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Abstract

When implementing an economic institution in the field or in the laboratory, the

participants’ action spaces and the institution’s outcomes are typically discrete, while our

theoretical analysis of the institution often assumes the sets are continuous. Predictions by

the continuous model generally turn out to be good approximations to the performance of

the discrete implementation. We present an example in which the continuous version has a

unique and Pareto efficient equilibrium, but in which the discrete version often has vastly

more equilibria, many of them far from efficient. We show that the same phenomenon

appears in two experiments investigating the Groves-Ledyard mechanism, and that it may

account for the experimental results.
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1 Introduction

A common practice in economics, as in other fields, is to use continuous models to ana-

lyze phenomena that are essentially discrete. The characteristics and the predictions of the

continuous model generally turn out to be good approximations to the associated discrete

phenomena. It’s also well understood that the differences between continuous and discrete

versions of a model can sometimes matter – as in a simple Cournot model, for example, where

the continuous version can have a unique equilibrium while the discrete version can have

several pure strategy equilibria.

We present an example in which the usual correspondence between continuous and discrete

versions of the same model fails dramatically. The example is a simple economy with a

public good, in which the Groves-Ledyard mechanism (Groves and Ledyard (1977)) is used to

determine how much of the public good will be provided and how much each participant will

pay to finance the public good. The economy has no pathological features: consumers have

quasi-linear utility functions and the public good is produced at constant marginal cost. If

participants have continuous action spaces (i.e., if each participant’s set of available actions

is an interval in R), the mechanism will have a unique equilibrium and the equilibrium will

be Pareto optimal. But when participants’ action spaces are discrete, we will see that the

mechanism typically has multiple pure-strategy equilibria – often an enormous number of

them – and there is nothing to single out any of the equilibria as focal. In further sharp

contrast with the continuous model, only a small fraction of the equilibria in the discrete

model may be Pareto optimal.

Under a broad class of parametrizations of the mechanism the resulting noncooperative

game is supermodular; this is true whether the action spaces are continuous or discrete. When

the action spaces are continuous, this supermodularity ensures that any “adaptive” behavior

by the participants will converge to the unique, Pareto optimal equilibrium (Milgrom and

Roberts (1990)). But when the action spaces are discrete and the set of equilibrium outcomes

therefore generally quite large, supermodularity no longer guarantees efficient outcomes.

The dramatic difference between the performance of the continuous and the discrete ver-

sions of the mechanism in our example is of more than theoretical interest: in order to

implement any economic mechanism – whether in an experiment or in a naturally-occurring

economic setting – one has to use discrete strategy spaces. The results we present suggest that

one could easily go wrong using the continuous model to make predictions about outcomes in

a discrete implementation. After analyzing our example, we briefly describe two experimental

studies of the Groves-Ledyard mechanism in which these issues are especially germane.
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2 The Model

There are two goods, which we’ll call X and Y ; we denote quantities of the goods by x

and y. Good X is a public good, which can be produced and provided to consumers by using

Y as input: it takes c units of Y to provide each unit of X. We index the n participants in the

economy by i (i = 1, ..., n). Each person’s preference is represented by a quasi-linear utility

function ui(x, yi) = aix− bix
2 − yi, where yi is the amount of good Y person i contributes to

the production of X. It’s convenient to think of Y as money and yi as i’s dollar contribution

to financing the production of X. In order to fully cover the cost cx of providing x units of

the public good, the values of x and y1, ..., yn would have to satisfy
∑
i
yi = cx. We assume

that each person is endowed with enough of the Y good that the allocations we consider are

all interior – i.e., no one’s yi ever exceeds his endowment.

It is easy to show (for example, via the Samuelson condition
∑
i
MRSi = MC) that Pareto

efficiency requires

(1) x = 1
2B (A− c) and (2)

∑
i
yi = cx,

where A :=
∑
i
ai and B :=

∑
i
bi.

We assume that the Groves-Ledyard mechanism is used to determine the levels of x and

y1, ..., yn: each person submits a vote or message mi ∈ R, and then

(3) x =
∑
i
mi and (4) yi = 1

ncx + γ
2 [n−1

n (mi − µ−i)2 − σ2
−i],

where γ > 0 is an exogenous parameter of the mechanism, and where µ−i and σ2
−i are defined

as follows:

µ−i := 1
n−1

∑
j 6=i

mj and σ2
−i := 1

n−2

∑
j 6=i

(mj − µ−i)2.

