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The theoretical literature has a rich characterization of scoring rules for eliciting the

subjective beliefs that an individual has for continuous events, but under the restrictive assumption

of risk neutrality. It is well known that risk aversion can dramatically affect the incentives to

correctly report the true subjective probability of a binary event.1 Alternatively, one must carefully

calibrate inferences about true subjective probabilities from elicited subjective probabilities over

binary events, recognizing the incentives that risk averse agents have to report the same probability

for the two outcomes and reduce the variability of payoffs from the scoring rule.2 Or one must use

relatively complicated scoring rules that “risk-neutralize” the agent.3 Or one must eschew the use of

any incentives for truthful elicitation.4

We characterize the comparable implications of the general case of a risk averse agent when

facing a popular scoring rule over continuous events, and find that these concerns do not apply with

anything like the same force. For empirically plausible levels of risk aversion, one can reliably elicit

most important features of the latent subjective belief distribution without undertaking calibration

for risk attitudes.

Specifically, we can draw the following conclusions:

1. The individual never reports having a positive probability for an event that does not have

positive subjective probability. So if the individual believes that inflation will never fall below

1 See Winkler and Murphy [1970], Savage [1971; p. 785] and Kadane and Winkler [1988].
2 See Offerman, Sonnemans, van de Kuilen and Wakker [2009] or Andersen, Fountain, Harrison and

Rutström [2010].
3 See Smith [1960], Grether [1992], Köszegi and Rabin [2008; p.199], Karni [2009] and Holt and

Smith [2009] for examples.
4 Delavande, Gineé and McKenzie [2001; p. 156] make the case for not bothering about incentives.

Referring to studies in developing countries that have all been hypothetical, they argue that “even without
payment, the answers received from such questions appear reasonable, and as such, there seems to have been
a de facto decision that payments are not needed.” We do not know what “reasonable” might possibly mean
when it comes to subjective beliefs.
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1.5% per annum, we would never see the individual reporting that it would.

2. If an individual has the same subjective probability for two events, then the reported

probability will also be the same if the individual is weakly risk averse. So if the individual

attaches a probability of 0.25 to the chance that inflation will be between 1% and 2%, and a

probability of 0.25 to the chance that inflation will be between 4% and 5%, the reported

probabilities for these two intervals will be the same as well (although typically not 0.25).

3. The converse is true for risk averse subjects, as well as for risk lovers. That is, if we observe

two events receiving the same reported probability, we know that the true probabilities are

also equal, although not necessarily the same as the reported probabilities.

4. If the individual has a symmetric subjective distribution, then the reported mean will be exactly

the same as the true subjective mean, whether or not the subjective distribution is unimodal.

This follows from the previous two results, and is of great significance for tests of the

Reduction of Compound Lotteries axiom over subjective belief distributions.5 A testable

implication of that axiom is that the individual behaves as if holding a subjective probability

equal to the average of some subjective belief distribution. Hence if we simply assume

symmetry of the true distribution, a relatively weak assumption in some settings, we can elicit

that mean directly.

5. The more risk averse an agent is, the more will their reported distribution resemble a

uniform distribution defined on the support of their true distribution. In effect, risk aversion

causes the individual to report a “flattened” version of their true distribution.

6. It is possible to bound the effect of increased risk aversion on the difference between the

5 For instance, see the theory of subjective compound lotteries proposed in Nau [2006] and Ergin
and Gul [2009] as one way of modeling attitudes towards ambiguous events.
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reported distribution and true distribution. This result provides a characterization of the

empirical finding that the reported distribution is “very close” to the true distribution for a

wide range of empirically plausible risk attitudes.

We illustrate these findings with numerical simulations in section 1, provide general proofs in

section 2, and offer some empirical evidence in section 3.

1. Examples

Let the decision maker report his subjective beliefs in a discrete version of a quadratic

scoring rule for continuous distributions (Mathieson and Winkler [1976]. Partition the domain into

K intervals, and denote as r k the report of the density in interval k = 1, ÿ, K. Assume for the

moment that the decision maker is risk neutral, and that the full report consists of a series of reports

for each interval, { r1, r2, ÿ, r k ,ÿ, r K } such that r k $ 0 œk and  ' i = 1ÿK (r i ) = 1.

