bid function. If 1 -Th is the coefficient of
constant relative risk aversion (or risk preference) for the least risk
averse (or most risk-preferring) bidder in the population from which
bidder i's rivals are drawn, then the knot occurs at the value

Vi* is the private value for which a CRRAM bidder with risk attitude
parameter, ri, would bid an amount equal to the highest possible bid by
the least risk averse bidder in the population of bidders, b(Vh' rh).

n-l+rj
V.*= v.+ l (vh-v.).I .n- + rh .
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Spline Function Estimation

The stochastic bid function for the ith bidder in an n-person auction
can be represented by the spline function

b J. *it = VQ+~(Vit-VQ)+Dit8;(Vit)+Uit,t = l,...Tn-1

where

* .,
Dit = III Vir ?; VI

= 0 otherwise,

and g i(') is concave. An alternative expression for the bid function is
obtained by rearranging terms in equation (16) to obtain:

bit = /30i + /31i Vit + D;t gi (Vit) + "it.

where

v@rj~ 0 j = ""j"":""i"~

and

n-l
/31; = n-l+r;

Next, we represent the function g(.) by its second-order Taylor series

approximation:2

gj(Vj/) = P2j(Vj/ -vi) + P3j(Vj/- vi) 2,
(21)

Substitution of equation (21) into equation (18) yields

bit = ~Oi + ~li Vit + ~2jD;; (Vjt- Vj*) + ~3jD,; (Vjt- Vj* )2 + Ujt'

where Bli + B2i > 0 and ~i < O. Since the restrictions on Boi and Bli

implied by the theory are not imposed at this point, we refer to equation
(22) as the unrestricted (or naive) bid function. We estimated equation
(22) with nonlinear least squares by searching for the value of vi that

T
minimizes the sum of squared residuals, L U~t for VQ < vi < Vho

t= 1
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If rh = 1 then the theoretical relationship between the risk aversion
parameter rj and the threshold value vi is given by

(23)[V! -Vh ]r. = n + 1.
I vh-v@

Upon substituting equation (23) for rj in equations (19) and (20), we
obtain the following parameter restrictions:

130; = j I -)
v~[n(v! -vh)+vh-v~]

and

(n-l)(vh-V~)
131j = n(vj* -v~) ,

Our restricted bid function is obtained by substituting equations (24)
and (25) into equation (22), to obtain

bit = ~2pit (Vit -v;) + ~3pit (Vit -V;)2 + Uil'

where

q;

(27)

In the case where VQ = 0, we have

(n -1 )vh

nv.*
I

bii -b' t -
-I Vit.

We estimated the restricted bid function (26) by searching for the value
T

of the knot, Vi.' that minimizes the sum of squared residuals, L u:t for
t = 1

Vi. contained between the maximum risk neutral equilibrium bid and the
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maximum value, that is v~ + (~)(\j, -v~) ~ vi < Vh. The restricted

bid function admits only risk averse or risk neutral bidding behavior.
Using equation (23), we find that our estimator of 1,' is given by

+ I,
(1>.* -vh

~=n~
where V ~ is the value of '1* that minimizes the sum of squared residuals.
When VQ = 0, our estimator of 'l is simply

~

If we approximate the distribution of the bid function disturbance
tenns by the mean zero nonnal distribution, then minimizing the sum of
squared residuals of the bid function is equivalent to maximizing the
likelihood function. The experimental data used in our bid function esti-
mation were generated from an experimental design in which the lower
bound and upper bound of the support on the distribution of values were
v~ = 0 and VIJ = 10. Also, the number of bidders was n = 4. Therefore, the

log likelihood function corresponding to the restricted two-part bid
function specified in equations (26) and (27) is given by

L[ (v. )b -It t a ~ -~ .D*" *

~nL = -~~n(27t0'~i)- t vi 2i II (,t -vi )+~3iq; ("'t -vi
2]2

) .(31)

2cr .
UI

n-lwhere a = 'h = 7.5. In order to obtain estimated standard errors
for the paramgter estimates, v7 and '"7 ,we employ the computation-
ally simple method introduced in Berndt et al. (1974) that relies only on
first derivatives of the likelihood function. Let hit denote the first deriv-
ative of the likelihood function for observation t for subject i:

where .f(.) is the density function, and t i is the estimated bid function
A A *

parameter vector whose elements are ~2i, ~1' ,and vi. The asymptotic

A (1~ )r: = n
I vh
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variance-covariance matrix for the parameters of the bid function is esti-
mated according to

-1

est. Asy. Var(i'i) = [~ii;th'it (33)

The estimated standard error for r i is easily obtained from the estimated
standard error of vl by noting the linear relationship between these
estimators given by equations (29) or (30).