Groves and Ledyard (1977; henceforth G&L) established, for very general economies, that

the Nash equilibria of this mechanism are Pareto efficient. In the economies we are considering

here, with quasi-linear utility functions and a linear cost function, it is straightforward to verify

that equations (3) and (4) yield equation (2), and that for any value of the parameter γ there

is a unique Nash equilibrium, which satisfies equation (1) and is therefore Pareto optimal.

While the parameter γ has no effect on the efficiency of the equilibrium nor even (in our

quasi-linear world) on the equilibrium value of x, it may affect the mechanism’s performance
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in other ways. This has been the focus of recent research on the Groves-Ledyard mechanism,

and it will be our focus here as well.

The value of γ affects in particular the supermodularity of the mechanism (more precisely,

the supermodularity of the game defined by the mechanism together with the participants’

utility functions). With the quasi-linear utility functions in our example, participant i’s payoff

function has increasing differences if and only if 1 γ > 2nbi; therefore the game is supermodular

if and only if

γ > 2n max{b1, ..., bn}. (S)

This necessary and sufficient condition for supermodularity holds for any message spaces that

are compact subsets of R.

Applying results in Section 3 of Milgrom and Roberts (1990; M&R), if the mechanism

has a unique equilibrium and Condition S is satisfied, then any adaptive dynamic process

will converge to the equilibrium. Moreover, whether the equilibrium is unique or not, if the

message spaces are finite then Condition S ensures that there will exist a time after which the

message n-tuple (m1, ...,mn) will always lie between the smallest and largest equilibria of the

mechanism defined by γ.

3 A Numerical Example

Assume that the mechanism has only three participants, with utility functions

u1(x, y1) = 8x− 1
2x2 − y1, u2(x, y2) = 10x− 1

2x2 − y2, u3(x, y3) = 15x− 1
2x2 − y3,

and that c = 3 is the per-unit cost of producing the public good. We have

MRS1 = 8− x, MRS2 = 10− x, MRS3 = 15− x,

and the Pareto efficient provision level of the public good is therefore x = 10. Because

b1 = b2 = b3 = 1
2 , the game defined by the Groves-Ledayard mechanism is supermodular if

and only if γ > 3.

3.1 Continuous message spaces

Suppose that each participant, when choosing his message mi, is allowed to choose any

real number. It’s straightforward to solve for the game’s unique Nash equilibrium, which is
1This is shown via some straightforward but tedious algebra, contained in an appendix.
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m1 = 10
3 − 3

γ , m2 = 10
3 − 1

γ , m3 = 10
3 + 4

γ .

The equilibrium yields the Pareto efficient public good level x = 10 no matter what value is

assigned to the parameter γ when specifying the mechanism.

3.2 Discrete message spaces

Now assume that each participant’s message space is discrete. In the continuous case it

was straightforward to solve analytically for the equilibria and to verify that the equilibrium

is always unique, but here we have to resort to computation – brute force computation. We

place bounds on the discrete message spaces, to make them finite, and then we evaluate every

profile of messages to determine whether any participant, by deviating to a different message,

can increase his utility. The profiles from which no one has a utility-improving deviation

are the Nash equilibria. With discrete message spaces, unlike the continuous case, it turns

out that the number of Nash equilibria and their efficiency properties depend critically upon

the details of the mechanism – the value of the mechanism’s parameter γ, and the message

space(s) the mechanism makes available to the participants.

Consider first the case in which the only available messages are the integers. In equation

(4), the second term in the expression for yi imposes a “penalty” on person i for choosing a

message mi that differs from µ−i, the mean of the others’ messages. The penalty is increasing

in both |mi − µ−i| and γ, so it’s not surprising that when γ exceeds a certain threshold,

every participant’s best response (if messages are discrete) is the nearest integer to his µ−i.

With the utility functions in our example, that threshold is approximately γ = 13.5. When

γ is larger than this, the only Nash equilibria are symmetric profiles, profiles in which all

three participants choose the same message. And as we increase γ, more and more of these

symmetric profiles become equilibria.