If k is the interval in which the actual value lies, then the payoff score is from Mathieson and

Winkler [1976; p.1088, equation (6)]:

S = (2 × r k)  -  ' i = 1ÿK (r i )
2 

So the reward in the score is a doubling of the report allocated to the true interval, and the penalty

depends on how these reports are distributed across the K intervals. The subject is rewarded for

accuracy, but if that accuracy misses the true interval the punishment is severe. The punishment

includes all possible reports, including the correct one.

Take some examples, assuming K = 4. What if the subject has very tight subjective beliefs

and puts all of the tokens in the correct interval? Then the score is

S = (2 × 1) - (12 + 02 + 02 + 02 ) = 2 - 1 = 1,

and this is positive. But if the subject has a tight subjective belief that is wrong, the score is
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S = (2 × 0) - (12 + 02 + 02 + 02 ) = 0 - 1 = -1,

and the score is negative. So we see that this score would have to include some additional

“endowment” to ensure that the earnings are positive.6 Assuming that the subject has a very diffuse

subjective belief and allocates 25% of the tokens to each interval, the score is less than 1:

S = (2 × ¼) - (¼2 + ¼2 + ¼2 + ¼2 ) = ½ - ¼ = ¼ < 1.

So the tradeoff from the last case is that one can always ensure a score of ¼, but there is an

incentive to provide less diffuse reports, and that incentive is the possibility of a score of 1.

To ensure complete generality, and avoid any decision maker facing losses, allow some

endowment, α, and scaling of the score, β. We then get the generalized scoring rule

α + β [ (2 × r k)  -  ' i =1ÿK (r i )
 2 ]

where we initially assumed α=0 and β=1. We can assume α>0 and β>0 to get the payoffs to any

level and units we want. Let pk represent the underlying, true, latent subjective probability of an

individual for outcome that falls into interval k.

Figures 1 through 6 illustrate the behavior of this scoring rule for the case in which K = 10, 

α = β = 25, and we assume a CRRA utility function u(w) = w 1-D/(1-D) such that D = 0 denotes risk

neutrality and D > 0 risk aversion. Figure 1 shows the simplest case in which the true subjective

distribution is symmetric. The histogram always shows the true distribution, and the black

“droplines” always show the optimal report. Under risk-neutrality, Figure 1 shows that the individual

truthfully reports the true subjective distribution.

Figure 2 considers the more realistic case in which the agent is risk averse, and in fact at

parameter values typical of those found in the experimental laboratory (see Harrison and Rutström

6 This is a point of practical behavioral significance, but is not important for the immediate
theoretical point.
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[2008] for a review). Here we observe that relative risk aversion of D = 0.65 causes the individual to

under-report the true probability for outcome 4 (r 4 = 0.356 < p 4 = 0.4). Although barely noticeable

to the naked eye, the individual over-reports the true probability for outcomes 3 and 5 (r 3 = r 5 =

0.207 > p 3 = p 5 = 0.2). The over-reporting for outcomes 2 and 6 is noticeable (r 2 = r 6 = 0.115 > p 2

= p 6 = 0.1). Since the extent of the reporting deviations are the same either side of the mode, and

the true distribution is symmetric, the average of the reported distribution would always equal the

average of the true distribution.

Figure 3 considers the same symmetric subjective distribution and a wider range of risk

attitudes. The trend toward the reported distribution being a flattened version of the subjective

distribution, as D increases from 0 up to 3 is apparent. Also apparent is the complete absence of any

reports for outcomes 1, 7, 8, 9 and 10, which have no subjective density.

Figure 4 considers the case of an asymmetric, unimodal subjective distribution, and varying

levels of risk aversion. For relative risk aversion level D > 0, the true probabilities for outcomes 6

and 5 are under-reported, and for outcomes 4 and 3 are over-reported. Again, there are no reports

for outcomes that have no subjective density.

Figure 5 shows the case of a bimodal distribution which is symmetric around each mode.