Few observations were greater than or equal to the estimated thresh-
old values because there were only 25 periods in each experiment. Out
of the combined samples there were only 148 out of 1,000 observations
that were greater than or equal to the estimated threshold values. On an
individual subject basis, the number of these observations ranged from
0 to 6. The implication of this is that the parameters of the quadratic seg-
ment of the spline function could not be estimated in some cases, and in
others the parameters were estimated with little precision.

Empirical Results

Table 1 presents the estimated values of v~ and r. and their associ-
I I

ated standard errors for each subject in each of the 10 experiments.
The threshold value, v7, ranges from 7.56 to 10 with a corresponding
range of rj from 0.024 to 1. All of the estimated threshold values
were statistically significant. With four exceptions, the risk aversion
parameter was statistically significant. These four exceptions are for
subject 3 in experiment 7, subject 4 in experiment 9, and subjects 1
and 2 in experiment 10. The lack of statistical significance is equiva-
lent to the failure to reject the hypothesis that the threshold value is
equal to 7.5.

Table 2 reports the p values for (asymptotic) F tests of selected pair-
wise model comparisons. The second column of Table 2 reports the p
values for the test of the restricted two-part bid function (equation [26])
against the naive two-part bid function (equation [22]). The restricted
two-part bid function would not be rejected in favor of the naive two-
part bid function for the data for 19 out of the 40 subjects. A couple of
these cases are marginal, however. Thus, the bidding behavior of about
50% of the subjects is consistent with CRRAM r)n the basis of this strin-
gent test.
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Table 1. Restricted Two-Part Bid Function Estimates and
Standard Errors

~*
v, VA*

v:Experiment/Subject 1; cr ~.

1.1 8.17 .085 .268 .034

1.2 8.79 .339 .516 .136

1.3 8.42.171 .368 .068

1.4 8.77 .176 .508 .070

2.1 8.77 .248 .508 .099

2.2 7.87 .033 .148 .013

2.3 7.97 .230 .188 .092

2.4 7.89 .058 .156 .023

3.1 8.23 .132 .292 .053

3.2 8.82 .244 .528 .098

3.3 8.42 .090 .368 .036

3.4 8.90 .114 .560 .046

4.1 7.75 .032 .100 .013

4.2 7.83 .003 .132 .001

4.3 7.93 .038 .172 .015

4.4 9.09 .081 .636 .032

5.1 7.96 .195 .184 .078

5.2 7.89 .059 .156 .024

5.3 7.66 .018 .064 .007

5.4 8.25 .061 .300 .024

6.1 8.38 .095 .352 .038

6.2 8.45 .009 .380 .039

6.3 9.23 .436 .692 .174

6.4 8.60 .214 .440 .085

7.1 7.71 .062 .084 .025

7.2 8.58 .087 .432 .035

7.3 7.74 .298 .096 .119

7.4 7.74 .038 .096 .015

8.1 7.91 .046 .164 .018

8.2 9.58 .313 .832 .125

8.3 8.20 .056 .280 .023

8.4 10.00 a 1.000 a

9.1 8.67 .178 .468 .071

9.2 8.68 .050 .472 .020

9.3 8.48 .134 .392 .054

9.4 7.56 .072 .024 .029

10.1 8.10 .804 .240 .322

10.2 7.67 .154 .068 .061

10.3 7.85 .075 .140 .030

10.4 8.15 .308 .260 0.123

Note: "Standard errors were nat defined since there were na abservatians far v O?; 10.
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Table 2. F Tests of Bid Function Restrictions-p Values