The relation between γ and the number of equilibria is described in detail in Table 1 and

Figure 1. When γ ≤ 13.5 there is generally a single equilibrium, which is asymmetric and at

which m1 + m2 + m3 = 10: the public good is provided at the Pareto efficient level x = 10,

and the total surplus is the maximum possible, 150. For 14 ≤ γ ≤ 22 there are two equilibria,

m1 = m2 = m3 = 3 and m1 = m2 = m3 = 4, with corresponding (non-Pareto) provision

levels x = 9 and x = 12. The amounts of surplus at these levels of x are 148.5 and 144,

respectively. As γ is increased, the number of equilibria grows, always with m1 = m2 = m3,

until eventually every symmetric profile is an equilibrium. (Table 1 and Figure 1 include only

0 ≤ mi ≤ 10, reflecting the bounds we placed on the message spaces.) Of course, as smaller

and larger levels of x become supportable as equilibrium outcomes, the surplus achieved at
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some of the equilibria becomes very much smaller, as can be seen in the rightmost column of

Table 1.

Refining the message space eliminates neither the proliferation of equilibria nor the much

lower surplus generated by many of the equilibria. If we allow each participant to use messages

with one decimal place, Figure 2 shows how the number of equilibria increases with γ, and

Figure 3 depicts the surplus achieved at the “worst” equilibrium for each value of γ. Note

that there are again only a few rather isolated integer values of γ at which the equilibrium is

unique, and that the number of equilibria eventually increases approximately linearly with γ.

However, the mechanism achieves a near-maximum level of surplus here for a broader range of

γ-values than it does when using integer messages: compare Figure 3 and the rightmost column

of Table 1, in which the surplus begins to fall off badly at smaller values of γ. Nevertheless,

the surplus eventually falls off rather dramatically here as well, just as in the integer case.

4 Two Experimental Papers

Two experimental studies of the Groves-Ledyard mechanism demonstrate how these issues

can arise in practice. Chen and Plott (1996; C&P) and Chen and Tang (1998; C&T) report on

experiments in which subjects participated in the GL mechanism in economic environments

that closely parallel our example.

Like our example, each experiment was an instance of the model defined above in Section

2. Each experiment consisted of several experimental sessions; in each session five subjects

participated in a version of the GL mechanism (in the notation of Section 2, n = 5). Each

participant was assigned parameter values ai and bi as described in Table 2.2 In C&P the unit

cost of the public good was c = 5; in C&T it was c = 20. Thus, the unique Pareto efficient

amount of the public good in C&P is x = 5 and in C&T it is x = 25.

In each experiment there were two kinds of sessions, or treatments: in some sessions the

value of the parameter γ was “small” (γ = 1), and in the others γ was “large” (γ = 100).

In the two “large γ” treatments (which we denote by CP-100 and CT-100) the game defined

by the mechanism and the utility functions is supermodular; in the two “small γ” treatments

(CP-1 and CT-1) the game is not supermodular.

Suppose for a moment that the participants’ message spaces are continuous. Then, as

in Sections 2 and 3, the GL mechanism has a unique Nash equilibrium and the amount of
2C&T explain that the parameter values and message space in their experiment were a transformation of

the ones in their paper. We use the ones from the experiment.
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the public good at the equilibrium is the Pareto efficient amount. We refer to these as the

continuous-space equilibria; they are shown in Table 3.

But of course the message spaces in the experiments were not continuous. In the C&P

experiment the message space consisted of the nine integers −2,−1, 0, 1, 2, 3, 4, 5, 6; in C&T

it consisted of the 51 integers −20,−19,−18, . . . , 28, 29, 30. Consequently, just as in the

example presented above in Section 3, the equilibrium is unique for only some values of γ and

for other values of γ there are many equilibria. This multiplicity of equilibria is important for

interpreting the experimental results.

Those results can be described in a nutshell as follows: In treatment CT-100 the subjects’

choices in each session converged quickly to the integer profile nearest to the continuous-

space equilibrium in Table 3, the profile (m1,m2,m3,m4,m5) = (5, 5, 5, 5, 5); the public good

was therefore provided at the Pareto efficient level. In CP-100 the subjects generally chose

messages relatively near the ones in Table 3, but did not coordinate on any particular profile

of messages. In both CP-1 and CT-1 the subjects’ choices never seemed to converge, and the

public good level was generally not the Pareto amount.

If the equilibrium in each treatment were unique, a plausible explanation of these results

would be the supermodularity of the γ = 100 treatments and the lack of supermodularity in

the γ = 1 treatments.