The behavior is qualitatively the same as the symmetric unimodal distribution, and always will be

providing there is a zero subjective density outcome between the two symmetric modes.

Finally, using the parameters and beliefs from Figure 4, Figure 6 shows how the average of

the reported distribution deviates from the average of the true subjective distribution in the

unimodal, asymmetric case. For a wide range of risk attitudes observed in the same experimental

context that we would undertake these belief elicitations (D < 1), we find the difference to be less

than a percentage point. Of course, there is no point showing comparable figures for the symmetric
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distributions, since in that case there is no difference at all.

The preceding discussion used numerical simulations to provide visual and descriptive

evidence of our results. We now formalize our results with the theory in the following section.

2. Theory

We focus on the finite case, in part for expository reasons, but also because this is the

interesting case in terms of operational scoring rules. The proofs for the continuous case are similar,

and collected in an appendix (available on request).

Lemma 1: Let pk represent the underlying subjective probability of an individual for

outcome k and let rk represent the reported probability for outcome k in a given scoring rule. Let

w(k) = α + β2r k - β ' i=1ÿK (r i)
2 be the scoring rule that determines the wealth if state k occurs. If the

individual has a utility function u(w) that is continuous and differentiable and maximizes expected

utility over actual subjective probabilities, the actual and reported probability must obey the

following system of equations:

pk × Mu/Mw *w=w(k) !rk × Ep[Mu/Mw] = 0, œ k = 1,..., K (1)

Proof. Suppose an expected utility maximizer has a subjective discrete probability distribution

{p1, p2 ,..., pk ,..., pK} over K states of nature and utility function u(w) over random wealth. If the

subject is given a scoring rule determined by w(k) = α + β2rk - β ' i=1ÿK (r i )
2, then the optimal report

r  = {r1, r2,..., rk ,..., r K} solves the following problem:

Max{ r }  Ep[ u(w) ] subject to  ' i=1ÿK (r i ) = 1 (2)

where Ep[ u(w) ] = 'j=1ÿK  pj × u[ α + β2r j - β ' i=1ÿK (r i)
2 ]. This problem can be solved by maximizing

the Lagrangian

‹ = ' j=1ÿK  pj × u[ α + β2r j - β ' i=1ÿK (r i)
2 ] ! λ ' i=1ÿK (r i ) (3)
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The solution to the problem must satisfy K+1 conditions. The K first order conditions with respect

to report rk, œ k = 1,ÿ, K, are 

M‹/Mr k = ' j=1ÿK ( pj × Mu(w( j ))/Mr k  ) ! λ = 0, œ k = 1,ÿ, K (4)

where Mu(w( j ))/Mr k = Mu/Mw *w=w(k) × (2βδ jk ! 2β × r k). The (K+1)-th condition is the first order

derivative of (3) with respect to the Lagrangian constant:

' i=1ÿK (r i ) ! 1 = 0. (5)

We can simplify the K equations in (4) as:

2βpk × ( Mu/Mw *w=w(k) ) ! 2βrk ' j=1ÿK  pj × ( Mu/Mw *w=w(k) ) ! λ = 0, œ k = 1,ÿ, K. 

or pk × ( Mu/Mw *w=w(k) ) ! rk Ep [ Mu/Mw *w=w(k) ] = λ/2β, œ k = 1,ÿ, K. (4N)

Summing over the K first-order conditions we get 

Ep [ Mu/Mw *w=w(k) ] ! ' j=1ÿK r k Ep [ Mu/Mw *w=w(k) ] = K λ/2β (6)

Notice that ' j=1ÿK r k Ep [ Mu/Mw *w=w(k) ] = Ep [ Mu/Mw *w=w(k) ] because the expectation term is a

constant and because of (5). Then (6) implies that K λ/2β = 0, which can only be satisfied if λ = 0.

This result and (4N) implies that the solution to problem (2) must satisfy the following K conditions:

pk × Mu/Mw *w=w(k) !r k × Ep[Mu/Mw] = 0, œ k = 1,ÿ, K. 