Experiment!
Subject

Restr. 2 partl
Naive 2 part

Risk neutral/
Restr. 2 part

Risk neutral!
Naive 2 part

Risk neutral!
Naive linear

1.1
1.2
1.3
1.4
2.1
2.2
2.3
2.4
3.1
3.2
3.3
3.4
4.1
4.2
4.3
4.4
5.1
5.2
5.3
5.4
6.1
6.2
6.3
6.4
7.1
7.2
7.3
7.4
8.1
8.2
8.3
8.4
9.1
9.2
9.3
9.4

10.1
10.2
10.3
10.4

.010

.029

.677

.002

.020

.000

.140

.140

.142

.000

.103

.276

.693

.000

.049

.035

.660

.015

.003

.002

.010

.195

.102

.025

.037

.000

.392

.531

.165

.111

.126

.004

.016

.021

.756

.088

.000

.860

.167

.367

.000

.003

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.107

.000

.000

.000

.000

.000

.000

.436

.000

.000

.000

.000

.000

.000

.421

.000

1.000

.000

.000

.000

.000

.065

.000

.000

.001

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.005

.000

.000

.000

.000

.000

.000

.048

.000

.000

.000

.000

.000

.000

.050

.000

.004

.000

.000

.000

.000

.000

.000

.000

.001

.000

.002

.000

.000

.098

.000

.000

.000

.000

.000

.000

.105

.000

.000

.000

.115

.000

.000

.000

.000

.000

.000

.423

.046

.000

.000

.000

.000

.000

.160

.000

.095

.000

.000

.000

.000

.000

.000

.000

.016
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IS BIDDING BEHAVIOR CONSISTENT WITH THE
RISK NEUTRAL MODEL?

The risk neutral model is the special case of CRRAM in which the util-
ity function power, Ti' equals 1 for all bidders. The equilibrium bid func-
tion for the risk neutral model was first derived in the classic paper by

Vickrey (1961).

Risk Neutral Bid Function

With n bidders and auctioned item values independently drawn from
the uniform distribution on [v~, vh], the risk neutral equilibrium bid
function is

n-l .
b. = v.+-(v. -v.),forv. E [v.,v hI .1 I. I .11

Bid Function Estimation

The data can be analyzed for consistency with the risk neutral model
in various ways. We begin with the spline function approach. In the case
of the risk neutral model, rh = rj = 1, which by equation (15) implies Vj* =
'" .Making the appropriate substitutions in equations (19) and (20), we
obtain the following parameter restrictions:

and

(n -1 )131; = n-

Our risk neutral restricted bid function is obtained by substituting
equations (35) and (36) into equation (22) and setting Di~ = 0 to

obtain

*bil = "iI'
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where

* v~ (n-l )bit = bit -;- ~ ~t

The sum of squared residuals from equation (37) are simply calculated
T 2

as L (b;t) .Forv~=O,equation(35)impliesthatBoi=O;therefore,the
t = 1

risk neutral bid function restriction is given by

A naive linear model is one with no restrictions on BOi and Blio Such a
model would simply be specified as

(40)bit = ~Oi + ~liVit + Uit.

Empirical Results

Consider once again the estimated values of v~ and r. and their stan-
I I

dard errors in Table 1. In only two cases would one fail to reject the
hypothesis that the threshold value, v7, was equal to 10 (or, equiva-
lently, that the risk aversion parameter, ri' was equal to 1) at conven-
tionallevels of significance. In other words, in only two cases would one
fail to reject risk neutrality on the basis of this test. These cases occurred
in experiment 8 and involved subjects 2 and 4.

Table 2 presents other tests of the risk-neutral model. The third col-
umn of Table 2 reports the p values for the test of the risk-neutral model
against the restricted two-part bid function (equations [26] and [27]).
There are only four cases in which we fail to reject the risk neutral bid
function in favor of the restricted two-part bid function, that is, there are
only four out of 40 subjects for whom we fail to reject the risk neutral
model in favor of CRRAM. One of these cases is marginal. A tougher
test for the risk neutral model involves testing it against the naive two-
part bid function (equation [22]). This is the stringent test that we
applied to CRRAM. The p values for this test are reported in the fourth
column of Table 2. The risk neutral model is rejected in favor of the
naive two-part bid function for all of the 40 subjects. The fifth column of
Table 2 reports the p values for tests of the risk neutral model (equation
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[39]) against the naive linear model (equation [40]). The risk neutral
model is rejected in favor of the naive linear model in all but four cases,
and one of these is marginal. Thus, depending on which test is used, the
behavior of only 0-10% of the subjects is consistent with the risk neutral
model.