However, the same computational approach used in Section 3 reveals that only one of the

treatments, CT-100, actually has a unique equilibrium. Tables 4 and 5 describe how the set

of equilibria depends upon the value of γ in the two experiments, just as Table 1 does for our

example. In particular, the treatment CT-1 has not one equilibrium, but 1,445. While all

1,445 equilibria yield the Pareto amount of the public good, we might expect subjects to have

a difficult time coordinating on or converging to any particular one of them. In CP-1 there

are nine equilibria, all of them again Pareto efficient, but the multiplicity might still make it

difficult for subjects to arrive at any particular one of the equilibria.

Thus, the experimental subjects’ failure to converge to any consistent pattern of behavior

in these two “small γ” treatments was likely a consequence of the multiplicity of equilibria

and not due to the lack of supermodularity. Indeed, even if the games in these treatments

were supermodular, that would guarantee only that adaptive behavior will eventually lie in

the rectangle bounded by the extreme equilibria (cf. Theorem 8 of Milgrom and Roberts

(1990)). With so many equilibria, that would allow for an enormous range of behavior.

Behavior in the two “large γ” treatments was more orderly, and supermodularity likely

played a role. The game in treatment CT-100 is supermodular and the equilibrium is unique.
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Adaptive behavior will therefore eventually attain and remain at the equilibrium; indeed, the

game is dominance solvable. Moreover, the equilibrium is a symmetric profile which might be

quite focal to subjects. The rapid convergence of the subjects’ observed behavior is therefore

quite consistent with theoretical prediction.

The case of CP-100 is a little bit different than the other three. Here the mechanism

is supermodular, like CT-100, but there are five equilibria – the five symmetric profiles

(−1,−1,−1,−1,−1), (0, 0, 0, 0, 0), (1, 1, 1, 1, 1), (2, 2, 2, 2, 2), and (3, 3, 3, 3, 3). Theorem 8

of M&R (see especially the theorem’s second corollary) ensures that any adaptive dynamics

will eventually yield only profiles in the rectangle bounded by the two extreme equilibria –

i.e., each participant’s message mi will be one of the five integers -1, 0, 1, 2, or 3, but the par-

ticipants will not necessarily all choose the same integer. This is consistent with the extremely

limited description of the data that appears in C&P.3

5 Supermodularity and Multiplicity of Equilibria

The emphasis in both C&P and C&T is on the importance of choosing a large value for

the parameter γ in the Groves-Ledyard mechanism. C&T’s Proposition 1, they say, provides

a sufficient condition for the convergence of the mechanism in quasi-linear environments,

and thus gives “the precise range of γ that induces stability under a wide class of learning

dynamics.”

The sufficient condition in C&T’s Proposition 1 is equivalent to our Condition S:4 if

γ/2n is larger than max{b1, ..., bn}, then the mechanism is supermodular for the participants’

particular utility functions. It’s not the mechanism itself that’s supermodular, but the game

induced by the mechanism together with the participants’ preferences for the public good.

Is it possible for the mechanism’s designer to specify a value for the parameter γ that

will “work” for any set of participants? It might appear from Condition S that the answer is

effectively yes: while we clearly can’t choose a value for γ that will work for all possible values

of b1, b2, . . . , bn, we could perhaps choose a γ so large that no plausible bi will exceed γ/2n.
3Having found explicitly all the equilibria in the two C&P treatments, it would be extremely informative

to compare the equilibria with the disaggregated raw data, especially in the supermodular treatment CP-100.

At this writing, however, the authors of C&P have been unable to recover the raw data from the experiment.
4Proposition 1 in C&T appeals to a result in Milgrom and Roberts (1990) that requires differentiability; it

therefore applies only when message spaces are continuous (i.e., compact intervals), not to the discrete message

spaces in the C&P and C&T experiments. The direct proof we provide in an appendix applies to any compact

message spaces in R and establishes that Condition S is both necessary and sufficient for supermodularity.

7



Choosing a very large value for γ will ensure supermodularity. But the examples in

Sections 3 and 4 above suggest that if γ is large enough to induce supermodularity for all

plausible preferences, many of those preferences are likely to be ones for which the GL mech-

anism has multiple equilibria – perhaps many equilibria, and many of them far from efficient.

Guaranteeing supermodularity is of little use when this is the case.