Lemma 2: Under the condition in Lemma 1, let gk = rk ! pk be the deviation between the

reported and actual subjective probability for outcome k. Then

gk = pk × {Mu/Mw *w=w(k) ! Ep[ Mu/Mw ]}/Ep[ Mu/Mw ], œ k=1,ÿ, K. (7)

Proof. Assume that the conditions of Lemma 1 in (1) are satisfied and the distortions between

the actual and reported probabilities are given by r k = pk + g k , with ' k=1ÿK g k = 0. Define f k  =

Mu/Mw *w=w(k) and f = Mu/Mw ). Then the K conditions in (1) become:

pk ×  fk  ! pk × Ep[ f ] ! gk × Ep[ f ] = 0, œ k = 1,ÿ, K (1N)

Solving for gk we get the K conditions stated in Lemma 2:
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gk = pk × { fk ! Ep[ f ]}/Ep[ f ], œ k = 1,ÿ, K. 

Theorem 1: Assume an individual that has a continuous, differentiable utility function u(w)

over random wealth and who is also risk averse (i.e., M2u/M2w < 0, œ w). If pi = pj for some i and j,

then ri = rj.

The intuition of this theorem is the following. Suppose that {r1, r2, ÿ, rk, ÿ, r K}* is a solution

to (2). Then if pi = pj for some i and j, the subject must assign the same weight to reports in states i

and j, that is ri = rj. The proof of the theorem is by contradiction.

Proof. Assume that pi = pj for some i and j. Now suppose without loss of generality that ri > rj.

By definition of the deviation of subjective and reported probabilities the latter implies that gi > gj

because

ri = pi + gi  > rj = pj + gj (8)

Since ri  > rj, we also know that w( i ) > w( j ), and by the concavity of u(.) the latter implies that fi < fj.

Therefore 

{ fi ! Ep[ f ]}/Ep[ f ] < { fj ! Ep[ f ]}/Ep[ f ] (9)

But by Lemma 2, (9) implies that ri < rj, which is a contradiction. 

Theorem 1 does not hold for risk loving individuals. The following counterexample proves

it. Suppose that u(w) = w 2, p 1 = ½ and p 2 = ½, α = 0 and β = 1. 

Ep[ u(w(r 1)) ] = 0.5 (2 r 1 ! r 1
2 ! (1-r 1)

2 )2  + 0.5 (2 (1-r 1) ! r 1
2 ! (1-r 1)

2 )2 

= 4 r 1
4 ! 8 r 1

3 +8 r 1
2 !4 r 1 + 1 

 MEp[ u ]/Mr 1 =   16 r 1
3 ! 24 r 1

2 +16 r 1 !4 

To maximize subjective EU set the first order condition equal to zero, and then check the end

points r 1 = 0 and r  1 = 1. We then have

r 1
3 ! (1½) r 1

2 + r 1 !¼ = 0
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(r 1 ! ½)(r 1
2 !r 1 + ½) = 0

Solving for the real root we get r 1 = ½. By reporting r 1 = ½, the subjective EU is equal to ¼, while

if the report is r 1 = 1 or r 1 = 0 the subjective EU is equal to 1. Thus symmetry is broken, and the

optimal report is (r 1 = 1, r 2 = 0) or (r 1 = 0, r 2 = 1): that is, p 1 = p 2 but r 1 … r 2.

Corollary 1.1: For the risk-averse individual in Theorem 1, if the subjective distribution is

symmetric then the mean of the reported distribution is equal to the mean of the actual subjective

distribution.

Proof. A symmetric subjective distribution for random variable у with mean μ is one of two

types: odd and even. Take the case of the odd type first. Consider a subjective probability p k and

report r k, for k = 1, ÿ, n, with n being an odd integer. Let m = (n+1)/2 such that the subjective

probability pm is the likelihood that the random variable takes the value of μ. Also let pm!i and pm+i be,

respectively, the subjective probability that the random variable takes the value of μ!η i and μ+η i,

for i = 1...m!1 and pm!i = pm+i.