Loss Function Evaluation

Harrison (1989) argued that one cannot reject the hypothesis of risk-
neutral bidding behavior if one uses his metrics to measure the impor-
tance of expected foregone earnings from non-risk-neutral bidding.
Cox, Smith, and Walker (1992) explained the theoretical problems in
Harrison's reasoning. Friedman (1992) explained that Harrison's met-
rics ignore most of the data on subjects' bidding behavior and pro-
posed an alternative loss function. We apply Friedman's loss function
to the data as follows. Substitute rj = 1 in equation (14) to get the risk
neutral theoretical bid function; then use that bid function to calculate
the risk neutral bid associated with the item value for each bidder i and
period t:

(41)

Next, calculate the sign variable

+1, if qt > Bit

(42)Zit = 0, if b;t = Bit

-I, if b;t <Bit

The loss variable is calculated as

where bit and Vit are the observed bids and values. Finally, the test sta-
tistic is defined as

Xjl = 2;1 4/'
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Results from evaluating Friedman's loss function are presented in
Table 3. We report a (one-tailed) test of the null hypothesis that expected
foregone earnings from non-risk-neutral bidding are zero, against the
alternative that they are positive (as in risk-averse bidding). At 10% sig-
nificance, expected foregone earnings are significantly greater than zero
for 36 out of the 40 subjects. The four subjects for whom the null
hypothesis is not rejected have expected foregone earnings that are: (a)
positive but insignificant for two subjects; and (b) negative for two sub-
jects. The bid function tests reported in Table 2 rejected the risk neutral
model in favor of CRRAM for 36 out of the 40 subjects. We observe that
two out of the four test-separated subjects are the same in the two tests
and two are distinct in each test.

SUMMARY AND CONCLUSIONS

We have tested three nested bidding models using data from some of the
first-price sealed-bid auctions reported in Cox, Smith, and Walker
(1988). The data are highly consistent with properties of the log-con-

Table 3. i-Tests of Friedman's Loss Metric-p Values

1.1
1.2

1.3
1.4
2.1
2.2
2.3
2.4
3.1
3.2
3.3
3.4
4.1
4.2
4.3
4.4
5.1
5.2
5.3
5.4

6.1
6.2
6.3
6.4
7.1
7.2
7.3
7.4
8.1
8.2
8.3
8.4
9.1
9.2
9.3
9.4

10.1
10.2
10.3
10.4
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cave model. Furthennore, the data are highly inconsistent with the class
of models that excludes these properties of the log-concave model.

We next asked whether the data are consistent with equilibrium bid
functions with simple parametric fonDs. We tested CRRAM and its risk
neutral special case using a spline function estimation procedure.
CRRAM was rejected in favor of an unrestricted two-part bid function
for 21 out of 40 subjects. Thus we found that data for about 50% of the
subjects are consistent with CRRAM. The risk neutral model was
rejected in favor of an unrestricted two-part bid function for every sub-
ject. Using other, less stringent tests we found that data for 5-10% of the
subjects were consistent with the risk neutral model.

We next used Friedman's (1992) loss function to calculate the fore-

gone expected earnings from non-risk-neutral bidding for each subject.
We found that foregone expected earnings were significantly greater
than zero for 36 out of the 40 subjects. Therefore, most of the subjects
bid as if they were risk averse, not risk neutral, and they gave up signif-
icant amounts of expected earnings in order to do so.
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NOTES

1. As an alternative to equation (9), we also estimated the parameters of cubic equa-
tions in which the intercepts were not forced to be zero. Slope tests for these equations

yield essentially the same results as those reported in the paper. We report the test results
for the equations with zero intercepts because the theoretical model yields bid functions
with zero intercepts.

2. Most of the data are in the domains of the linear parts of the CRRAM bid func-
tions. There are not sufficient observations in the nonlinear parts of the bid functions of

many subjects to estimate the parameters of the second-order approximation. Thus, use
of a higher order polynomial approximation is ruled out by the data.
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