A positive interpretation of these results is possible, as well, however: if we know enough

about the participants’ preferences in advance, it may be possible to choose a value for γ that

produces both supermodularity and a unique equilibrium – and the C&T experiment suggests

that the Groves-Ledyard mechanism is likely to produce good outcomes in cases like this.

6 Conclusion

Economic analysis is carried out more often than not with continuous models, while imple-

mentation requires discreteness. This distinction is generally ignored because there is typically

a close correspondence between the continuous and the discrete models’ predictions. However,

the example we’ve presented, and the two experiments that exhibit the same phenomenon as

the example, suggest that this close correspondence can fail and the two models’ predictions

can differ rather dramatically. This possibility requires particular attention when uniqueness

of the model’s equilibrium is important.
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Appendix

For each i = 1, . . . , n let Si be a compact subset of R and let Ui : S → R, where S =

S1 × . . .× Sn. This defines a normal form game U = (U1, . . . , Un). The game U is said to be

supermodular if each Ui has increasing differences, to be defined below. The definition

of supermodularity includes several requirements in addition to increasing differences (see

Milgrom & Roberts (1990)); each of these additional requirements is satisfied here as an

immediate consequence of the compactness of each Si in R and the continuity of each Ui.

For any mi, m̃i ∈ Si and m−i, m̃−i ∈ ×j 6=iSj , let

∆Ui(m̃i,mi,m−i) = Ui(m̃i,m−i)− Ui (mi,m−i)

and ∆2Ui (m̃,m) = ∆Ui(m̃i,mi, m̃−i)−∆Ui(m̃i,mi,m−i)

= [Ui(m̃i, m̃−i)− Ui (mi, m̃−i)]− [Ui(m̃i,m−i)− Ui (mi,m−i)].

Definition: Ui has increasing differences if ∆2Ui (m̃,m) ≥ 0 whenever m̃ ≥ m.

Let Ui(m) = vi(x(m))− yi(m), where x(m) and yi(m) are given by (3) and (4) in Section 2:

x(m) =
∑

i

mi and yi(m) =
1
n

cx +
γ

2
[
n− 1

n
γ[(mi − µ−i)2 − σ2

−i].

Writing M−i for
∑
j 6=i

mj , we have

Ui (m) = vi (mi + M−i)−
1
n

c (mi + M−i)−
n− 1

n

(γ

2

) (
m2

i − 2µ−imi + µ2
−i

)
+

γ

2
σ2
−i

and therefore

∆Ui (m̃i,mi,m−i) =
[
vi (m̃i + M−i)−

1
n

c (m̃i + M−i)

− n− 1
n

(γ

2

) (
m̃2

i − 2µ−im̃i + µ2
−i

)
+

γ

2
σ2
−i

]
−

[
vi (mi + M−i)−

1
n

c (mi + M−i)

− n− 1
n

(γ

2

) (
m2

i − 2µ−imi + µ2
−i

)
+

γ

2
σ2
−i

]
= vi (m̃i + M−i)− vi (mi + M−i)−

1
n

c (m̃i −mi)

− n− 1
n

(γ

2

) (
m̃2

i −m2
i − 2µ−i (m̃i −mi)

)
.
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Similarly,

∆Ui (m̃i,mi, m̃−i) = vi

(
m̃i + M̃−i

)
− vi

(
mi + M̃−i

)
− 1

n
c (m̃i −mi)

− n− 1
n

(γ

2

) (
m̃2

i −m2
i − 2µ̃−i (m̃i −mi)

)
Therefore

∆2Ui (m̃,m) = vi

(
m̃i + M̃−i

)
− vi

(
mi + M̃−i

)
− vi (m̃i + M−i) + vi (mi + M−i)

+
n− 1

n

(γ

2

)
[2µ̃−i (m̃i −mi)− 2µ−i (m̃i −mi)] .

The last term in the expression above can be simplified to

n− 1
n

γ (µ̃−i − µ−i) (m̃i −mi) =
n− 1

n
γ

(
1

n− 1
M̃−i −

1
n− 1

M−i

)
(m̃i −mi)

=
1
n

γ
(
M̃−i −M−i

)
(m̃i −mi) ,

so that

∆2Ui (m̃,m) = vi

(
m̃i + M̃−i

)
− vi

(
mi + M̃−i

)
− vi (m̃i + M−i) + vi (mi + M−i)

+
1
n

γ
(
M̃−i −M−i

)
(m̃i −mi) .