By Theorem 1, rm!i = rm+i 

Ep[ у ] = ' i=1...m!1 pm!i (μ!ηi) + ' i=1...m!1  pm+i (μ+ηi)+ pm μ (10)

= ' j=1...n pj μ + ' i=1...m!1 [ pm!i ! pm+i ] ηi = μ + 0 = μ

and Er[ у ] = ' i=1...m!1 rm!i (μ!ηi) + ' i=1...m!1 rm+i (μ+ηi)+ rm μ (11)

= 'j=1...n rj μ + 'i=1...m!1 [ rm!i ! rm+i ] ηi = μ + 0 = μ

By (10) and (11) we have that Ep[у]!Er[у] = 0. The even case is similar except that m=n/2 and the

possible outcome of the random variable μ has no weight. 

Theorem 2: The converse of Theorem 1. Assume an individual with a continuous,

differentiable utility function u(w), where risk aversion is not necessary in this case. If ri = rj for this

individual, then pi = pj.
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Proof. Assume without loss of generality that ri = rj and pi < pj.  

MEp[ u ]/Mri = 'k…i, j pk × Mu/Mw *w=w(k) × [ !2βri ! 2β (1 ! 'R…i, j rR ! ri) ]

+ pi × Mu/Mw *w=w(i) × [ 2β !2βri ! 2β (1 ! 'R…i, j rR ! ri) ]

+ pj × Mu/Mw *w=w(j) × [ !2β !2βri ! 2β (1 ! 'R…i, j rR ! ri) ]

= 'k…i, j pk × Mu/Mw *w=w(k) × [ ! 2β (1 ! 'R…i, j rR ) ]

+ pi × Mu/Mw *w=w(i) × [ 2β ! 2β (1 ! 'R…i, j rR ) ]

+ pj × Mu/Mw *w=w(j) × [ ! 2β ! 2β (1 ! 'R…i, j rR ) ]

Since ri = rj and Mu/Mw *w=w(i) =  Mu/Mw *w=w(j), we know that 

MEp[ u ]/Mri = 'k = 1ÿK pk × Mu/Mw *w=w(k) × [ ! 2β (1 ! 'R…i, j rR ) ]

+ pi × 2β × Mu/Mw *w=w(i) !p j × 2β × Mu/Mw *w=w(j) < 0

Therefore ri = rj cannot be the optimum when  pi < pj. Hence if pi … pj then ri …rj . So the

contrapositive is also true, that is ri = rj, then pi = pj. 

Corollary 2.1: For the individual in Theorem 2, if the reported distribution is symmetric

then the mean of the reported distribution is equal to the mean of the actual subjective distribution.

Proof. Identical to Corollary 1.1, with rk and pk, œk, interchanged at all steps. 

Theorem 3: Assume an individual with a continuous, differentiable utility function u(w). If

the actual subjective probability of the individual for state k is pk = 0, then the reported probability is

rk = 0. That is, the individual does not report weight where none is believed to exist.

Proof. Using Lemma 2, if pi = 0, then gi=0 and ri = 0. 

Theorem 4: A risk-averse individual has a reported probability distribution that approaches

a uniform distribution over those states where pk > 0 in the following sense: There exists a constant

value p* for this individual such that if pk > p* then pk > rk > p* and if pk < p* then pk < rk < p*. A risk-

loving agent reverses all the conditions.
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Proof. We will show that › p* such that if pk > p* then pk > rk > p* and  p* is the value such

that Mu/Mw *w=w(*) = Ep[ Mu/Mw ]. From Lemma 2 we know that 

gk = pk × {Mu/Mw *w=w(k) ! Ep[ Mu/Mw ]}/Ep[ Mu/Mw ], œ k=1,ÿ, K.

We also know that w(k) is monotonically increasing in r k , and therefore Mu/Mw is monotonically

decreasing in r k . If  rk > (<) p*, gk<(>)0,  rk < (>) pk by definition. Since p* <(>) rk , then   p* <(>)

rk<( >) pk. 

Theorem 5: An individual with sufficiently high risk aversion will have a reported

probability arbitrarily close to p*.