If vi (x) = ax− bx2 then the four vi(·) terms in the above expression each have the form

vi (mi + M−i) = a (mi + M−i)− b
(
m2

i + 2M−imi + M2
−i

)
,

and we have

vi (mi + M−i)− vi (m̃i + M−i) = a (mi + M−i)− a (m̃i + M−i)

+ b
(
m̃2

i −m2
i + 2M−im̃i − 2M−imi

)
= a (mi − m̃i) + b

(
m̃2

i −m2
i

)
+ 2bM−i (m̃i −mi) ,

and similarly

vi

(
m̃i + M̃−i

)
− vi

(
mi + M̃−i

)
= a (m̃i −mi) + b

(
m2

i − m̃2
i

)
+ 2bM̃−i (mi − m̃i) .

Therefore the four vi(·) terms in the expression for ∆2Ui (m̃,m) yield

vi

(
m̃i + M̃−i

)
− vi

(
mi + M̃−i

)
− vi (m̃i + M−i) + vi (mi + M−i) =

= a (m̃i −mi) + a (mi − m̃i) + b
(
m2

i − m̃2
i

)
+ b

(
m̃2

i −m2
i

)
+ 2b

(
M̃−i −M−i

)
(mi − m̃i)

= 2b
(
M̃−i −M−i

)
(mi − m̃i) ,
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and we have

∆2Ui (m̃,m) = 2b
(
M̃−i −M−i

)
(mi − m̃i) +

1
n

γ
(
M̃−i −M−i

)
(m̃i −mi)

=
(

1
n

γ − 2b

) (
M̃−i −M−i

)
(m̃i −mi) .

The payoff function Ui(·) therefore has increasing differences if and only if γ > 2nb, and the

game U = (U1, . . . , Un) is supermodular if and only if

γ > 2n max{b1, b2, . . . , bn}.
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# of Common Messages mi Provision Levels of the Smallest
Gamma Equilibria in Equilibria Public Good (x) Surplus

γ = 1 3 mi not all the same 10 150
2 ≤ γ ≤ 13 1 mi not all the same 10 150
14 ≤ γ ≤ 22 2 3, 4 9, 12 144
23 ≤ γ ≤ 31 4 2, 3, 4, 5 6, 9, 12, 15 112.5
32 ≤ γ ≤ 40 6 1, … , 6 3, 6, 9, 12, 15, 18 54
41 ≤ γ ≤ 49 8 0, …, 7 0, 3, 6, 9, 12, 15, 18, 21 -31.5
50 ≤ γ ≤ 58 9 0, …, 8 0, 3, 6, 9, 12, 15, 18, 21, 24 -144
59 ≤ γ ≤ 67 10 0, …, 9 0, 3, 6, 9, 12, 15, 18, 21, 24, 27 -283.5

68 ≤ γ 11 0, …, 10 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30 -450

Table 1: Equilibria in the example (integer messages)
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Figure 1: The number of equilibria (integer messages)
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Subject ai bi ai bi
1 ‐1 0 5.2 0.04
2 5 0.5 20.8 0.32
3 10 0.9 7.6 0.08
4 20 1.8 16.4 0.24
5 15 1.2 12 0.16

C&P C&T

Table 2: Preference parameters in the C&P and C&T experiments

Treatment γ m1 m2 m3 m4 m5 x

Continuous‐space
Equilibrium

Treatment γ m1 m2 m3 m4 m5 x

CP‐1 1 ‐1 0 1 2 3 5
CP‐100 100 .98 .99 1 1.01 1.02 5

CT‐1 1 ‐15 25 ‐5 15 5 25
CT‐100 100 4.8 5.2 4.9 5.1 5 25

Table 3: Continuous-space equilibria in the C&P and C&T experiments
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Common messages
i NE i i l l f h bli d ll lγ #NE mi in NE Provision levels of the public good smallest surplus

1 9  mi not all the same 5 110
2 4  mi not all the same 5 110
3 2  mi not all the same 5 110
4 0