Proof. By Lemma 2 we know that rk = pk × {Mu/Mw *w=w(k)}/Ep[ Mu/Mw ]. Let p* be selected

such that Mu/Mw *w=w(p*) = Ep[ Mu/Mw ]. Then let u(w) = w !c [w !w*]2 without loss of generality.

Therefore 

Ep[ Mu/Mw ]=1. 

Let  rk = p* + δk be the deviations in reports with respect to p* due to risk aversion. Additionally,

w(k) = α + β2r k - β ' i=1ÿK (r i)
2

w(k) = α + β2(p* + δk) - β ' i…k (p
* + δi)

2 - β (p* + δk)
2 (12)

and w* = α + β2r* - β ' i=1ÿK (r i)
2

w* = α + β2(p*) - β ' i…k (p
* + δi)

2 - β (p* + δk)
2 (13)

Both (12) and (13) imply that w(k) ! w* = β2δk. Taking the derivative of the utility function with

respect to w and evaluating at w(k), we obtain

Mu/Mw *w=w(k) = 1 ! 2c [w(k) ! w*] = 1 ! 2c [ β2δk] = 1 ! 4cβδk (14)

By the definition of rk, Mu/Mw *w=w(k) and  Ep[ Mu/Mw ] we have

 rk = p* + δk =  pk × {Mu/Mw *w=w(k)}/Ep[ Mu/Mw ],

which implies that
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p* + δk =  pk × {1 ! 2c [ β2δk] }/{1}.

Solving for δk we obtain δk = {pk ! p*}/{1 + 4c β pk] }. If pk … 0, then lim c v 4 δk = 0 and the

deviations become vanishingly small for sufficiently risk-averse individuals.

Now prove that p* .1/K, where K is the number of states for which pk … 0. By definition 

' i=1ÿK (r i ) = ' i=1ÿK (p* + δk).

If pk = 0, then lim c v 0 δk = pk ! p* and lim K v 4 rk = p* + δk = pk = 0. If pk … 0, then ' pk …0 (δk) tends

to zero and  ' pk …0 (p
* ) = 1 = K p* = 1, so  p* = 1/K in the limit. These two facts combine to prove

that if pk … 0 then lim c v 4 rk = lim c v 4 p
* + δk = 1/K. That is, the reported probabilities approach a

uniform distribution over the outcomes where the subjective probability is non-zero. 

Theorem 6: The following relationship exists between means of the reported and actual

subjective distributions: If u(w) = w + δ × u*(w) with δ small, then for any random variable y,

Er[y] ! Ep[y]= δ × Cov p [Mu/Mw, y].

Proof. If a subject exhibits utility function u(w) = w + δ × u*(w), we know from (1N) that the

following K conditions must be satisfied:

pk × [1+δ × Mu*/Mw *w=w(k)]!pk × {1+δ Ep[ Mu*/Mw ]}!gk × {1+δ Ep[ Mu*/Mw ]} = 0, œ k = 1,ÿ, K, 

where gk is defined in (7) for Lemma 2. Solving for gk we obtain

gk = δ pk × {Mu*/Mw *w=w(k) ! Ep[ Mu*/Mw ]}/{1+δ Ep[ Mu*/Mw ]}, œ k = 1,ÿ, K (15)

Assume a random variable y with K possible states of nature. Define Er[ y ] = 'k=1ÿn r k yk and Ep[ y ]

= 'k=1ÿn p k y k. Then the difference of the expected value of y under measures {r1, r2, ÿ, rk, ÿ, r K}

and {p1, p2, ÿ, pk, ÿ, p K} is equal to Er[ y ] ! Ep[ y ]  = 'k=1ÿK gk yk . Substituting for gk using (15), it

can be shown that the denominator {1+δ Ep[ Mu*/Mw ]} drops out (take a Taylor Series expansion of

the reciprocal, multiply terms with the numerator, and drop higher-order terms). Then we have 

Er[ y ] ! Ep[ y ] =  δ  ×  'K=1ÿK pk{Mu*/Mw }*w=w(k) ! Ep[ Mu*/Mw ]} yk
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=  δ  × {EP [ Mu*/Mw × y ] ! EP [ Mu*/Mw ]  EP [ y ]}

 =  δ  × Cov p[Mu*/Mw, y] = Cov p[Mu/Mw, y]. 