5 ≤ γ ≤ 31 1 1 5 110
32 ≤ γ ≤ 38 2  mi not all the same 5, 9 39.6
39 ≤ γ ≤ 43 2 1, 2 5, 10 0
44 ≤ γ ≤ 83 3 0, 1, 2 0, 5 10 0
84 ≤ γ ≤ 87 4 0, 1, 2, 3 0, 5, 10, 15 ‐330γ , , , , , ,
88 ≤ γ ≤ 127 5 ‐1, … , 3 ‐5, 0, 5, 10, 15 ‐330
128 ≤ γ ≤ 132 6 ‐1, … , 4 ‐5, 0, 5, 10, 15, 20 ‐880
133 ≤ γ ≤ 172 7 ‐2, … , 4 ‐10, ‐5, 0, 5, 10, 15, 20 ‐880
173 ≤ γ ≤ 217 8 ‐2, … , 5 ‐10, ‐5, 0, 5, 10, 15, 20, 25 ‐1650

218 ≤ γ 9 ‐2, … , 6 ‐10, ‐5, 0, 5, 10, 15, 20, 25, 30 ‐2640γ , , , , , , , , , ,

Table 4: Equilibria in the C&P experiment
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γ # NE

Common 
messages 
mi in NE

Smallest
surplus

1 1445 mi not all the same 25 525

2 97 mi not all the same 25 525

3 54 mi not all the same 25 525

4 22 mi not all the same 25 525

5 9 mi not all the same 25 525

6 14 mi not all the same 25 525

7 4 mi not all the same 25 525

8 3 mi not all the same 25 525

9 2 mi not all the same 25 525

10 3 mi not all the same 25 525

11 ≤ γ ≤ 13 1 mi not all the same 25 525

14 ≤ γ ≤ 17 2 mi not all the same 25 525

18 ≤ γ ≤ 35 1 mi not all the same 25 525

36 ≤ γ ≤ 46 0
47 ≤ γ ≤ 129 1 5 25 525
130 ≤ γ ≤ 229 2 5, 6 25, 30 504
230 ≤ γ ≤ 329 3 4, 5, 6 20, 25, 30 504
330 ≤ γ ≤ 429 4 4, 5, 6, 7 20, 25, 30, 35 441
430 ≤ γ ≤ 529 5 3 , 4 , … , 7 15 , 20 , … , 35 441
530 ≤ γ ≤ 629 6 3 , 4 , … , 8 15 , 20 , … , 40 336
630 ≤ γ ≤ 730 7 2 , 3 , … , 8 10 , 15 , … , 40 336
731 ≤ γ ≤ 829 8 2 , 3 , … , 9 10 , 15 , … , 45 189
830 ≤ γ ≤ 929 9 1 , 2 , … , 9 5 , 10 , … , 45 189
930 ≤ γ ≤ 1029 10 1 , 2 , … , 10 5 , 10 , … , 50 0
1030 ≤ γ ≤ 1129 11 0 , 1 , … , 10 0 , 5 , … , 50 0
1130 ≤ γ ≤ 1229 12 0 , 1 , … , 11 0 , 5 , … , 55 ‐231
1230 ≤ γ ≤ 1330 13 ‐1 , 0 , … , 11 ‐5 , 0 , … , 55 ‐231
1331 ≤ γ ≤ 1429 14 ‐1 , 0 , … , 12 ‐5 , 0 , … , 60 ‐504
1430 ≤ γ ≤ 1529 15 ‐2 , ‐1 , … , 12 ‐10 , ‐5 , … , 60 ‐504
1530 ≤ γ ≤ 1630 16 ‐2 , ‐1 , … , 13 ‐10 , ‐5 , … , 65 ‐819
1631 ≤ γ ≤ 1729 17 ‐3 , ‐2 , … , 13 ‐15 , ‐10 , … , 65 ‐819
1730 ≤ γ ≤ 1830 18 ‐3 , ‐2 , … , 14 ‐15 , ‐10 , … , 70 ‐1176
1831 ≤ γ ≤ 1929 19 ‐4 , ‐3 , … , 14 ‐20 , ‐15 , … , 70 ‐1176
1930 ≤ γ ≤ 2030 20 ‐4 , ‐3 , … , 15 ‐20 , ‐15 , … , 75 ‐1575