3. Some Evidence

These theoretical results were meant to help apply and interpret empirical efforts to elicit

subjective belief distributions. Many of the properties of the scoring rule cannot be directly tested,

given that they refer to unknown subjective beliefs: de opinio non est disputandum. For instance,

Theorem 3 is a valuable property, but to test it we would need to know that some individual

attached zero subjective weight to some specific interval of events.

However, it is possible with a controlled laboratory experiment to offer some evidence in

support of the claim that, for a risk-averse individual with symmetric subjective beliefs, the mean of

the reported distribution is equal to the mean of the actual subjective distribution (Corollary 1.1).

This result is important for tests of the Reduction of Compound Lotteries axiom of Subjective

Expected Utility theory. In the laboratory we can present a stimulus for beliefs which provides a

minimal basis for asymmetric beliefs, and for which we know, by design, the true mean of the

stimulus. It is then a simple matter to compare that true stimulus with the average elicited belief.

Our experiments have a simple design. In 8 sessions we elicit subjective belief distributions

about the true fraction of red balls in an urn filled with red and white balls. Although we know from

other experiments that our subjects are generally risk averse over the stakes used here, in 4 of these

sessions we also compare behavior with elicited subjective probabilities that a single red ball would be

drawn from the same urn. This probability elicitation task is known to be one in which risk averse

subjects would rationally and significantly distort their reports towards ½. By comparing reports in

these 4 subjective probability elicitation experiments with the corresponding 4 subjective belief
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distribution elicitation experiments, we can assess the practical significance of our claims about the

weak effects of risk aversion on optimal reports in the latter setting.

Figures 7 and 8 illustrate the software interface we developed for subjects, allowing them to

allocate 100 tokens across ten intervals corresponding to their beliefs on the true fraction of red

balls in an urn. The stimulus was constructed in a standard manner. One urn was filled with ping

pong balls numbered 1 through 99. This was common knowledge to all subjects, as the numbered

balls were loaded in sight of all subjects. A “verifier” was selected from the subject pool at random,

and paid to observed and verify that all procedures followed what was stated in the instructions.

One of these numbered balls was selected, at random, from behind a screen, and the experimenter

then filled a second urn with the number of red balls from the number drawn.7 The urn was filled

with white balls so that the total number of balls was 100. The urn with 100 red and white balls was

covered from view with a blanket, and placed in a prominent location for all subjects to see. After

subjects were alerted to pay attention, the blanket was quickly removed and the urn spun for 10

seconds, then covered again. This visual display was the information that each subject received.

The computer interface in Figure 7 was then presented to subjects, allowing them to allocate 

tokens to reflect their subjective beliefs. The complete instructions are provided in an appendix, and

were read out word for word prior to any choices being made. The subjects were told that there

were no other salient, rewarded choices for them to make, avoiding possible confounds with the

experimental payment protocol (see Harrison and Swarthout [2012] for discussion). The interface

implements the quadratic scoring rule discussed earlier, with α=β=25. Subjects could move the

7 The verifier observed everything taking place behind the screen. Further, the ball indicating the
number of red balls in the second urn was placed in an envelope at the front of the room in full view of all
subjects. The subjects knew that this ball would be revealed at the end of the experiment, along with a count
of the number of red and white balls in the second urn. Both of these procedures were followed to convince
subjects that the experimenter was not manipulating the process.
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sliders at the bottom of the screen interface to re-allocate the 100 tokens as they wished, ending up

with some distribution as shown in Figure 8. The instructions explained that they could earn up to

$50, but only by allocating all 100 tokens to one interval and that interval containing the true percent:

if the true percent was just outside the selected interval, they would in that case receive $0.

Over 8 sessions we elicited subjective beliefs from 123 subjects, recruited from a general

subject pool of undergraduates at Georgia State University. The stimulus, the number of red balls in

the second urn, was different in each session since we wanted the true number of red balls to be

generated in a credible manner, to avoid subjects second-guessing the procedure. This credibility

comes at the risk that the stimulus is extreme and uninformative: if there had been only 1 red ball, or

99 red balls, we would not have generated informative data. As it happens, we had a good variety of

realizations over the 8 sessions.

To illustrate the data, Figure 9 illustrates the elicited beliefs pooled over the 15 subjects in

the first session, in which the true percent was 69%.Of course there is some dispersion in beliefs,

since the stimulus was deliberately designed not to provide exact information (unless, by unfortunate

chance, the number of red balls was extreme). As it happens, the average of this elicited distribution

is 72.3%, very close to the true proportion of red balls.8

Figure 10 reports the results across all eight sessions. With one exception, the elicited

averages closely tracks the true averages. The exception is session 7, in which the true number of red

balls was 11% and the elicited average was 23.0%. This disparity was due to three outliers, subjects

who we believe a priori not to have understood the task. One subject allocated 36 tokens to the

interval for 81% to 90%, and 64 tokens to the interval for 91% to 100%; it is possible this subject

8 The average is estimated using an interval regression model with no covariates. Hence the
dependent variable is literally the interval selected by the subject, and the weight on that interval is the number
of tokens allocated to the interval.

-15-



was confused as to whether he was betting on red or white. If this subject is removed, the average

becomes 18.4%. Then there were two subjects that exhibited some degree of confusion, although

less extreme than the first outlier.9 If these are also removed, the average becomes 13.5%, close to

the true number of red balls. Of course one is always wary claiming that someone is an outlier,

although every behavioral economist knows that such subjects exist, and occasionally even in

clusters like this.

We should also add that we have independent evidence that the subjects from this

population do “robustly” exhibit risk aversion over stakes comparable to those used in the present

experiment: see Holt and Laury [2002][2005] and Harrison and Swarthout [2012], for instance. Thus

the close correspondence with the predictions of Corollary 1.1 is not due to the risk neutrality of the

subjects over these stakes.

Indeed, we can conduct a direct test of the effect of risk aversion by comparing elicited

beliefs for the same physical stimulus but using different scoring rules. As is well known, the quadratic

scoring rule for binary events will elicit biased responses if the subject is risk averse: intuitively, the

subject is drawn to report 50% so as to equalize earnings under each possible outcome, providing

subjective beliefs are not degenerate. In sessions 1 through 4 we also had separate subjects facing the

same stimulus, but responding to the quadratic scoring rule for binary events shown in Figure 11.10

In this case the binary event was a single draw from the urn containing the red and white balls.

Although all subjects within a given session are presented with the same physical stimuli, the two

9 One of these subjects allocated roughly 10 tokens to each and every interval, and the other allocated
roughly 10 tokens to each interval below 50%, 28 tokens to the interval for 71% to 80%, and small numbers
of tokens for other intervals greater than 50%.

10 These subjects were briefly taken out of the room as the instructions specific to the scoring rule for
the 10-event elicitation procedure, and vice versa. All subjects were in the room at the same time for the
initialization of the urns and the later realizations of the event they were betting on.
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groups of subjects fac different tasks: in the binary case the individual is betting over their subjective

perception of an order statistic, and in the 10-event case the individual is betting over their

subjective perception of a sufficient statistic of the population. Nonetheless, for the sessions in

which the stimuli were not close to 50% already, sessions 1 through 3, we observe in Figure 12 a

striking tendency for the reports in the binary scoring rule to be closer to 50% than to the true

stimuli. This is perfectly consistent with our predictions, since risk aversion has a significantly

biasing effect for the binary scoring rule, and virtually none for the 10-event scoring rule.

4. Conclusions

These results provide strong support for the use of practical methods for eliciting subjective

belief distributions over continuous events. Contrary to the case in which one elicits subjective

probabilities over binary events, there is a priori and empirical support for not needing to adjust or de-

bias the reports for continuous events on account of risk aversion.
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Figure 7: Initial Belief Elicitation Interface

Figure 8: Typical Belief Elicitation Response
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Figure 11: Subjective Probability Elicitation Interface
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