2031 ≤ γ ≤ 2129 21 ‐5 , ‐4 , … , 15 ‐25 , ‐20 , … , 75 ‐1575
2130 ≤ γ ≤ 2230 22 ‐5 , ‐4 , … , 16 ‐25 , ‐20 , … , 80 ‐2016
2231 ≤ γ ≤ 2330 23 ‐6 , ‐5 , … , 16 ‐30 , ‐25 , … , 80 ‐2016
2331 ≤ γ ≤ 2430 24 ‐6 , ‐5 , … , 17 ‐30 , ‐25 , … , 85 ‐2499
2431 ≤ γ ≤ 2530 25 ‐7 , ‐6 , … , 17 ‐35 , ‐30 , … , 85 ‐2499
2531 ≤ γ ≤ 2630 26 ‐7 , ‐6 , … , 18 ‐35 , ‐30 , … , 90 ‐3024
2631 ≤ γ ≤ 2729 27 ‐8 , ‐7 , … , 18 ‐40 , ‐35 , … , 90 ‐3024
2730 ≤ γ ≤ 2829 28 ‐8 , ‐7 , … , 19 ‐40 , ‐35 , … , 95 ‐3591
2830 ≤ γ ≤ 2930 29 ‐9 , ‐8 , … , 19 ‐45 , ‐40 , … , 95 ‐3591
2931 ≤ γ ≤ 3029 30 ‐9 , ‐8 , … , 20 ‐45 , ‐40 , … , 100 ‐4200
3030 ≤ γ ≤ 3130 31 ‐10 , ‐9 , … , 20 ‐50 , ‐45 , … , 100 ‐4200
3131 ≤ γ ≤ 3230 32 ‐10 , ‐9 , … , 21 ‐50 , ‐45 , … , 105 ‐4851
3231 ≤ γ ≤ 3329 33 ‐11 , ‐10 , … , 21 ‐55 , ‐50 , … , 105 ‐4851
3330 ≤ γ ≤ 3430 34 ‐11 , ‐10 , … , 22 ‐55 , ‐50 , … , 110 ‐5544
3431 ≤ γ ≤ 3530 35 ‐12 , ‐11 , … , 22 ‐60 , ‐55 , … , 110 ‐5544
3531 ≤ γ ≤ 3629 36 ‐12 , ‐11 , … , 23 ‐60 , ‐55 , … , 115 ‐6279
3630 ≤ γ ≤ 3729 37 ‐13 , ‐12 , … , 23 ‐65 , ‐60 , … , 115 ‐6279
3730 ≤ γ ≤ 3829 38 ‐13 , ‐12 , … , 24 ‐65 , ‐60 , … , 120 ‐7056
3830 ≤ γ ≤ 3930 39 ‐14 , ‐13 , … , 24 ‐70 , ‐65 , … , 120 ‐7056
3931 ≤ γ ≤ 4029 40 ‐14 , ‐13 , … , 25 ‐70 , ‐65 , … , 125 ‐7875
4030 ≤ γ ≤ 4129 41 ‐15 , ‐14 , … , 25 ‐75 , ‐70 , … , 125 ‐7875
4130 ≤ γ ≤ 4230 42 ‐15 , ‐14 , … , 26 ‐75 , ‐70 , … , 130 ‐8736
4231 ≤ γ ≤ 4329 43 ‐16 , ‐15 , … , 26 ‐80 , ‐75 , … , 130 ‐8736
4330 ≤ γ ≤ 4430 44 ‐16 , ‐15 , … , 27 ‐80 , ‐75 , … , 135 ‐9639
4431 ≤ γ ≤ 4530 45 ‐17 , ‐16 , … , 27 ‐85 , ‐80 , … , 135 ‐9639
4531 ≤ γ ≤ 4629 46 ‐17 , ‐16 , … , 28 ‐85 , ‐80 , … , 140 ‐10584
4630 ≤ γ ≤ 4729 47 ‐18 , ‐17 , … , 28 ‐90 , ‐85 , … , 140 ‐10584
4730 ≤ γ ≤ 4830 48 ‐18 , ‐17 , … , 29 ‐90 , ‐85 , … , 145 ‐11571
4831 ≤ γ ≤ 4929 49 ‐19 , ‐18 , … , 29 ‐95 , ‐90 , … , 145 ‐11571
4930 ≤ γ ≤ 5030 50 ‐19 , ‐18 , … , 30 ‐95 , ‐90 , … , 150 ‐12600
5031 ≤ γ 51 ‐20 , ‐19 , … , 30 ‐100 , ‐95 , … , 150 ‐12600

Provision
levels of the
public good

Table 5: Equilibria in the C&T experiment
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